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Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas
temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1) Markov chain-based
approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (I, 1) model in time series and the
advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this
approach, firstly, the GM (1, 1) model is used to forecast the trend by using limited data samples. Then, Markov chain model is
integrated into GM (1, 1) model in order to enhance the forecast performance, which can solve the influence of random fluctuation
data on forecasting accuracy and achieving an accurate estimate of the nonlinear forecast. As an example, the historical monitoring
data of exhaust gas temperature from CFM56 aeroengine of China Southern is used to verify the forecast performance of the GM
(1, 1) Markov chain model. The results show that the GM (1, 1) Markov chain model is able to forecast exhaust gas temperature
accurately, which can effectively reflect the random fluctuation characteristics of exhaust gas temperature changes over time.

1. Introduction

Prognostic and health management for aeroengine are the
main concerns for many researchers and users in order to
provide more useful information for the safe operation [1, 2].
Performance degradation forecast technology for assessing
degradation states quantitatively based on gas path perfor-
mance parameters is one of the most important technologies,
which can improve the safety, reliability, and maintenance
of aeroengine [3, 4]. Therefore, how to improve the forecast
precision by the advanced condition monitoring techniques
to extract hidden, unknown, and the useful information from
large amounts of monitoring data is emphasized on in the
study of performance degradation forecast.

In the past half-century, different methods have been
developed to analyze aeroengine gas path performance
parameters for performance degradation [5, 6], fault diagno-
sis [7], remaining service life [8-10], and reliability [11]. Li
developed a novel adaptive gas path analysis (adaptive GPA)
approach to estimate actual engine performance and gas path
component health status by using gas path measurements
[5]. Chen established the Artificial Neural Network (ANN)

model of aeroengine performance trend forecasting by using
the strong nonlinear mapping ability of ANN and the phase
space reconstruction theory [6]. Jiang took complex engine
gas path system as a grey system and evaluated the samples
utilizing the grey relationship degree theory to achieve the
gas path fault diagnosis of aeroengine [7]. Wu et al. proposed
Support Vector Machines (SVM) to predict the residual life
of aeroengine based on the data of the actual gas path
parameters monitoring information and failure event report
from the aeroengine [8]. Ren and Zuo developed a residual
life prediction model based on Bayesian updating methods
and particle swarm optimization with immunity algorithms
through analyzing the performance degradation process of
aeroengine [9]. On the basis that the gas path performance
parameters of aeroengine were analyzed, the aeroengine
residual life prediction method based on performance deteri-
oration pattern was proposed by Fu et al. [10]. Wang and Jiang
provided a performance reliability prediction method based
on Support Vector Machines (SVM) for aeroengine by using
condition monitoring information [11].

Several approaches have been introduced to forecast the
gas path performance parameters of aeroengine. Based on



the research of aeroengine performance parameters relativity,
with the condition of small samples and variables with
multiple correlations, Shi et al. proposed a partial least-
squares regression method to build short time forecasting
model of aeroengine performance parameter under the
condition of small samples [12]. In order to improve the
forecasting accuracy of aeroengine performance parameters,
Li et al. decomposed the original sequence by using wavelet
transform and forecasted the subsequences in different fre-
quency bands by using Auto Regressive Moving Average
(ARMA) or Auto Regressive Integrated Moving Average
(ARIMA) [13]. Zhong et al. adopted the process neural
networks to predict aeroengine performance parameters [14-
16]. Zhang and Wang adopted Support Vector Machine
(SVM) regression approach to monitor an aeroengine health
and condition by building monitoring models of main
aeroengine performance parameters [17]. In order to predict
the change tendency of aeroengine performance parameters
effectively, a novel exhaust gas temperature (EGT) prediction
method named process support vector machine (PSVM) was
proposed by Fu and Zhong [18]. Ilbas and Turkmen dealt with
the estimation of exhaust gas temperature (EGT) of a CFM56-
7B turbofan engine using Artificial Neural Network (ANN) at
two different power settings, maximum continuous and take-
off [19].

