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It is attempted to present two derivative-free Steffensen-type methods with memory for solving nonlinear equations. By making
use of a suitable self-accelerator parameter in the existing optimal fourth- and eighth-order without memory methods, the order of
convergence has been increased without any extra function evaluation.Therefore, its efficiency index is also increased, which is the
main contribution of this paper. The self-accelerator parameters are estimated using Newton’s interpolation. To show applicability
of the proposed methods, some numerical illustrations are presented.

1. Introduction

Finding the root of a nonlinear equation frequently occurs
in scientific computation. Newton’s method is the most well-
known method for solving nonlinear equations and has
quadratic convergence. However, the existence of the deriva-
tive in the neighborhood of the required root is compulsory
for convergence ofNewton’smethod, which restricts its appli-
cations in practice. To overcome this difficulty, Steffensen
replaced the first derivative of the function inNewton’s iterate
by forward finite difference approximation.This method also
possesses the quadratic convergence and the same efficiency
just like Newton’s method. Some nice applications of iterative
methods can be found in the literature; one can see [1–8].

Kung and Traub are pioneers in constructing optimal
general multistep methods without memory. They discussed
two general 𝑛-step methods based on interpolation. More-
over, they conjectured that any multistep method with-
out memory using 𝑛 function evaluations may reach the
convergence order at most 2

𝑛−1 [9]. Thus, both Newton’s
and Steffensen’s methods are optimal in the sense of Kung
and Traub. But the superiority of Steffensen’s method over
Newton’s method is that it is derivative-free. So, it can
be applied to nondifferentiable equations also. To compare
iterative methods theoretically, Owtrowski [10] introduced
the idea of efficiency index given by 𝑟1/𝜃𝑓 , where 𝑟 is the order

of convergence and 𝜃
𝑓
is the number of function evaluations

per iteration. In other words, we can say that an iterative
method with higher efficiency index is more efficient. To
improve convergence order as well as efficiency indexwithout
any new function evaluations, Traub in his book introduced
the method with memory. In fact, he changed Steffensen’s
method slightly as follows (see [11, pp. 185–187]): 𝑥

0
, 𝛾
0
are

given suitably

𝛾
𝑘
= −

𝑥
𝑘
− 𝑥
𝑘−1

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘−1
)

for 𝑘 ≥ 1,

𝑥
𝑘+1

= 𝑥
𝑘
−

𝛾
𝑘
𝑓 (𝑥
𝑘
)
2

𝑓 (𝑥
𝑘
+ 𝛾
𝑘
𝑓 (𝑥
𝑘
)) − 𝑓 (𝑥

𝑘
)

, (𝑘 = 0, 1, 2, . . .) .

(1)

The parameter 𝛾
𝑛
is called self-accelerator and method (1)

has 𝑅-order convergence 2.414. The possibility to increase
the convergence order cannot be denied by using more
suitable parameters. Many authors during the last few years
tried to construct iterative methods without memory which
support this conjecture with optimal order; one can see
[12–21] and many more. Although construction of optimal
methods without memory is still an active field, the authors
are shifting their attentions to developmore efficientmethods
with memory since the last year; for example, see [22–25].
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In the convergence analysis of the new method, we
employ the notation used in Traub’s book [11]: if 𝑚

𝑘
and 𝑛

𝑘

are null sequences and 𝑚
𝑘
/𝑛
𝑘

→ 𝐶, where 𝐶 is a nonzero
constant, we will write 𝑚

𝑘
= 𝑂(𝑛

𝑘
) or 𝑚

𝑘
∼ 𝐶𝑛

𝑘
. We

also use the concept of 𝑅-order of convergence introduced
by Ortega and Rheinboldt [5]. Let 𝑥

𝑘
be a sequence of

approximations generated by an iterativemethod (IM). If this
sequence converges to a zero 𝜉 of function𝑓with the𝑅-order
𝑂
𝑅
((IM), 𝜉) ≥ 𝛼, we will write

𝑒
𝑘+1

∼ 𝐷
𝑘,𝛼

𝑒
𝛼

𝑘
, (2)

where 𝐷
𝑘,𝛼

tends to the asymptotic error constant 𝐷
𝛼
of the

iterative method (IM) when 𝑘 → ∞.
The rest of the paper is organized as follows. In Section 2,

we describe the existing two- and three-point Steffensen-
type iterative schemes and then their convergence orders
are accelerated from four to six and from eight to twelve,
respectively, without any extra evaluation. The proposed
methods are obtained by using previous values as well as a
suitable parameter. The parameter is calculated using New-
ton’s interpolations. The numerical study was also presented
in the next section to confirm the theoretical results. Finally,
we give the concluding remarks.

