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The predicted impact point (PIP) of hypersonic interception changes continually; therefore the midcourse guidance law must
have the ability of online trajectory optimization. In this paper, an online trajectory generation algorithm is designed based
on neighboring optimal control (NOC) theory and improved indirect Radau pseudospectral method (IRPM). A trajectory
optimization model is designed according to the features of operations in near space. Two-point boundary value problems
(TPBVPs) are obtained based on NOC theory. The second-order linear form of transversality conditions is deduced backward
to express the modifications of terminal states, costates, and flight time in terms of current state errors and terminal constraints
modifications. By treating the current states and the optimal costates modifications as initial constraints and perturbations, the
feedback control variables are obtained based on improved IRPM and nominal trajectory information.The simulation results show
that when the changes of terminal constraints are not relatively large, this method can generate a modified trajectory effectively
with high precision of terminal modifications. The design concept can provide a reference for the design of the online trajectory
generation system of hypersonic vehicles.

1. Introduction

After decades of development, hypersonic technology has
made a lot of progress [1–3]. Hypersonic vehicles will be
used in military as precision strike weapons or platforms in
the near future. The demand on the research of advanced
intercept and defense technology is urgent.

In allusion to the high speed and large maneuverability
of hypersonic weapons, the interceptor should adopt the
compound guidance strategy to improve the success rate
of interception. From the end of program control flight to
the target acquisition of terminal guidance, the interceptor
spends most of the time flying in the midcourse guidance.
So the flight performance of midcourse guidance determines
the overall performance.

If we adopt the traditional guidance method to intercept
the high dynamic target directly, it will cause the frequent
changes of the trajectory, which is not conducive to the

implementation of the interception and leads to unnecessary
loss of energy. So it is a reasonable strategy to design the
trajectory of midcourse guidance. The main objective of the
midcourse guidance is to minimize the energy consumption
in the flight process of interceptor and enter the terminal
guidance with the best relative geometric relationship [4].
At present, the challenges which the midcourse guidance
law design of near space interceptors faces are mainly in
the following two aspects: on the one hand, during the
flight process of interceptors, problems such as structural
strength, thermal protection, normal work of the engine, and
control stability give rise to strict requirements on the heat
flux, dynamic pressure, overload, control, and other charac-
teristics of the process. Additionally, the predicted impact
point (PIP) provides terminal position constraints, and the
terminal guidance acquisition state-space becomes the strong
constraints conditions of interceptors [5]. On the other hand,
in actual flight process, the variation ranges of altitude and
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velocity are relatively large. Due to the initial conditions
errors, atmospheric environment changes, and great uncer-
tainty of aerodynamic model and navigation equipment, it
will cause trajectory tracking errors. Furthermore, the nom-
inal trajectory generated before launch is based on remote
detection results. In this condition, tracking and prediction
of the target have great error. With the approaching of the
interceptor and the target, tracking and prediction accuracy
will be improved bymeans of approaching detection with on-
board equipment. And the target is also likely to maneuver
actively. All those will lead to the change of PIP, and terminal
constraints also need updates accordingly. Therefore, the
designed midcourse guidance law must have the ability of
online trajectory optimization.

Taking all kinds of terminal constraints and a series of
process characteristics into account, the online optimization
problem is actually a complex nonlinear optimization prob-
lem [6], andmany scholars have studied it. Lin and Tsai [7, 8]
obtained a trajectory shaping guidance law by simplifying the
model and realized online trajectory generation. But the tra-
jectory was not true optimal due to toomuch approximation.
Indig et al. [6, 9, 10] first linearized the dynamic model of
interceptors. According to the location of PIP, the optimal
guidance law was designed based on the trajectory shaping
guidance. Then, in allusion to the actual nonlinear dynamic
model, the terminal angle constraints of interceptor were
added according to the midcourse and terminal guidance
handover. Finally, the optimal trajectory model was deduced
based on Pontryaginminimumprinciple and solved byGauss
pseudospectral method. Dwivedi et al. [11, 12] studied the
problem of midcourse guidance trajectory planning using
model predictive static planning method. Based on the
state equations of discretized system, the control variables
were updated by solving the costate vectors of the whole
time period, whose coefficient matrix could be obtained
by recursive method. The simulation results show that this
method has high accuracy and efficiency. Yakimenko et al.
[13–15] proposed a trajectory shaping guidance law based
on the inverse dynamic of virtual domain. In this method,
the coordinates of aircraft were expressed by higher order
polynomials with virtual arc, and the dynamic equationswere
transformed from the time domain to the virtual domain.
Introducing the virtual arc as an argument made it possible
to optimize the speed history along the trajectory indepen-
dently. Additionally, the number of the optimized variables
was reduced and the integration process was avoided. By
this method, the trajectory can be generated with good
convergence robustness. In addition, some scholars have also
studied this problem by pseudospectral method [16, 17],
intelligent algorithm [18, 19], and so on.

The aforementioned scholars have made many accom-
plishments in the domain of trajectory optimization; how-
ever, they mostly focused on the trajectory regeneration
in regard to the research of online trajectory optimization
problems. They completely abandoned the original trajec-
tory and reoptimized again, which caused large amount of
calculation and more time consumption, and put forward
higher requirements on the storage capacity and computing
ability of on-board computer. So it is not easy to realize in

engineering. In allusion to the characteristics of near space
targets, such as small overload, long flight time, and large
flight range, prediction of impact point will be continually
updated and the terminal constraints change correspond-
ingly. When the perturbations of current states and changes
of terminal constraints are not very large, according to the
neighboring optimal control theory, the modified trajectory
can be generated quickly within the neighborhood of the
nominal trajectory using nominal trajectory data to realize
online trajectory generation.