From the literature described above, statistical and arti-
ficial intelligence based approaches are the two main tech-
niques. Auto Regressive (AR), Moving Average (MA), Auto
Regressive Moving Average (ARMA), and Auto Regressive
Integrated Moving Average (ARIMA) can be mentioned as
statistical models, while Artificial Neural Network (ANN)
and Support Vector Machines (SVM) have been most widely
used as artificial intelligence approaches. The essences of the
above approaches are establishing the appropriate time series
model by analyzing historical data. The modeling processes of
the statistical based approaches are relatively simple [12, 13].
However, these approaches for accurately forecasting trends
depend on the law of the distribution of historical data as well
as large amounts of observed data. ANN-based approaches
eliminate the limitations of traditional regression methods
and accurately establish mapping between input and output
variables [19, 20]. It can approximate an arbitrary nonlinear
function with satisfactory precision. A great deal of training
data and relatively long training period for robust general-
ization can ensure the success of ANN-based approaches.
Although the support vector machines-based approach has
many special advantages that can resolve problems, such
as the small-sample set, nonlinear, and high dimensions.
The kernel functions and penalty factor are difficult to
determine, which can also influence the forecast accuracy [17,
18]. Conventional methods of accurate forecast time series
trends depend on the sufficiency and completeness of the
information obtained.

In practical applications, it is difficult to obtain the
complete information because of many reasons. Besides, the
aeroengine gas path performance parameters are often highly
nonlinear, stochastic, and nonstationary. Therefore, not only
the conventional statistical models are not as accurate as the
artificial neural network-based approaches for aeroengine gas
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path performance parameters trend forecast problems, but
the traditional methods may also be too complex to be used
in forecasting future values of time series.

Grey system theory, proposed by Deng in 1982 [21], is a
mathematical analysis of systems with incomplete informa-
tion and discrete data. As a simple forecast model, GM (1,
1) model has been widely and successfully applied to various
systems such as economic and industrial and so forth [22]. In
aeroengine, Wu introduced a wear fault forecast model based
on grey system theory for aeroengine [23]. The results showed
that compared with the traditional prediction methods of
time sequence AR(n) model, the forecast method of the
GM (1, 1) model has the advantages of higher precision of
forecast and lower sensitivity to the unequal intervals among
the original data sequences for the modeling. However, the
forecast accuracy of GM (1, 1) model is unsatisfactory when
original data shows great randomness because GM (1, 1)
model is only a just order single variable grey model [24].

The goal of the paper is to introduce the time series
forecast based on grey system theory to the forecast modeling
of aeroengine gas path performance parameters. Firstly, a
type of time series forecast method based on GM (1, 1) model
is introduced for aeroengine exhaust gas temperature (EGT).
This method can effectively solve the trend forecast problems
of EGT under incomplete information and discrete small
sample data. Then, Markov chain model is integrated into GM
(1, 1) model in order to enhance the forecast performance,
which can solve the influence of random fluctuation data
on forecast accuracy and achieve an accurate estimate of the
nonlinear EGT. A real case of aeroengine EGT from CFM56
aeroengine of China Southern is used to test the capability of
the proposed improved model.

The rest of this paper is organized as follows. In Section 2,
the degradation signature of aeroengine is analyzed. Section 3
briefly describes the modeling methodologies of aeroengine
based on GM (1, 1) model. The hybrid model which combines
Markov chain model with GM (1, 1) model is discussed in
Section 4. The application and discussion are illustrated and
detailed in Section 5. Finally, some conclusions are presented
in Section 6.

2. Aeroengine Degradation Signatures and
Problem Description

The performance of an aeroengine will deteriorate over the
time due to different gas path component degradations such
as fouling, erosion, corrosion, and foreign object damage
[25]. There are many gas path performance monitoring
parameters for civil aeroengine. Due to the fact that per-
formance degradation modes of different parts are different
with the increase of aeroengine service time, it is very
important to select the appropriate measured parameters that
can reflect the performance degradation of aeroengine to
realize aeroengine performance degradation forecast.

