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Nanofibrous structures exhibit many interesting features, such as high surface area and surface functionalization and porosity in
the range from submicron to nanoscale, which mimics the natural extracellular matrix. In particular, electrospun nanofibers have
gained great attention in the field of tissue engineering due to the ease of fabrication and tailorability in pore size, scaffold shape,
and fiber alignment. For the reasons, recently, polymeric nanofibers or bioceramic nanoparticle-incorporated nanofibers have been
used in dentistry, and their nanostructure and flexibility have contributed to highly promotive cell homing behaviors, resulting in
expecting improved dental regeneration. Here, this paper focuses on recently applied electrospun nanofibers in dentistry in the

range from the process to the applications.

1. Introduction

In the field of dental tissue engineering, a variety of implanted
materials and their fabrication techniques have been intro-
duced and excellent outcomes have been revealed. Particu-
larly, the bioceramics have shown their good biocompatibility
with dental tissues and teeth since their physicochemical and
biological properties such as osteoconductivity and bioactiv-
ity are very similar to those of dental tissues [1]. However,
these bioceramics are extremely brittle and poor in flexibility,
and therefore their own use has shown a severe limitation
in the dental applications [2]. To overcome this hurdle,
biodegradable polymers with flexibility have been suggested,
resulting in increasing some degree of dental regeneration
[3]. Examples of these polymers include poly(ethylene gly-
col) (PEG) and a series of polyesters, such as poly(lactic
acid) (PLA), poly(glycolic acid) (PGA), poly(D,L-lactide-
co-glycolide) (PLGA), polycaprolactone (PCL), and their
copolymers [4]. Recent works on bioceramic composites
based on these polymers have shown significant results in
improving regeneration efficiencies [5]. In particular, nanos-
tructured implants have been expected to improve dental
restoration due to the structural similarity to that of natural

extracellular matrices (ECMs). Practically, improved cell-
favored responses such as cell adhesion, growth, survival, and
differentiation have been shown on the nanostructured sur-
face [6], and nanostructured materials have shown increased
mechanical stability compared to other typed materials [7].

Among the various types of nanostructured materials,
here, we aimed to review the electrospun nanofibrous scaf-
folds used in dental applications (Figure 1). This paper
covers electrospun nanofibrous scaffolds, polymer-based bio-
ceramic composites to enhance their mechanical stability and
biological functionality, and their fabrication techniques and
processes with the recently studied examples used in the
dental applications.

2. Cell Behavior on Nanofibrous Structure

Tissue regeneration is initiated by cellular adhesion to the
matrix or neighboring cells [8]. Most tissues and also cells
are underlain or surrounded by a natural ECM. These tissues
are able to organize cells into the ECM, pave a road for
cell migrations, activate signal-transduction pathways, and
coordinate their cellular functions [9]. In order to mimic the
natural ECM, a lot of biomaterials and fabrication techniques
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FIGURE 1: Electrospun nanofibrous scaffold which consisted of polycaprolactone was introduced as an exemplar biomaterial for dental tissue

regeneration with various biological and technical advantages.

have been explored and optimized. Of these, nanofibrous
scaffolds with nanostructure have gained great attention due
to their topographical nanostructure similar to that of natural
ECM [6], which has shown a great potential to increase
cell adhesion, growth, migration rate, and differentiation
into somatic cells from stem [6, 10, 11]. Also, nanofibrous
scaffolds have been easily fabricated, and their nanostructure
has shown cell-favored properties such as high porosity and
surface area, control over alignment of fibrous structure for
directing regenerative tissue, and controllability in overall
shape, diameter, and pore size [12].

The main fabrication of nanofibrous scaffolds is as fol-
lows: self-assembly, phase separation, and electrospinning.
Self-assembled formation is prepared and consequently can
be directly injected for self-assembled nanofibers. In addi-
tion, much smaller diameter can be made in fabrication
than when electrospinning is used [13]. However, self-
assembled nanofibrous scaffolds do not allow for control-
ling internal pore shape and may have poor mechanical
properties due to their intrinsic limitation in the use of
raw materials [14]. Phase separation is the first developed