We still need to solve the TPBVPs [20] when adopting
above modification algorithm. The time-intensive backward
integration has brought difficulties to the online implemen-
tation. Recently, Fahroo and Ross [21] and Yan et al. [22] pro-
posed the indirect Legendre pseudospectral method (ILPM)
for solving the TPBVPs by matrix inversion which improved
solving efficiency a lot. In this method, the modifications
of states and costates were solved by initial perturbations of
states and the nominal trajectory information, and then the
feedback control modifications were obtained to form the
closed loop control. In this paper, the idea of ILPM is used
for reference and the IRPM is proposed which is improved in
two aspects. On the one hand, Fahroo and Hui only solved
the trajectory tracking problems with initial perturbations,
while the improved IRPM considers not only trajectory
tracking errors but alsomodifications of terminal constraints.
If computation speed is fast enough, the trajectory can be
generated in real time to realize closed loop guidance without
designing the feedback control law.On the other hand, Radau
pseudospectral method is superior to Legendre pseudospec-
tral method in approximating precision of control, state, and
costate variables. In terms of computational efficiency, the
two methods have little difference when solving the same
scale problem.

The main purpose of this paper is to design an online
optimal modification algorithm and realize online trajec-
tory optimization under the condition of changing terminal
constraints. The rest of paper is organized as follows. In
Section 2, the nominal trajectory satisfying terminal and path
constraints is generated offline. Next, the trajectory modified
model with unspecified terminal time is deduced by NOC in
Section 3 and is solved by improved IRPM in Section 4. In
Section 5, numerical simulations are presented. Finally, some
conclusions are drawn in Section 6.

2. Nominal Optimal Trajectory

2.1. Dynamic Model of Interceptor. When the nominal opti-
mal trajectory is generated offline, the interceptor should be
directly guided towards the PIP, so the dynamic model is
considered in the longitudinal plane.The states of interceptor
are represented by four-dimensional vector (V, 𝜃, 𝑥, 𝑦) con-
sisting of speed, flight path angle, and location in the inertial
coordinate and given as follows [23]:

V̇ = 𝑃 cos𝛼 − 𝐶𝑥𝑞𝑆𝑚 − 𝑔 sin 𝜃,
̇𝜃 = 𝑃 sin𝛼 + 𝐶𝑦𝑞𝑆𝑚V

− 𝑔 cos 𝜃
V

,
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Table 1: The related parameters of booster engine.

Parameter name Value𝐼sp (stage 1/2) 280/200 (s)𝑉𝑒 (stage 1/2) 30/8.9 (kg/s)
Burning time (stage 1/2) 20/50 (s)
Mass of booster shell 250 kg
Mass of interceptor 60 kg

�̇� = V cos 𝜃,̇𝑦 = V sin 𝜃,
(1)

where𝑚 is interceptormass; 𝑞 is the dynamic pressure; 𝑆 is the
reference area; 𝑔 is gravitational acceleration; 𝑃 is the engine
thrust. In order to achieve a higher flight speed, the two-stage
booster program is designed.The thrust calculation formulas
are shown in

𝑃 = 𝑉𝑒 𝑑𝑚𝑑𝑡 , 𝑉𝑒 = 𝑔𝐼sp, (2)

where𝑉𝑒 is the fuel gas velocity and 𝐼sp is the specific impulse,
whose value is generally 200∼300 s for the solid rocket engine
[24]. This paper designs a two-stage solid rocket booster. The
related parameters of the engine are shown in Table 1.𝐶𝑥, 𝐶𝑦 denote the drag and lift coefficients, respectively,
which are expressed as a function of Ma, the Mach number,
and 𝛼, the angle of attack:𝐶𝑦 = 𝐶𝛼𝑦 (Ma) 𝛼,

𝐶𝑥 = 𝐶𝑥0 (Ma) + 𝐾 (Ma) ⋅ 𝐶2𝑦, (3)

where 𝐶𝑥0, 𝐾 denote zero-lift drag coefficient and induced
drag coefficient, respectively; 𝐶𝛼𝑦 denotes the partial deriva-
tive of 𝐶𝑦 with respect to 𝛼. 𝑞 denotes the dynamic pressure:

𝑞 = 0.5𝜌V2. (4)

And 𝜌 is the atmosphere density expressed as

𝜌 = 𝜌0 exp(−𝑦𝑦0 ) , (5)

where 𝜌0 = 1.2250 kg/m3, 𝑦0 = 7254.3m.

2.2. Trajectory Optimization Problem. In order to ensure
kinematic kill effect of interception, terminal speed is usually
selected as cost function:𝐽 = 𝜙 (V (𝑡𝑓) , 𝑡𝑓) = −V𝑓. (6)

In this paper, subscript 0 denotes initial conditions and
subscript 𝑓 denotes terminal conditions. As is discussed
above, the main objective of the midcourse guidance is to
deliver the interceptor to a certain position (usually the PIP)
with specified conditions to ensure a successful handover

between midcourse and terminal guidance. So the position
constraints (𝑥𝑓, 𝑦𝑓) are given by PIP and the flight path
angle constraint 𝜃𝑓 at terminal time is given by the terminal
guidance acquisition conditions

𝜓 = [𝜃 − 𝜃𝑓 𝑥 − 𝑥𝑓 𝑦 − 𝑦𝑓]𝑇 = 0, (7)

where 0 denotes zero matrix with the corresponding dimen-
sion.

The above trajectory optimization problem is solved with
the help of the software package GPOPS [25]. The whole
trajectory was composed of three phases: boost stages 1 and
2 and nonpropulsive phase. Compared with other direct
optimization methods, pseudospectral method can obtain
higher accuracy with fewer nodes, which improves efficiency
of the algorithm.The nominal optimal trajectory is shown in
Figure 1.