Outlet temperature of combustor chamber is the most
important performance parameter for aeroengine. Not only
does it affect the overall performance of the engine, but also
it directly determines the ultimate strength of turbine blade.
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FIGURE 1: EGTM sequence and trend analysis for CFM56 aeroengine [31].

For example, the creep life of hot channel components can
reduce the order of magnitude when outlet temperature of
combustor chamber increases 50°C [26], which may cause
major fault and incur great maintenance costs. However,
outlet temperature of combustor chamber is usually too
high to be measured with available instrumentation and
temperature distribution is extremely uneven. According
to the well-defined Brayton thermodynamic cycle, there
is a consistent relationship between outlet temperature of
combustor chamber and exhaust gas temperature (EGT).
Thus, EGT, as a measured parameter, is often used for engine
control, condition monitoring, fault diagnosis, and mainte-
nance decisions. When other conditions remain the same,
the higher the EGT is, the more serious the performance
degradation of aeroengine is.

Considering the gas path performance monitoring
parameters, the multiple linear regression models for the
relationship between EGT and other parameters were
established by Song et al. [27]. The results showed that there
were a strong linear correlation between the performances
parameters, such as low turbine outlet pressure, high rota-
tional speed, high pressure compressor outlet temperature,
low rotational speed, and high pressure compressor outlet
pressure can be reflected through the change of EGT. Yilmaz
[28] found similar results by analyzing the relationship
between EGT and engine operational parameters at two
different power settings, including maximum continuous
and take-off, in the CFM56-7B turbofan engine. Hence, the
EGT is often used to evaluate the health states of aeroengine
and determine the maintenance policy [29].

Aeroengine EGT can be divided into take-off EGT and
cruise EGT in accordance with different data acquisition
stages during flight [30]. Take-off EGT means the exhaust
gas temperature in the take-off stage and maximum thrust.
The aeroengine can exceed the normal temperature most

easily in this stage which can bring the destructive effect to
the engine. In the actual process of engineering application,
the take-oftf EGT margin (EGTM) is often used instead of
the take-off EGT parameter to performance analysis. EGTM
is the deviation between the actual value and EGT red
line value when plane takes off with full power at sea level
pressure, inflection point temperature conditions. Among
them, EGT red line value refers to the allowed maximum
EGT that is given by the manufacturers. The calculation
formula of EGTM is defined as

EGTM (°C) = EGTj — EGT,, 1)

where subscript B represents a redline value and subscript
M represents actual monitoring value.

Figure 1 shows the sequence that denotes the EGTM
procured from six CFM56 aeroengines of China Southern
[31]. The sampling interval is about a 200-flight cycle, which
can be approximately considered continuous equal interval
sampling after data preprocessing based on multiple interpo-
lation method.

From Figure 1, it is easy to see that the entire EGTM
data sequence has obvious downtrend over time for the six
aeroengines. The EGTM can decrease 72°C in the 12400 cycle.
However, the degradation process of different engines is not
quite the same. For a single engine, the changing process of
EGTM sequence is a complex nonlinear process. Most of the
differences between adjacent sampling points are less than
10°C and the maximum reached 20°C.

Based on the above analysis, aeroengine performance
degradation forecast can be solved as EGTM time series
forecasting problem. However, it is difficult to establish a
precise mathematical model to describe EGTM that can
be affected by many uncertain factors. Therefore, the key
problem lies in how to establish precise forecast model under



Mathematical Problems in Engineering

Input data Data preprocessing Grey 1-AGO

GM(1, 1) model Output data

Grey 1-IAGO

FIGURE 2: The forecast system based on GM (1, 1) model [32].

incomplete information and discrete small sample data in
order to achieve an accurate estimate of the nonlinear EGTM
parameters.