process for the fabrication of nanofibrous scaffolds. In the
process of phase separation, nanofibrous structure is made
by removing solvent from polymer solutions using thermal
treatment, solvent liquefying, porogen leaching, and freeze-
drying [15]. PEG, polyesters including PLA, PLGA, and PCL,
and other copolymers are the representative materials for
the fabrication of nanofibrous scaffolds by phase separation
[4]. Despite many advantages such as great reproducibility,
low technical sensitivity, and scaffold geometry tailorability,
phase separation has been less used than electrospinning due
to time consuming complex procedures [16].
Electrospinning predominantly has been used for the fab-
rication of nanofibrous scaffolds with several advantages such
as simple procedure, diameter and alignment tailorability,
and raw material diversity [17]. The electrospinning can easily
confer nanofibrous structure and control the size of pore
and diameter [18, 19] and space between fibers by employing
rotating drum collectors [20]. Such control over electrospun
fibrous architecture in terms of size and alignment allows cells
to migrate on the surface of the scaffold [21]. Representative
examples of synthetic polymers for electrospinning include
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polydioxanone and a series of polyesters [22]. However,
optimization of the electrospinning process depending on
the materials for cell growth from their interaction with
nanofiber architectures is yet to be fully determined.

In biological applications of electrospun nanofibers, it is
advantageous for the growth of cells or tissues since their
intrinsic structure such as interconnected pores is able to
facilitate input or output of nutrient, waste, and cell signaling
molecules [23, 24]. In addition, high porosity of the 3D spun
network can promote cell-scaffold interaction in terms of
focal adhesion formation for attachment and proliferation
[15, 25, 26] and thereby invasion of host tissue [27].

In some examples of the limited interaction between
a small size of dental tissue and implant and exposure to
large biting force and oral bacteria [28], nanofibrous scaffolds
have shown these hurdles. In addition, surface alignment of
nanofibrous scaffolds can allow cells to migrate on the right
direction. For this reason, electrospun nanofibrous scaffolds
can be suggested as dental tissue regenerative biomaterial
due to size or alignment tailorability, large interfaces between
dental cells and material by high porosity and surface area,
and its similarity to nanostructured ECM in nature [29].

3. Basic Principle and Technique

The electrospinning technique involves a strong potential
difference between a polymer-based solution flowing through
a capillary metal tip and a metallic collector [30]. When
the potential voltage difference between them overcomes the
solution surface tension, a jet of charged fluid is split into
nanofibers that fall into the metallic collection plate and get
solidified with solvent evaporation [31]. Typical electrospin-
ning equipment only requires a high voltage power supply,
a syringe with pump, a metal tip needle, and a conducting
collector (Figure 1) [32]. This basic setup can be modified
for various applications such as dual needle syringe (to make
blended or core-shell fibers) or rotating mandrel collectors
(to make tube like structure) [33, 34].

In electrospinning, several parameters such as process-
ing, physical, systemic, and solution are involved, which affect
the fiber morphology and properties of electrospun fibers
[35]. A list of key factors affecting electrospun nanofibers is
as follows: process parameters (voltage, flow rate, distance
of collector, needle diameter, and motion), systemic parame-
ters (polymer type, molecular weight, polymer architecture,
and solvent), solution parameter (viscosity, concentration,
conductivity, surface tension, charge of jet, and dielectric
constant), and physical parameters (humidity, temperature,
and air velocity). Among them, most critically considered
process parameters for controlling fiber dimension (voltage,
flow rate, distance of collector, and needle diameter) are
briefly described.

Inputting voltage, distance of collector, flow rate, needle
gauge, and type of collector may affect the electrospinning
process as a parameter of processing conditions. Higher
voltage induces charges on the solution to cause the jet to
emerge from the needle with stronger repulsion [36]. As a
result, a decrease in fiber diameter as well as increase of

diameter distribution make the control of the process further
difficult. Therefore, an optimal voltage is required to inject the
solution from the needle.

On the other hand, higher voltage leads to a higher flow
rate of solution and faster electrospinning, which may make
diameter of fibers higher due to more stretched polymer
solution [37]. An increase in flow rate may build up solution
at the needle tip because reduced residence time of ions
in contact with the needle makes the charge rate into the
solution decreased. The flow rate of the solution tailors
various features of nanofibers such as diameter, geometry, and
porosity [37]. A constant and stable flow rate is essential to
minimize the bead formation, which induces large diameter
of fibers, nonuniform distribution of fibers, or improper
porosity [38]. Generally, slower flow rate results in smaller
diameter and a less number of beads compared to faster flow
rate [39]. Increased flow rate may also make fibers fused due
to improper evaporation of solvent before the fiber collection.
Therefore, in order to fabricate nanofiber constantly, the flow
rate needs to be optimized.

The reduction of the distance causes flight time for the jet
to be shorter, which may not have enough time to evaporate
solvent with consequent improper solidification and result
in an increase in fibers dimension. It follows a negative
power relationship between elongated fibers/decreased fiber
diameter and distance from needle to collector because an
increase in the distance induces whipping action and bending
instabilities [40]. In addition, an increase in gap distance
decreases the surface charge density due to diminished
magnitude of the electric field [41].