3. Trajectory Modification Based on
Neighborhood Optimization

3.1. Two-Point Boundary Value Problem. In the process of
actual flight, when tracking errors of current states and
changes of terminal constraints are not very large, according
to the neighboring optimal control theory, we can further
differentiate the first-order necessary conditions of the opti-
mal trajectory to the second order to obtain perturbation
equations, and the modified trajectory satisfying the changed
terminal conditions can be obtained using the nominal
trajectory data. At the same time, the cost function can still
maintain certain optimality.

First of all, the first-order optimal necessary conditions
are derived based on optimal control. By introducing the
costate variable 𝜆 = [𝜆V 𝜆𝜃 𝜆𝑥 𝜆𝑦]𝑇 with the same dimen-
sion as the state variable x = [V 𝜃 𝑥 𝑦]𝑇, Hamilton equa-
tion can be expressed as

H = 𝜆𝑇f = 𝜆𝑉V̇ + 𝜆𝜃 ̇𝜃 + 𝜆𝑥�̇� + 𝜆𝑦 ̇𝑦, (8)

where f = [V̇ ̇𝜃 �̇� ̇𝑦]𝑇 denotes system equations.
Then the augmented performance index with terminal

constraints 𝐽 can be expressed as

𝐽 = [𝜙 + ^𝑇𝜓]
𝑓
+ ∫𝑡𝑓
𝑡0

(H − 𝜆𝑇ẋ) 𝑑𝑡, (9)

where ^ = []𝜃 ]𝑥 ]𝑦]𝑇. Canonical equation and coupled
equation can be expressed as

ẋ = 𝜕H𝜕𝜆 , (10)

�̇� = −𝜕H𝜕x , (11)

𝜕H𝜕u = 0. (12)

Considering the change of terminal conditions, the ter-
minal time ofmodified trajectorywill change accordingly.We
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Figure 1: Nominal trajectory.

can derive the equations of boundary conditions specified at
an unspecified terminal time and the terminal constraints of
Hamiltonian function along the optimal trajectory based on
NOC [26, 27]

𝜓 (x (𝑡𝑓)) = 0, (13)

𝜆 (𝑡𝑓) = −(𝜕𝜙𝜕x + ^𝑇
𝜕𝜓𝜕x )
𝑡=𝑡𝑓

= −𝜕Φ𝜕x 𝑡=𝑡𝑓 , (14)

0 = (H + 𝜕𝜙𝜕𝑡𝑓 + ^𝑇
𝜕𝜓𝜕𝑡𝑓)𝑡=𝑡𝑓

= (H + 𝜕Φ𝜕𝑡𝑓)𝑡=𝑡𝑓 .
(15)

Equations (10)∼(12) can be further differentiated to sec-
ond order as follows:

𝛿ẋ = 𝜕2H𝜕𝜆𝜕x𝛿x + 𝜕2H𝜕𝜆𝜕u𝛿u, (16)

𝛿�̇� = −𝜕2H𝜕x2 𝛿x − 𝜕2H𝜕x𝜕𝜆𝛿𝜆 − 𝜕2H𝜕x𝜕𝑢𝛿u, (17)

0 = 𝜕2H𝜕u𝜕x𝛿x + 𝜕2H𝜕u𝜕𝜆𝛿𝜆 + 𝜕2H𝜕u2 𝛿u. (18)

If 𝜕2H/𝜕u2 is nonsingular in the whole flight process, we
can get the expression of control modifications 𝛿u by (18):

𝛿u = −(𝜕2H𝜕u2 )−1 ( 𝜕2H𝜕u𝜕x𝛿x + 𝜕2H𝜕u𝜕𝜆𝛿𝜆) . (19)

The dynamic equations of state modifications 𝛿x and
costate modifications 𝛿𝜆 can be obtained by substituting (19)
into (16)∼(17):

𝛿ẋ = A (𝑡) 𝛿x − B (𝑡) 𝛿𝜆, (20)𝛿�̇� = C (𝑡) 𝛿x − A𝑇 (𝑡) 𝛿𝜆, (21)
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where

A (𝑡) = 𝜕2H𝜕𝜆𝜕x − 𝜕2H𝜕𝜆𝜕u (𝜕2H𝜕u2 )−1 𝜕2H𝜕u𝜕x ,
B (𝑡) = 𝜕H𝜕𝜆𝜕u (𝜕2H𝜕u2 )−1 𝜕2H𝜕u𝜕𝜆 ,
C (𝑡) = 𝜕2H𝜕x2 − 𝜕2H𝜕x𝜕u (𝜕2H𝜕u2 )−1 𝜕2H𝜕u𝜕x .

(22)

Equations (20)∼(21) satisfy initial conditions 𝛿x(𝑡0) =𝛿x0, 𝛿𝜆(𝑡0) = 𝛿𝜆0 and terminal conditions (13)∼(15) form
the TPBVPs of 𝛿x, 𝛿𝜆.
3.2. Terminal Linearization and Backward Recursion. Equa-
tions (6), (15), and (16) were differentiated to second order
with unspecified terminal time. Since Φ = 𝜙 + ^𝑇𝜓, we can
get

𝑑𝜓 = [𝜕𝜓𝜕x 𝛿x + (𝜕𝜓𝜕𝑡 + 𝜕𝜓𝜕x 𝑑x𝑑𝑡 ) 𝑑𝑡𝑓]
𝑡=𝑡𝑓

, (23)

𝑑𝜆 (𝑡𝑓) = 𝛿𝜆 (𝑡𝑓) + 𝑑𝜆𝑑𝑡 𝑡=𝑡𝑓 𝑑𝑡𝑓 = [𝜕2Φ𝜕x2 𝛿x
+ (𝜕𝜓𝜕x )𝑇 𝑑^ + 𝜕2Φ𝜕x𝜕𝑡𝑑𝑡𝑓]

𝑡=𝑡𝑓

, (24)