3. EGTM Forecast Modeling Based on
GM (1, 1) Model

Based on the temporal variation characteristics of aero-
engine EGTM mentioned above, the system of aeroengine
performance parameter EGTM can be regarded as a grey
dynamic system. This section briefly describes the modeling
methodologies about GM (1, 1) model and provides an EGTM
trend forecasting framework based on GM (1, 1) model.

3.1. Modeling Methodologies Based on GM (1, 1) Model. In
grey systems theory, the most commonly used grey forecast
model is GM (1, 1) model, which is successfully employed in
time series forecast applications with the uncertain problems
under discrete data and incomplete information [22].

Generally speaking, forecast based on GM (1, 1) model
can be regarded as curve fitting analysis in time series
[22]. In order to effectively reduce the discreteness of the
original time series and reveal the hidden regular pattern
in the system development, the first order accumulation
generating operation (1-AGO) is used firstly before the first
order differential equation is adopted to match the data. Then,
whitening equation can be solved by the ordinary least square
method to the time response sequences at time ». Finally,
the first order inverse accumulating generation operation (1-
TAGO) is employed to establish the GM (1, 1) forecast model
and obtain the predicted value. The detailed procedure is
shown as in Figure 2.

Consider the following nonnegative EGTM time

sequence X ©),
X9 = (x21),x2@),...x%m), n=4 @

where # is the sample size of the data.
To increase the forecast of the GM (1, 1) model, the first
order accumulating generation operation (1-AGO) is derived

from the original sequence X©. The 1-AGO is derived as
k
Vi)=Y, k=12...,n (3)
i=1

Then the accumulated sequence X'V that is obtained
using the 1-AGO formation can be expressed as
XV =(x0),xY@,....x"m), nx=4a @

The generated mean sequence Z" of X" is defined as

z0 = (V1,20 @),....2" m), ®)

where z(l)(k) is the mean value of adjacent data; that is,
1 1
2 (k) = Ex(l) (k) + 5x“’ (k-1), k=2,3,...,n. (6)

The grey model GM (1, 1) can be expressed by one
variable, and the grey difference equation is defined as

x O (k) + az'V (k) = b. )
And its whitening equation is
(1)
dxdt(t) +axW (1) = b, (8)

where coeflicients a and b are called developing and grey
input coefficients, respectively. By the ordinary least square
method, the coefficients a and b can be obtained as

[a,6)" = (B"B) 'BY, )
where
Y= [x9@2),x0(3),...x" )],
-2V @2) 1
—Z(l) (3) 1 (10)
5 . .
—ZVm) 1

The solutions x™(t) of (8) can be obtained using the
ordinary least squares method as follows:

(1) = [x“’ (1) - 9] e D) (1)
a a

where x(l)(l) = x(o)(l).
Hence, the time response sequences of (8) at time (k + 1)
are

b] - b
xfpl) (k+1)= [x(o)(l)——]e k4= (12)

a a
To obtain the forecast value of the primitive data at
time (k + 1), the first order inverse accumulating generation

operation (1-TAGO) is employed to establish the following
grey model:

XV (ke + 1) = [x“” (1) - S] eF(1-¢Y. 1)

And the predicted value of the primitive data at time (k +
H)is

x (k+ H) = [x(‘” (1) - S] D (1) (14)
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Compared with the statistical models, GM (1, 1) model
need not find the statistics features of original series. So GM
(1, 1) model gets rid of the shadow of large-sample statistics
in terms of information availability degree [24]. Besides, only
two coefficients are required to be identified in (8), which
means that the number of data sample used in GM (1, 1)
model is rather small. In other words, GM (1, 1) model can
realize the forecast by using only sample data sequence and
is often used as a short term forecast. This is the biggest
advantage over the artificial intelligence method.

3.2. EGTM Forecast Framework Based on GM (1, 1) Model.
According to the above method, a GM (1, 1) model based
approach for aeroengine performance degradation forecast
using EGTM signatures is illustrated in Figure 3. The follow-
ing shows the details of the forecast process.