Diameter of the needle orifice also has an effect on fiber
dimension. Smaller internal diameter reduces the solution
clogging further due to less exposure time of the jet to the
environment and an increase in shear stress depending on
the flow rate [42]. A decrease in the internal needle diameter
increases in the surface tension of the solution resulting
in smaller droplet, which induces the jet speed decreased.
Therefore, the jet spends more flight time before deposition
into collector and is more stretched and elongated, which
results in smaller diameter fibers.

4. Pulp-Dentin Complex Regeneration

Dental caries and trauma would result in the loss of pulp-
dentin complex (the mineralized layer and fibrous tissue
below enamel). Therefore, various forms of pulp-regenerative
dental materials such as calcium hydroxide, ferric sulphate,
and mineral trioxide aggregate are aimed at regenerating
pulp-dentin complex [43]. For the pulp therapy, electrospun
nanofibrous scaffolds have been attempted and resulted in
excellent regeneration using dental pulp stem cells (DPSCs),
which are an established cell source for the formation of
dentin-pulp complex. Odontogenic differentiation of human
DPSCs on PLA nanofibrous scaffolds was demonstrated by
increased alkaline phosphatase (ALP) activity, dentin related
marker gene expression, and mineralization [44]. Mineral-
ized PCL nanofibrous scaffolds have shown promoted odon-
togenic differentiation and growth of human DPSCs through



collagen type I and the integrin-mediated signaling pathway
but they still lack mechanical and biofunctional properties
for clinical applications [45]. To increase mechanical and
biological properties of electrospun nanofibers, nanoparticles
such as bioactive glass nanoparticle, magnetic nanoparti-
cle, and hydroxyapatite nanoparticle were incorporated to
polymer matrices before electrospinning. Electrospinning
techniques is possible to produce bioactive nanoparticle-
polymer composite [46]. For instance, Bottino et al. produced
electrospun scaffolds of bioactive nanoparticle-incorporated
polydioxanone where antibiotics (i.e., metronidazole and
ciprofloxacin) were able to be loaded [47]. It was observed
that these scaffolds were able to deliver the antibiotics more
effectively than pastes. Kim et al. produced electrospun
nanofibrous scaffolds consisting of polyvinyl alcohol and
hydroxyapatite nanoparticles, which showed dentin regener-
ative properties [48]. Collagen or PCL-gelatin-based nanofi-
brous scaffolds incorporating bioactive glass nanoparticles
were developed for dentin-pulp regeneration and showed
enhanced growth and odontogenic differentiation from
human DPSCs compared to collagen nanofibrous scaffold via
integrin-mediated process [5, 49]. Magnetite nanoparticles
were incorporated to PCL due to its intriguing physical cues
that can tailor the behaviors of DPSCs [50]. The effects of
these nanocomposite nanofibers on the adhesion, growth,
migration, and odontogenic differentiation of human DPSCs
were significantly remarkable compared to those of poly-
meric nanofibers.

Taken together, the major advantage of electrospinning
might be its ability to produce complex geometry of nanofi-
brous scaffolds for dentin-pulp complex regeneration. The
ultimate goal of regenerating dentin-pulp complex is to
restore both mechanical and physical attributes of the tooth
structure. Therefore, electrospun nanofibers are used for
carrying dental derived stem cells for optimum regeneration
in the next decade.

5. Periodontium Regeneration

Untreated periodontal disease can lead to periodontal tissue
destruction and eventual loss of teeth [51]. Regeneration of
destructed periodontal tissues has always been a challenge
for clinicians. Therefore, periodontal tissue engineering has
been of recent interest for the repair of defects in periodontal
tissues such as alveolar bone, periodontal ligament (PDL),
and cementum. Traditionally, nonresorbable materials such
as expanded polytetrafluoroethylene were used as guide
tissue regeneration (GTR) membranes but they had the
disadvantage of requiring a secondary surgery to remove
the membrane. Instead, biodegradable synthetic or natural
materials such as collagen, PLGA, PLA, and PCL have been
researched but they still lack biological functionality as well
as physical properties such as poor control over porosity and
surface alignment. Electrospinning has emerged to increase
the functionality of these membranes, therefore leading
to expecting periodontal regeneration. As a consequence,
biodegradable nanofibrous GTR membranes through elec-
trospinning have improved the functionality, such as porosity
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to attach cells and fiber alignment for orientation of collagen
fibers in PDL regeneration, as investigated on the attachment,
proliferation, and differentiation of human PDL cells [52, 53].