0 = [(𝜕H𝜕x + 𝜕2Φ𝜕𝑡𝜕x)𝛿x + 𝜕𝜓𝜕𝑡 𝑇𝑑^ + 𝜕H𝜕𝜆 𝛿𝜆
+ (𝜕H𝜕𝑡 + 𝜕2Φ𝜕𝑡2 )𝑑𝑡𝑓]

𝑡=𝑡𝑓

. (25)

Equations (23)∼(26) consist of 𝑛 + 𝑞 + 1 linear equations
with 2𝑛+𝑞+1unknownvariables.They are statemodifications𝛿x of dimension 𝑛, costate modifications 𝛿𝜆 of dimension 𝑛,
variables 𝑑^ of dimension 𝑞, and variable 𝑑𝑡𝑓 of dimension
one. Variables 𝑑^ and state modifications of dimension 𝑛 − 𝑞
unspecified at terminal time are defined as free variables

𝑑𝜇 = [𝑑^1, 𝑑^2, . . . , 𝑑^𝑞, 𝛿x𝑞+1, 𝛿x𝑞+2, . . . , 𝛿x𝑛]𝑡=𝑡𝑓 . (26)

Since the changes of terminal constraints are not very
large, (23)∼(25) can be linearized based on small perturbation
hypothesis, so that we get

(𝛿x𝛿𝜆𝑑𝑡𝑓)𝑡=𝑡𝑓 = P( 𝑑𝜇𝑑𝜓𝑓) = (P11 P12
P21 P22
P31 P32

)( 𝑑𝜇𝑑𝜓𝑓) , (27)

where

P11 = 1�̇��̇�𝑉
[[[[[[[

0 0 0 �̇��̇�𝑉̇𝜃2 ̇𝜃�̇� ̇𝜃 ̇𝑦 ̇𝜃�̇�𝑉̇𝜃�̇� �̇�2 �̇� ̇𝑦 �̇��̇�𝑉̇𝜃 ̇𝑦 �̇� ̇𝑦 ̇𝑦2 ̇𝑦�̇�𝑉
]]]]]]]

,

P12 = 1�̇��̇�𝑉
[[[[[[[

0 0 0�̇��̇�𝑉 + ̇𝜃�̇�𝜃 ̇𝜃�̇�𝑥 ̇𝜃�̇�𝑦�̇��̇�𝜃 �̇��̇�𝑉 + �̇��̇�𝑥 �̇��̇�𝑦̇𝑦�̇�𝜃 ̇𝑦�̇�𝑥 �̇��̇�𝑉 + ̇𝑦�̇�𝑦
]]]]]]]

,
P21 = 1�̇��̇�𝑉

⋅ [[[[[[[

̇𝜃�̇�𝑉 �̇��̇�𝑉 ̇𝑦�̇�𝑉 �̇�2𝑉−�̇��̇�𝑉 + ̇𝜃�̇�𝜃 �̇��̇�𝜃 ̇𝑦�̇�𝜃 �̇�𝑉�̇�𝜃̇𝜃�̇�𝑥 −�̇��̇�𝑉 + �̇��̇�𝑥 ̇𝑦�̇�𝑥 �̇�𝑉�̇�𝑥̇𝜃�̇�𝑦 �̇��̇�𝑦 −�̇��̇�𝑉 + ̇𝑦�̇�𝑦 �̇�𝑉�̇�𝑦
]]]]]]]

,

P22 = 1�̇��̇�𝑉
[[[[[[[
�̇�𝑉�̇�𝜃 �̇�𝑉�̇�𝑥 �̇�𝑉�̇�𝑦�̇�2𝜃 �̇�𝜃�̇�𝑥 �̇�𝜃�̇�𝑦�̇�𝜃�̇�𝑥 �̇�2𝑥 �̇�𝑥�̇�𝑦�̇�𝜃�̇�𝑦 �̇�𝑥�̇�𝑦 �̇�2𝑦

]]]]]]]
,

P31 = 1�̇��̇�𝑉 [− ̇𝜃 −�̇� − ̇𝑦 −�̇�𝑉] ,
P32 = 1�̇��̇�𝑉 [−�̇�𝜃 −�̇�𝑥 −�̇�𝑦] .

(28)

Equations (20)∼(21) can be expressed as the following
form: 𝛿Θ̇ = (A (𝑡) B (𝑡)

C (𝑡) −A (𝑡)) 𝛿Θ = G𝛿Θ, (29)

where 𝛿Θ = (𝛿x 𝛿𝜆)𝑇 and the variables of above differential
equation are discretized as𝑀+1 points by Δ𝑡. We can get by
backward recursion𝛿Θ𝑀−1 = 𝛿Θ𝑀 + G𝑀𝛿Θ𝑀 (−Δ𝑡)= (𝐼 − G𝑀Δ𝑡) 𝛿Θ𝑀,𝛿Θ𝑘 = 𝛿Θ𝑘+1 + G𝑘+1𝛿Θ𝑘+1 (−Δ𝑡)= (I − G𝑘+1Δ𝑡) 𝛿Θ𝑘+1= (I − G𝑘+1Δ𝑡) (I − G𝑘+2Δ𝑡) 𝛿Θ𝑘+2.