Step 1. Generated sufficient EGTM samples from the histori-
cal database and the essential preprocessing upon EGTM data
are carried out before data analysis, such as supplementary
data, eliminating noise and outliers. After that, the samples
can be divided into training samples and testing samples.

Step 2. 'The EGTM forecast model based on GM (1, 1) method
is established by using the training samples.

Step 3. The testing samples are used to verify the forecast
performance of the GM (1, 1) model. Step 2 will be repeated if
the forecast model accuracies do not meet the requirements.

Step 4. Apply the GM (1, 1) model that meets the accurate
requirement to EGTM measured signatures obtained from
real aeroengine to forecast.

4. EGTM Forecast Modeling Based on
GM (1, 1)-Markov Chain Model

As a first order single variable grey model, GM (1, 1) model
provides an excellent approach to forecast uncertain systems
[33-37]. However, the forecast accuracy of GM (1, 1) model
for EGTM series with large random fluctuations is lower,
which cannot satisfy the engineering requirement. In order
to enhance the forecast performance, Markov chain model
is integrated into GM (1, 1) model to extract the random
fluctuation of experimental data and solve the influence of
random fluctuation data on forecast accuracy. The improved
model is defined as GM (1, 1) Markov chain model.

A GM (1, 1) Markov chain based approach for aeroengine
performance degradation forecast using EGTM signatures is
illustrated in Figure 4. To achieve the aim of this study, the
forecast has two stages. The original data are modeled by the
GM (1, 1) model firstly. Then the residual errors between the
fitting values and the actual values for all previous time steps
can be obtained. After that, the transition behavior of those
residual errors by Markov transition matrices is established
and the possible correction for the forecast value can be made
from those Markov matrices. The following shows the details
of the forecast process.

4.1. Residual Errors. According to the forecast values 9 k)
obtained from GM (1, 1) model by (13) and the real values
x(°>(k), the residual errors series can be obtained as

e (k) = x (k) = &3 (k) , (15)

where k respects the time step.

4.2. Division State. The real values of x* (k) are distributed in
the region of the forecast value xg))(k) which may be divided
into a convenient number of contiguous intervals. When
x©(k) falls in interval i, one of n such intervals, it may be
regarded as corresponding to a state Q; which can be denoted
as follows:

i=1,2,...,n

Q= [Q» Qi

(16)
Qi = xqu) (k) + A,

Qy = xfgo) (k) + B;,

where Q; and Q,; are the lower boundary and upper
boundary of the Q; state. A; and B, are the deviation between
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FIGURE 4: Flowchart of EGTM forecast based on GM (1, 1) Markov chain approach.

Q,; and Q,; with forecast value xfpo)(k), respectively. Hence,
Q,; and Q,; can reflect the dynamic characteristics of the error
residual series.

4.3. Transition Probability and Matrix. Let the state space of
a Markov chain {x,,} be I, the current state be i, and the next
state be j; then, the transition probability is written as

Pj=P{xy = jlx, =i}, G el (7

where the P; is independent of m.
The matrix P, formed by placing P;; in row i and column
j> for all i and j, is called the transition probability matrix or

chain matrix. Note that the elements of the matrix P satisfy
the following two properties:

P, 20, Vijel,
YP;=1, Viel (18)
jel
The transition probability of state is written as
)
PO =L ii=1,2..,n 19)

lj M

1

where Pi(jr) is the probability of transition from state i to j

by r steps. Mi(jr) is the transition times from state i to j by r
steps and M, is the number of data belonging to the ith state.
Because the transition for the last r entries of the series is
indefinable, M; should be counted by the first as -  entries.
I is the quantity of entries of the original series. Then, the
transition probability matrix of state can be written as

(r) (r) (r)

nw P By,

) (r) (r) (r)
P = | Py Py e Py |, (20)

(r) (r) (r)

nl n2 nn

The transition probability matrix of states P reflects the
transition rules of the system. The transition probability of
states Pl.(r ) reflects the probability of transition from initial
state i to probable state j by r steps. It is the foundation of
forecast by the Markov probability matrix.