Electrospun collagen membranes first gained attention
in the GTR application due to their intrinsic biological
properties such as differentiating potential into osteoblast-
like cells [54]. However, since most of the collagen sources
are originated from animals, the use of the collagen in human
dental applications could be concerned and have conflicted
with ethical issues and concerns of cross-infection. As an
alternative, synthetic biodegradable polyester membranes are
suggested for PDL regeneration.

Recent studies have shown good attachment and prolifer-
ation of PCL cells as well as tissue formation on electrospun
PLGA [55], hydroxyapatite-coated electrospun PCL [56], and
silk membranes as confirmed by promoted deposition of the
main PDL ECM components such as collagen type I and type
III [57, 58]. Silk membranes after incorporating graphene
oxide [59] or hydroxyapatite nanoparticles [60] have shown
human PDL cell attachment and proliferation and tissue
formation into cementum and bone tissue.

Although electrospinning has added exciting new
prospects to the field of periodontal tissue regeneration,
much work is still required to validate the use of electrospun
nanofibrous scaffolds in the clinical stage in terms of mechan-
ical properties and in vivo/clinical biological properties as
well as the underlying mechanisms.

6. Bone Tissue Regeneration

While tissue-engineered bone grafts have been investigated
for years, challenges still lie in achieving in vivo mechan-
ical/biological properties and vascularization for the treat-
ment of patients who suffer from degeneration or diseases
such as periodontitis, trauma, oral cancer, and anatomical
abnormality in nature. Electrospun nanofibers may be one
of the ideal solutions due to their ECM similarity, since they
provide control over nanopores similar to the small blood
vessel for the cell survival. Electrospun nanofibers have been
studied in a variety of the in vitro and in vivo tests, such as
mesenchymal stem cell- (MSC-) seeded implantation into a
rat calvarial defect model [61, 62].

For bone regeneration, Kim’s group has shown various
electrospun nanofibrous scaffolds made of synthetic and nat-
ural polymers with or without mineral deposition such as
gelatin-PCL [63], silk-fibroin-PCL [64, 65], PLA [66], gel-
atin-apatite-poly(lactide-co-caprolactone) [67], mesoporous
bioactive glass-incorporated PCL-gelatin [68], mesoporous
silica-shelled PCL [69], and magnetic nanoparticle-incorpo-
rated PCL nanofibrous scaffolds [70]. In addition, a number
of polymeric nanofibers have been revealed and used for a
cellular platform for bone, but they lack bioactivity and other
biofunctionalities to accelerate bone tissue regeneration. For
this, artificial mineralization after fabrication or loading
additives (i.e., bioactive nanoparticles and growth factors)
to scaffolds during electrospinning process was introduced
and resulted in the induction of osteogenesis by accelerating
natural mineralization or vascularization [68, 69, 71-73].
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These nanofibrous scaffolds would be employed as a
carrier for bone-associated growth factors due to their
3D networked pores to facilitate control over drug release
[71-73]. Recently, electrospun nanofibrous scaffolds were
designed to hold a capacity by loading and releasing dual
growth factors for the target of bone regeneration. For
example, a core-shell structure of a biopolymer fiber made of
polyethylene oxide/PCL was shown to facilitate loading and
control releasing properties of these growth factors [33].

To increase cell attachment, biofunnctional materials
have been used for electrospinning. Silk nanofibers having
the Arg-Gly-Asp (RGD) sequence which act as receptors for
cell adhesion [64] were shown to accelerate MSC attachment,
proliferation, and differentiation into osteoblastic lineage
[65].

7. Concluding Remarks

In the field of dental tissue engineering, a number of dental
materials have been advanced to create a suitable microen-
vironment for dental regeneration. Of these, electrospun
nanofibrous scaffolds could be one approach suitable to
dental applications due to the ease of fabrication, control over
scaffold size, and fiber alignment. Electrospun nanofibers
have provided mechanical properties and functionalities bio-
logically favored to biological aspects in dental applications.
In addition, electrospun nanofibers have played a versatile
role in controlled release of biomolecule therapeutics (i.e.,
growth factors) or modification with adhesive biomolecules
(i.e., fibronectin and RGD sequence) and contributed to
further improved dental regeneration. Although a number
of experiments on nanofibrous scaffolds in the in vitro and
in vivo study have been conducted, clinically, customization
to each patient’s defect is still difficult. For the reason, the
clinical practice of nanofibrous scaffolds is still scarce. In
addition, since dental tissue degeneration may come from
biological disorders, further studies of biological interplay
between electrospun nanofiber and compromised dental tis-
sue derived cells are essential. These studies will be expected
to help to understand the biological effect of nanofibers.
Conclusively, further elaborated techniques to customize
nanofiber scaffolds are imperative, and clinical defects must
be categorized into several groups for their customization.
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