(30)

Passing to the first point in turn we can get𝛿Θ0 == G𝛿Θ𝑀, (31)
whereG = (I−G1Δ𝑡)(I−G2Δ𝑡) ⋅ ⋅ ⋅ (I−G𝑀Δ𝑡), and according
to (27) we have

(𝛿x𝛿𝜆)
𝑡=𝑡𝑓

= (P11 P12
P21 P22

)( 𝑑𝜇𝑑𝜓f) . (32)
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Substituting (32) into (31)

(𝛿x (𝑡0)𝛿𝜆 (𝑡0)) = (G1 G2
G3 G4

)(P11 P12
P21 P22

)( 𝑑𝜇𝑑𝜓𝑓)
= (Π1 Π2
Π3 Π4

)( 𝑑𝜇𝑑𝜓𝑓) , (33)

where

Π1 = G1P11 + G2P21,
Π2 = G1P12 + G2P22,
Π3 = G3P11 + G4P21,
Π4 = G3P12 + G4P22,

(34)

and ifΠ1 is reversible, 𝑑𝜇 can be expressed as

𝑑𝜇 = Π−11 (𝛿x0 −Π2𝑑𝜓𝑓) . (35)

Substituting (35) into (27) we can get

𝛿x𝑓 = P11Π
−1
1 (𝛿x0 −Π2𝑑𝜓𝑓) + P12𝑑𝜓𝑓,𝛿𝜆𝑓 = P21Π
−1
1 (𝛿x0 −Π2𝑑𝜓𝑓) + P22𝑑𝜓𝑓,𝑑𝑡𝑓 = P31Π
−1
1 (𝛿x0 −Π2𝑑𝜓𝑓) + P32𝑑𝜓𝑓.

(36)

3.3. The Optimality Theory

Theorem 1. Themodified trajectories obtained in the nominal
trajectory neighborhood based on the neighborhood optimal
control theory meet the changed terminal constraints, and the
performance index has second-order optimality.

Proof. According to the division integral theorem, the perfor-
mance index can be expressed as

𝐽 = [𝜙 + ^𝑇𝜓]
𝑓
− 𝜆𝑇x𝑡𝑓𝑡0 + ∫𝑡𝑓

𝑡0

(H + �̇�𝑇x) 𝑑𝑡. (37)

Considering the first-order variation of the performance
index and taking canonical equations (10)-(11) and coupled
equation (12) into it, we can get by ignoring the high order
terms:

𝛿𝐽 = [𝜆𝑇𝛿x]
0
+ [^𝑇𝛿𝜓]

𝑓
+ [12𝛿x𝑇 𝜕2Φ𝜕x2 𝛿x]

𝑓

+ ∫𝑡𝑓
𝑡0

12 [𝛿x𝑇 𝛿u𝑇] [[[[[
𝜕2H𝜕x2 𝜕2H𝜕x𝜕u𝜕2H𝜕u𝜕x 𝜕2H𝜕u2

]]]]]
[𝛿x𝛿u]𝑑𝑡. (38)

Multiplying (16) and (23) by the 𝛿𝜆 and 𝛿^, respectively,
we can get by taking the resulting equations into (38):

𝛿𝐽 = [𝜆𝑇𝛿x]
0
+ [^𝑇𝛿𝜓]

𝑓
+ [12𝛿x𝑇 𝜕2Φ𝜕x2 𝛿x]

𝑓

+ [𝑑^𝑇 𝜕𝜓𝜕x 𝛿x]
𝑓

+ ∫𝑡𝑓
𝑡0

𝛿𝜆𝑇(𝛿ẋ − 𝜕2H𝜕𝜆𝜕x𝛿x + 𝜕2H𝜕𝜆𝜕u𝛿u)𝑑𝑡
+ ∫𝑡𝑓
𝑡0

12 [𝛿x𝑇 𝛿u𝑇] [[[[[
𝜕2H𝜕x2 𝜕2H𝜕x𝜕u𝜕2H𝜕u𝜕x 𝜕2H𝜕u2

]]]]]
[𝛿x𝛿u]𝑑𝑡.

(39)

Considering the second-order variation of (39), we can
get according to the division integral theorem:

𝛿2𝐽 = [(𝛿x𝑇 𝜕2Φ𝜕x2 + 𝑑^𝑇 𝜕𝜓𝜕x − 𝛿𝜆𝑇)𝛿2x]
𝑓

+ ∫𝑡𝑓
𝑡0

(𝛿x𝑇 𝜕2H𝜕x𝜕u + 𝛿𝜆𝑇 𝜕2H𝜕𝜆𝜕u + 𝛿u𝑇 𝜕2H𝜕u2 )𝛿2u 𝑑𝑡
+ ∫𝑡𝑓
𝑡0

( 𝑑𝑑𝑡 (𝛿𝜆𝑇) + 𝛿x𝑇 𝜕2H𝜕x2 + 𝛿𝜆𝑇 𝜕2H𝜕𝜆𝜕x
+ 𝛿u𝑇 𝜕2H𝜕u𝜕x)𝛿2x 𝑑𝑡.

(40)

Taking (17)-(18) and (24) into (40), we can get 𝛿2𝐽 = 0
for any 𝛿2x and 𝛿2u. Therefore, the second-order optimality
of the performance index can be guaranteed with satisfying
the changed terminal constraints.

4. Solving Algorithm Based on
Improved IRPM

In the last section, considering the changes of terminal
constraints of some state variables, the optimal terminalmod-
ification of costates variables 𝛿𝜆𝑓 and optimalmodification of
terminal time 𝑑𝑡𝑓 are derived at an unspecified terminal time
based on the NOC. Improved IRPM will be used to solve the
modified optimal trajectory according to 𝛿𝜆𝑓 and 𝑑𝑡𝑓 in this
section.

Since 𝑑𝑡𝑓 has been calculated in the last section, the
nominal trajectory information which will be used to solve
the modified trajectory changes correspondingly. The new
nominal trajectory information can be obtained by interpo-
lating the original nominal trajectory. Because the trajectory
tracking errors have been taken into account when we solved𝛿𝜆𝑓 in the last section, we can regard current states of the
interceptor as initial constraints and 𝛿𝜆𝑓 as the perturbations
when solving the modified trajectory. Then we can use the
new nominal trajectory information to design the solving
algorithm to generate a trajectory from the current states to
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the modified terminal states, whose performance index can
still maintain certain optimality.