Generally speaking, consider » = 1 and the maximum
transition step is 1. Then, P") can be obtained. If the forecast
original data is located in the Q; state, the state of next step
is determined by the ith row vector of transition probability

states Pi(jl). If maxPigl) = pM

1> the state of next step is Q,.
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When the state of next step cannot be determined by I-step
transition probability, the 2-step transition probability will be
selected.

4.4. Obtaining the Forecast Value. When the possibility of a
certain state of the next step is determined by the probabilities
in k — 1 row vectors, Q,; and Q,; can also be obtained.
The median in [Q;;, Q,;] is selected as the forecast value, so
forecast value of original data sequence is obtained according
to the above explanation.

2000 =20 () + (F)

5 (21)

The main assumption in a Markov chain model is that
knowledge of the current state occupied by the process can
be sufficient to describe the future probabilistic behavior of
the process. Another unique property of this Markov chain
model is the existence of a steady state matrix.

5. Experimental Study

In this section, the forecast approach based on GM (1, 1)
Markov chain introduced in this paper will be applied to
EGTM forecast of CFM56 aeroengine to demonstrate the
potential capability of the new approach. The comparisons
between the EGTM forecast capabilities using the GM (1, 1)
model, GM (1, 1) Markov chain model, and other traditional
methods are adopted. Four performance measures are used
to examine the forecast accuracy of forecast models in this
paper. The relative percentage error (RPE), mean square
error (MSE), absolute mean error (AME), and absolute mean
percentage error (AMPE) are calculated using the following
functions, respectively:

RPE = le®l x 100%,

x(0) (k)
MSE = 1 Y e(ky,
o=
(22)

AME = =3 [e(k)],
=

x 100%.

1< le(k)l
AMPE = —
nkzi x© (k)

5.1. Sample Data. For this study, the investigators gathered
data samples from CFM56 aeroengine of China South-
ern, which have been described in Figure 1. In order to
highlight the forecast performance of the forecast methods
under incomplete information and discrete small sample
data, only 45 samples are taken to construct a time series
{EGTM,,,} (m = 1,2,...,45) from aeroengine 2. Figure 5
shows the distribution of training and testing sample data.
As the training sample, the first 20 sample data are first used
to establish forecast model. Then the next 25 sample data are
used to test the effectiveness of forecast model.

7
120 T . T T
96 b
o 72 i
=
S
m 48 —
Training samples B
24 k- y = 100.43¢~0-00007x |
' R*=09107
0 1 1 1
0 2500 5000 7500 10000
Cycle
© Aeroengine 2
FIGURE 5: Sample sets partition for EGTM forecast.
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—— GM(1, 1) model

FIGURE 6: Forecast values of EGTM based on GM (1, 1) model.

5.2. Forecast Results Based on GM (1, 1) Model. After the
generation of samples, GM (1, 1) model is established by (13)
to forecast the trend from the generated training samples.
Specific modeling steps and methods have been given in
Figure 3.

The forecast results of EGTM based on GM (1, 1) model
and the original series are plotted in Figure 6. From Figure 6,
it is clear that the trend of EGTM can be forecasted based on
GM (1, 1) model. However, the forecast accuracies of GM (1,
1) model are unstable at some points. And because the accu-
mulated sequence obtained using the 1-AGO formation is
monotonically increasing, which is seen in Figure 7, GM (1, 1)
model cannot extract random fluctuations of EGTM.

In order to compare other models, the linear regression
model y = —0.0064x + 99.968, nonlinear regression model
y = 100.19 exp(-0.00007x), ARIMA (1, 0, 0) model,
and Radial Basis Function (RBF) Neural Networks are also
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TABLE 1: The comparison results of GM (1, 1) model and GM (1, 1) Markov chain model.
Cycle Forecast model
Original values Linear model Nonlinear model ARIMA model RBF model GM (1,1) model
4200 86 73.088 74.66925168 76.24820454 83.893778 74.850179
4400 86 71.808 73.63116571 85.04659158 75.345291 73.899849
4600 76 70.528 72.60751169 85.09212012 66.440678 72.961583
4800 72 69.248 71.59808897 79.58775994 77.213138 72.035231
5000 64 67.968 70.60269971 69.85924741 75.907728 71.12064
5200 66 66.688 69.6211488 69.85924741 51.433499 70.217661
5400 72 65.408 68.65324386 70.37022346 77.51105 69.326147
5600 70 64.128 67.69879518 74.57638112 68.512595 68.445951
5800 58 62.848 66.75761567 72.84613016 52.139635 67.576931
6000 62 61.568 65.82952088 62.6255194 75.584126 66.718945
6200 66 60.288 64.91432888 65.48119394 63.496734 65.871852
6400 58 59.008 64.01186029 68.51302315 64.808649 65.035514
6600 60 57.728 63.12193824 61.40259349 54.990815 64.209794
6800 60 56.448 62.24438829 62.78391435 60.518705 63.394558
7000 60 55.168 61.37903843 62.49368451 62.428861 62.589673
7200 64 53.888 60.52571907 62.25825584 61.24122 61.795007
7400 60 52.608 59.68426294 65.60171099 57.527047 61.01043
7600 68 51.328 58.85450511 62.02015608 58.92226 60.235815
7800 62 50.048 58.03628296 68.8277359 53.706033 59.471034
8000 68 48.768 57.22943611 63.72946594 60.035962 58.715964
8200 66.5 47488 56.4338064 68.75093548 60.237787 57.97048
8400 65 46.208 55.64923791 67.47264457 67.031388 57.234461
8600 55 44.928 54.87557684 66.17459205 53.436919 56.507787
8800 55 43.648 54.11267156 575174732 55.602918 55.79034
9000 57 42.368 53.36037254 57.31506291 58.04245 55.082001
2000 T T the forecast performance based on GM (1, 1) model. Besides,
GM (1, 1) model is better than linear model or RBF model
e that often requires a large amount of training samples to
1500 | e - get a higher forecast precision. Furthermore, the differences
e " between GM (1, 1) model and ARIMA (1, 0, 0) model are
o P d 8 that GM (1, 1) model does not have a requirement to the
E 1000 F /./' i distribution characteristics of training samples while ARIMA
5 - (1, 0, 0) model not only requires a large amount of training
= _/'/ samples, but also requires the law for the distribution of
500 1 . . | training samples. Considering the above factors, GM (1, 1)
yd model is more suitable for EGTM forecast, especially for
/_/' small sample data.
0 - L .
0 1400 2800 4200
Cycle 5.3. Forecast Results Based on GM (1, 1) Markov Chain Model

—m— Accumulated data

FIGURE 7: The accumulated data of EGTM using the 1-AGO
formation.

employed to make the same forecasts. The comparative
results are listed in Table 1. We can see that the forecast per-
formance based on nonlinear model is closely approximate to

5.3.1. Division State. In the previous literature, there is no
unified standard to determine number of state and the
boundary of the Q; state, and state division is performed
on experience, which is called the hard division approach,
which might result in the weakness of forecast accuracy
and algorithm application, due to the fact that the different
divisions would be made by different persons. Generally
speaking, the value ranges of n are 3-6, and they ensure that
each state interval has data.
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FIGURE 8: State division for the time series of EGTM.

According to the absolute error series e(k), the states
are partitioned by establishing five contiguous intervals for
Markov-chain forecast model. Figure 8 shows the results of
state division. The blue curve shows the obtained trend curve
by GM (1, 1) model and the red curves show the state lines.