The boundary conditions in last section change to the
following form:

𝜓
 = [𝜃 − 𝜃0 𝑥 − 𝑥0 𝑦 − 𝑦0]𝑇 = 0, (41)

𝜆 (𝑡0) = −(^𝑇 𝜕𝜓𝜕x )
𝑡=𝑡0

. (42)

Equations (41)∼(42) can be expressed as follows:

Ω (x (𝑡0) ,𝜆 (𝑡0)) = 0. (43)

Variation of (43) is solved as

[𝜕Ω𝜕x 𝛿x + 𝜕Ω𝜕𝜆 𝛿𝜆]𝑡=𝑡0 = 0. (44)

Now we use improved IRPM to solve the optimal trajec-
tory modified model. Firstly, the variables are discretized at
Legendre-Gauss-Radau (LGR) points. Since the time domain
for the above problem is [𝑡0, 𝑡𝑓], while Radau pseudospectral
method is used in the time domain [−1, 1], it is necessary to
introduce a new time variable 𝜏:𝜏 = 2𝑡𝑡𝑓 − 𝑡0 − 𝑡𝑓 + 𝑡0𝑡𝑓 − 𝑡0 . (45)

States and costates variables are approximated as follows:

𝛿x ≈ 𝛿x𝑁 (𝜏) = 𝑁−1∑
𝑙=0

𝛿x (𝜏𝑙) 𝐿 𝑙 (𝜏) ,
𝛿𝜆 ≈ 𝛿𝜆𝑁 (𝜏) = 𝑁−1∑

𝑙=0

𝛿𝜆 (𝜏𝑙) 𝐿 𝑙 (𝜏) , (46)

where 𝜏0 = −1 and 𝜏𝑙 (𝑙 = 1, 2, . . . , 𝑁) are 𝑁 LGR points
distributed at the interval (−1, 1], which are defined as zero
points of �̇�𝑁(𝜏) − �̇�𝑁−1(𝜏). �̇�𝑁 is Legendre polynomial of
order 𝑁. And 𝐿 𝑖 is Lagrange interpolation polynomial basis
function:

𝐿 𝑖 = 𝐾∏
𝑗=0,𝑗 ̸=𝑖

𝜏 − 𝜏𝑗𝜏𝑖 − 𝜏𝑗 . (47)

The derivatives of 𝛿x𝑁(𝜏) and 𝛿𝜆𝑁(𝜏) at the point of 𝜏𝑙 are
obtained by differentiating (46) as follows:

𝛿ẋ (𝜏𝑘) ≈ 𝛿ẋ𝑁 (𝜏𝑘) = 𝑁−1∑
𝑙=0

𝛿x (𝜏𝑙) �̇� 𝑙 (𝜏)
= 𝑁−1∑
𝑙=0

𝐷𝑘𝑙𝛿x (𝜏𝑙) ,
𝛿𝜆 (𝜏𝑘) ≈ 𝛿𝜆𝑁 (𝜏𝑘) = 𝑁−1∑

𝑙=0

𝛿𝜆 (𝜏𝑙) �̇� 𝑙 (𝜏)
= 𝑁−1∑
𝑙=0

𝐷𝑘𝑙𝛿𝜆 (𝜏𝑙) ,

(48)

where𝐷𝑘𝑙 is the difference matrix of dimension (𝑁 + 1) ×𝑁:

𝐷𝑘𝑙 = {{{{{{{{{
̇𝑞 (𝜏𝑘)(𝜏𝑘 − 𝜏𝑙) ̇𝑞 (𝜏𝑙) , 𝑙 ̸= 𝑘,̈𝑞 (𝜏𝑙)2 ̇𝑞 (𝜏𝑙) , 𝑙 = 𝑘,

𝑞 (𝜏𝑙) = (1 + 𝜏𝑙) [𝑃𝑁 (𝜏𝑙) − 𝑃𝑁−1 (𝜏𝑙)] .
(49)

The TPBVPs of 𝛿x, 𝛿𝜆 are transformed into the following
algebraic equations:

𝑁∑
𝑗=1

𝐷𝑖𝑗𝛿x𝑗 (𝜏)
− 𝑡𝑓 − 𝑡02 (A𝑖 (𝜏) 𝛿x𝑖 (𝜏) − B𝑖 (𝜏) 𝛿𝜆𝑖 (𝜏)) = 0, (50)

𝑁∑
𝑗=1

𝐷𝑖𝑗𝛿𝜆𝑗 (𝜏)
+ 𝑡𝑓 − 𝑡02 (C𝑖 (𝜏) 𝛿x𝑖 (𝜏) + A𝑇𝑖 (𝜏) 𝛿𝜆𝑖 (𝜏)) = 0, (51)

[𝜕Ωx𝛿x + 𝜕Ω𝜆𝛿𝜆]𝜏=𝜏0 = 0. (52)

0 represents the zero matrix with the corresponding
dimension. For simplicity, substituting X = [𝛿x𝑇0 , 𝛿x𝑇1 , . . . ,𝛿x𝑇𝑁−1]𝑇, Λ = [𝛿𝜆𝑇0 , 𝛿𝜆𝑇1 , . . . , 𝛿𝜆𝑇𝑁−1]𝑇 into (50)∼(51) we can
get

EX − 𝑡𝑓 − 𝑡02 FΛ = 0,𝑡𝑓 − 𝑡02 GX +HΛ = 0, (53)

where E, F,G,H are matrices of dimension [𝑛(𝑁 + 1) × 𝑛𝑁]:
[𝐸]𝑖𝑗 = {{{{{

𝐷𝑖𝑗I𝑛 𝑖 ̸= 𝑗
𝐷𝑖𝑗I𝑛 − 𝑡𝑓 − 𝑡02 A𝑖 𝑖 = 𝑗,

[𝐹]𝑖𝑗 = {{{
0𝑛 𝑖 ̸= 𝑗
B𝑖 𝑖 = 𝑗,

[𝐺]𝑖𝑗 = {{{
0𝑛 𝑖 ̸= 𝑗
C𝑖 𝑖 = 𝑗,

[𝐻]𝑖𝑗 = {{{{{
𝐷𝑖𝑗I𝑛 𝑖 ̸= 𝑗
𝐷𝑖𝑗I𝑛 + 𝑡𝑓 − 𝑡02 A𝑇𝑖 𝑖 = 𝑗,

(54)

where 0𝑛 and I𝑛 are zero and identity matrices of dimension𝑛 × 𝑛. The purpose of this algorithm is to solve (53) subjected
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to the boundary conditions (52). These equations can be
summarized in matrix form as