5.3.2. Transition Probability and Matrix. From Figure 8, it can
be seen that the number of samples in each state is as follows:
M,(1) = 2, My(1) = 1, My(1) = 7, M,(1) = 7, My(1) = 2.
Then one-step transition probability for every state can be
calculated by using (19) and (20). Consider the following:

o
o
S N =
— N =
o

o
NN
—
[\S)
(*Y]
=

S NI= =
S NWw NN
o

— N W

5.3.3. Forecast Values and Analysis. When the possibility of
a certain state of the next step is determined according to 1-
step probability transition matrices rY, Q; and Q,; can be
obtained. The forecast values can be obtained through the
same computations. The forecast values by GM (1, 1) model
and GM (1, 1) Markov chain model are shown in Figure 9.
What is not worthy is that the dynamic change characteristics
of EGTM are reflected by calculating the state transfer
probability. Figures 10, 11, and 12 show the RPE comparative
analysis of different forecast models. From the values of RPE
comparison, we find that the forecast accuracies of GM (1,
1) Markov chain model are significantly higher than other
models.

The comparison of forecast accuracy of the different
models is listed in Table 2. From Table 2, it is easy to see

90 T T T T T

EGTM (°C)
=
1

(o)}
[=}
T
Il

50 1 1 1 1 1
4000 5000 6000 7000 8000 9000

Cycle

—o— Original
—— GM(1, 1) model
—A— GM(1, 1) Markov chain model

FIGURE 9: : The forecast values by GM (1, 1) model and GM (1, 1)
Markov chain model for EGTM.

40 T T T T T

32 F 4

RPE (%)

0
4000 5000 6000 7000 8000 9000
Cycle

Il Linear regression model
I Nonlinear regression model

FIGURE 10: The forecast RPE by linear regression model and
nonlinear regression model for EGTM.

TaBLE 2: The comparative analysis results of different models.

Evaluating standards

Models

MSE AME AMPE/%
Linear model 108.1934 8.572960000 13.07414
Nonlinear model 37.67832 4.861358116  7.209246
ARIMA model 3736459 4.785827391 7447413
RBF model 48.05668 5.59155023  8.443975
GM (1, 1) model 34.2345 4.673887228 6.982612
GM (1, 1) Markov chain model 11.75861 1981937814 2.727393

that the forecast performance of GM (1, 1) Markov chain
model outperforms other models. When all of the factors
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FIGURE 11: The forecast values by ARMIA (1, 0, 0) model and RBF
model for EGTM.
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FIGURE 12: The forecast values by GM (1, 1) model and GM (1, 1)
Markov chain model for EGTM.

are considered together, the modeling processes of GM
(1, 1) Markov chain model are much easier than ARIMA
(1, 0, 0) model and RBF model. Through the test values,
we find that GM (1, 1) Markov chain model gives more
satisfactory performances in MSE, AME, and AMPE than
other models. The AMPE of GM (1, 1) Markov chain model is
only 2.727393%, which can meet the demand of engineering
application. The results validate the effectiveness of GM (1, 1)
Markov chain model.

6. Conclusions

According to the characteristics of the aeroengine gas path
performance parameters, EGTM is used to realize aeroengine

Mathematical Problems in Engineering

performance degradation forecast. Based on the change law
of aeroengine EGTM, EGTM forecast is solved as a grey
system forecast problem. However, it is shown that GM (1,
1) model is only able to accurately forecast the trend of
EGTM and the forecast accuracy of GM (1, 1) model is not
satisfactory when the EGTM data show great randomness. In
order to enhance the forecast performance of GM (1, 1) model,
Markov chain model is integrated into GM (1, 1) model. The
comparison results show that the forecast accuracy of the
improved model named GM (1, 1) Markov chain model is
better than other models, especially for the small samples.
GM (1, 1) Markov chain model can solve the influence of
random fluctuation data on forecast accuracy and achieve an
accurate estimate of the nonlinear EGTM.
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