[[[[[[
Γ1 Γ2𝑡𝑓 − 𝑡02 G H

E −𝑡𝑓 − 𝑡02 F

]]]]]]
[X
Λ
] = VZ = [[[

0
0
0

]]] , (55)

whereZ𝑇 = [X𝑇,Λ𝑇], Γ1 and Γ2 arematrices of dimension 𝑛×𝑛(𝑁+1). Γ1 = [0𝑛, . . . , 0𝑛, 𝜕Ω/𝜕x], Γ2 = [0𝑛, . . . , 0𝑛, 𝜕Ω/𝜕𝜆].
Dividing V and Z as V = [V𝑒 V𝑓] and Z = [Z𝑒 𝛿𝜆𝑓] we get

V𝑒Z𝑒 + V𝑓𝛿𝜆𝑁 = 0, (56)

where V𝑒 of dimension [𝑛(2𝑁 + 1) × 𝑛(2𝑁 + 1)] and V𝑓
of dimension 𝑛(2𝑁 + 1) × 𝑛 are block matrices of V. Z𝑒 =[𝛿x𝑇0 , 𝛿x𝑇1 , . . . , 𝛿x𝑇𝑁, 𝛿𝜆𝑇0 , . . . , 𝛿𝜆𝑇𝑁−1]𝑇 is a vector of dimension𝑛(2𝑁 + 1), which can be obtained by solving

Z𝑒 = −V𝑒 \ V𝑓𝛿𝜆𝑁 = W𝛿𝜆𝑁. (57)

Since Z = [𝛿x𝑇0 , . . . , 𝛿x𝑇𝑁, 𝛿𝜆𝑇0 , . . . , 𝛿𝜆𝑇𝑁]𝑇, we can get

Z = [ Z𝑒𝛿𝜆𝑁] = [W
I𝑛

] 𝛿𝜆𝑁 = [Wx

W𝜆
] 𝛿𝜆𝑁, (58)

where Wx and W𝜆 of dimension 𝑛(𝑁 + 1) × 𝑛 are the block
matrices of [W I𝑛]𝑇. Then we have𝛿x𝑘 = Wx𝑘𝛿𝜆𝑁,𝛿𝜆𝑘 = W𝜆𝑘𝛿𝜆𝑁, (59)

where Wx𝑘 of dimension 𝑛 × 𝑛 is block matrix of Wx and
W𝜆𝑘 of dimension 𝑛 × 𝑛 is block matrix of W𝜆. Subscript 𝑘
represents the 𝑘th LGR point.

Substituting (59) into (19), we can get the optimal control
modifications:𝛿u (𝜏𝑖) = −H−1𝑢𝑢 (H𝑢xWx𝑖 + f𝑇𝑢W𝜆𝑖) 𝛿𝜆𝑁. (60)

Since 𝛿𝜆𝑁 = 𝛿𝜆𝑓 has been solved in the last section,
the modifications of states, costates, and controls at the LGR
points can be obtained by (59)-(60) and the values at instants
of time between the nodes can be obtained by interpolation.
The above solutions are obtained without a wide range of
iterative optimization process, so it can ensure the high
computational efficiency.

Themodified algorithm can be concluded as Figure 2 and
specific procedures are as follows:

(1) Considering various process constraints and terminal
constraints and selecting the maximum velocity as
the performance index, we can establish the optimal
model according to the dynamic equations of inter-
ceptor.

(2) After further differentiating the canonical equations
and coupled equations to second order, we can get
the expression of feedback control 𝛿u and the TPBVP
equations of 𝛿x, 𝛿𝜆.

(3) After further differentiating the boundary conditions
at unspecified terminal time to second order, we
can get the expressions of 𝛿x, 𝛿𝜆 in terms of free
variables 𝑑𝜇 and terminal constraints 𝑑𝜓𝑓; the rela-
tionship between 𝛿x0, 𝛿𝜆0 and 𝛿x𝑓, 𝛿𝜆𝑓 is established
by backward recursion, which can be used to deduce
the expressions of 𝛿x0, 𝛿𝜆0 in terms of 𝑑𝜇, 𝑑𝜓𝑓, and
then we get the expressions of 𝛿𝜆𝑓, 𝑑𝑡𝑓 in terms of𝛿x0, 𝑑𝜓𝑓.

(4) The flight time of original nominal trajectory 𝑡𝑓 plus𝑑𝑡𝑓 can be used as new flight time of the new nominal
trajectory which can be obtained by interpolating the
original nominal trajectory.

(5) Regarding current states of the interceptor as initial
constraint and 𝛿𝜆𝑓 as perturbation, we solve the feed-
back control 𝛿u using the improved IRPM and finally
realize online trajectory optimization of midcourse
guidance.

5. Simulations and Discussion

In order to verify the validity of the proposed algorithm,
the following assumption of intercept operations is designed.
Because the nonpropulsive phase is more difficult for trajec-
tory adjustment, the terminal PIP is modified at the initial
time of the nonpropulsive phasewith altitude increasing 2 km
and flight path angle increasing 5 deg. And the current track-
ing errors of flight path angle and altitude are 0.1 deg and 10m.

The GPM has high precision in solving optimization
problems. So when the tracking error generates or the termi-
nal constraints change, the reoptimized trajectory by GPM,
which is solved by MATLAB programs GPOPS [25], will
be used as a standard optimal modified trajectory for com-
parison. The comparison of modified trajectory is shown in
Figure 3. NOC represents the modified trajectory generated
based on NOC theory and the improved IRPM solving algo-
rithmdesigned in this paper.Nominal represents the nominal
trajectory with the unchanged terminal constraints; GPOPS
represents the modified trajectory reoptimized by GPM.

All simulation results of this paper are obtained on a
Lenovo laptop with an Intel 2.50GHz quad-core processor,
using windows 7 operating system. All the codes are run
under the MATLAB� R2014a environment.

From Figure 3 we know that the modified trajectory
(NOC), which is substantially overlapping the reoptimized
trajectory (GPOPS), can satisfy the changed terminal con-
straints caused by the changed PIP. And the flight time of
modified trajectory is approximatively equal to that of the
reoptimized trajectory by GPM.These results prove the high
accuracy of the algorithm designed in this paper. In the initial
time after modification, the error of angle of attack between
the modified trajectory and the nominal trajectory is not
large, no more than 0.5 deg, which represents that the angle
of attack does not have a large jump and therefore ensures the
stability of the control.

In order to verify the higher precision and efficiency
of improved IRPM, the contrast simulation is designed as
follows: in the fourth section, according to the tracking error
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Figure 3: Curves of altitude and flight path angle.

and terminal constraints modifications, 𝛿x𝑓 and 𝛿𝜆𝑓 are
obtained by backward recursive algorithm.And thenwe solve
feedback control variables by inversely integrating differential
equations (19)–(21) of trajectory modification model rather
than improved IRPM. In the integration process, 50, 500, and
1000 nodes are, respectively, selected at the same time inter-
val. The curves of flight path angle modification and altitude
modification are shown in Figures 4–6; the comparison of
time consumption and terminal constraints modifications is
shown in Table 2.

From Figures 4 and 5 and Table 2 we know that compared
with the modified trajectory solved by improved IGPM with
that reoptimized by GPM, the most part of curves is close
except for initial several seconds aftermodificationwith flight
path angle error of no more than 0.15 degrees and altitude
error of no more than 120m. Furthermore, the two methods
have similar precision in terminal modifications, but the time
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Figure 4: Comparison of flight path angle modification.

consumption of the former is much shorter than the latter.
The method of solving differential equations directly has
relatively large errors compared to reoptimization by GPM.
With the increase of the number of nodes, the errors decrease
gradually and the precision of terminalmodifications accord-
ingly increases. But the time consumption increases as well.
And even if 1000 nodes are selected, the precision of terminal
modifications still has a certain gap compared with improved
IGPM while time consumption increases a lot.

In summary, the concept of modified trajectory design
using nominal trajectory information can guarantee the
modified precision with improving efficiency a lot; and the
solvingmethod based on improved IGPMmethod is superior
to the method by solving differential equations directly in
accuracy and efficiency.

In order to verify the adaptivity of modified algorithm,
the simulation is designed as follows: the value of 𝛿𝑦 is set
randomly within [−3000 3000], and the value of 𝛿𝜃 is set
from the −5 deg to 5 deg at the interval of 1 deg, which adds
up to 11 sets of different changed terminal constraints. The
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Table 2: Comparison of time consumption terminal modification.

Method GPOPS NOC 50 500 1000
t/s 7.116 0.049 0.144 1.248 2.532𝛿𝜃𝑓/deg 5.00 4.994 4.081 4.667 4.707𝛿𝑦𝑓/m 2000 1924 1391 2376 2144
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Figure 5: Comparison of altitude modification.
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Figure 6: Flight path angle modifications with different terminals.

results are shown in Figure 7. Similarly, the value of 𝛿𝜃 is
set randomly within [−5 5], the value of 𝛿𝑦 is set from the−3000m to 3000 at the interval of 600m which adds up to 11
sets of different changed terminal constraints. The results are
shown in Figure 7. We can know from Figures 6 and 7 that
the algorithm has themodified ability for different changes of
terminal constraints. All initial errors of altitude are close to
0 and the maximal initial error of flight path angle is no more
than 0.1 deg, which can be adjusted by the trajectory tracking
control process.𝛿𝜃 is set as 10 deg and 𝛿𝑦 is set to 0; the curve of
modifications is shown in Figure 8. Similarly, 𝛿𝑦 is set to
8000m and 𝛿𝜃 is set to 0; the curve of modifications is shown
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Figure 7: Altitude modifications with different terminals.

in Figure 9. According to Figures 8 and 9 we can know that
when terminal constraints change largely, the error between
the modified trajectory generated by the algorithm of this
paper and the reoptimized trajectory by GPM is relatively
large, which means the optimality of modified trajectory is
difficult to guarantee. Because the modified algorithm of
this paper is based on the NOC theory, when the changes
of terminal constraints are beyond the neighborhood of
nominal trajectory, the algorithm is no longer applicable.

6. Conclusion

An online trajectory optimization algorithm of midcourse
guidance for hypersonic interception is designed based on the
NOC theory and the improved IGPM.The main conclusions
are as follows:

(1) The algorithm considers not only the tracking error
but also the change of terminal constraints.Therefore,
it has the disturbance rejection ability and the ability
to adjust terminal constraints online.

(2) By using the original nominal trajectory informa-
tion, a modified trajectory with higher accuracy can
be rapidly generated based on neighboring optimal
control theory. The iterative optimization process is
avoided, and the trajectory generation is realized
online.

(3) When the changes of terminal constraints are rela-
tively large, beyond the neighborhood of the original
nominal trajectory, the online modified algorithm is
no longer applicable. It needs to reoptimize online to
get the modified trajectory.
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Figure 8: Curves of modifications with flight path angle increasing 10 deg.
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Figure 9: Curves of modifications with altitude increasing 8000m.
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