2. Development and Construction
with Memory

Two-step and three-step repeated Newton’s method is given
by

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓

(𝑥
𝑘
)

,

𝑥
𝑘+1

= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓

(𝑦
𝑘
)

,

(3)

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓

(𝑥
𝑘
)

,

𝑢
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
)

𝑓

(𝑦
𝑘
)

,

𝑥
𝑘+1

= 𝑢
𝑘
−

𝑓 (𝑢
𝑘
)

𝑓

(𝑢
𝑘
)

.

(4)

The order of convergence of the methods (3) and (4) is
four and eight, respectively. By repeating in the same way,
one can get more higher-order methods. Definitely these
methods have higher convergence order as compared to the
standard Newton’s method. But there is no improvement in
its efficiency index. For example, the efficiency indexes of the
above two methods are 4

1/4

= 1.4142 and 8
1/6

= 1.4142,
which are the same as the efficiency index of the original
Newton’s method 2

1/2

= 1.4142. To improve the efficiency
index, Cordero et al. in [26] have reduced the number of
function evaluations by approximating the derivatives in

terms of functions. For this first, they have approximated the
derivatives 𝑓(𝑥

𝑘
) by forward difference given by

𝑓


(𝑥
𝑘
) ≈

𝑓 (𝑥
𝑘
+ 𝑓 (𝑥

𝑘
)) − 𝑓 (𝑥

𝑘
)

𝑓 (𝑥
𝑘
)

. (5)

Then, to approximate the other two derivatives, they used
rational approximation. In fact, 𝑓(𝑦

𝑘
) is approximated by

the rational approximation of the first degree and 𝑓


(𝑢
𝑘
) is

approximated by the rational approximation of the second
degree and they derived that

𝑓


(𝑦
𝑘
) ≈

𝑓 [𝑥
𝑘
, 𝑦
𝑛
] 𝑓 [𝑦

𝑘
, 𝑧
𝑘
]

𝑓 [𝑥
𝑘
, 𝑧
𝑘
]

,

𝑓


(𝑢
𝑘
) ≈ 𝑏
2
− 𝑏
1
𝑏
4
,

(6)

where

𝑏
4
=

𝑓 [𝑦
𝑘
, 𝑢
𝑘
, 𝑥
𝑘
] − 𝑓 [𝑦

𝑘
, 𝑢
𝑘
, 𝑧
𝑘
]

𝑓 [𝑦
𝑘
, 𝑧
𝑘
] − 𝑓 [𝑦

𝑘
, 𝑥
𝑘
]

,

𝑏
3
= 𝑓 [𝑦

𝑘
, 𝑢
𝑘
, 𝑧
𝑘
] + 𝑏
4
𝑓 [𝑦
𝑘
, 𝑧
𝑘
] ,

𝑏
2
= 𝑓 [𝑦

𝑘
, 𝑢
𝑘
] − 𝑏
3
(𝑦
𝑘
− 𝑢) + 𝑓 (𝑦

𝑘
) 𝑏
4
,

𝑏
1
= 𝑓 (𝑢

𝑘
) ,

𝑧
𝑘
= 𝑥
𝑘
+ 𝑓 (𝑥

𝑘
) .

(7)

By using these approximations of the derivatives in (3) and
(4), they have shown that their methods have the same
order of convergence but with reduced number of function
evaluations and thus efficiency index has been increased. In
fact, the efficiency index becomes 41/3 = 1.5874 and 8

1/4

=

1.6818, respectively. For more detail, one can see [26]. One
more advantage of these methods is that it can be applied to
nonsmooth functions also. Now one natural question arises:
is it possible to find more efficient methods? Main aim of our
paper is to find the answer of this question.

For this purpose, we first introduce a nonzero real
parameter in 𝑧

𝑛
and consider the following twomethods with

its error expression.

Method I. For the suitably given 𝑥
0
,

𝑧
𝑘
= 𝑥
𝑘
+ 𝑝𝑓 (𝑥

𝑘
) , 𝑘 = 0, 1, 2, . . . ,

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑧
𝑘
]

,

𝑥
𝑘+1

= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
) 𝑓 [𝑥

𝑘
, 𝑧
𝑘
]

𝑓 [𝑥
𝑘
, 𝑦
𝑘
] 𝑓 [𝑦

𝑘
, 𝑧
𝑘
]

,

(8)

and its error expression is given by

𝑒
𝑘+1

=

(1 + 𝑝𝑐
1
)
2

𝑐
2
(2𝑐
2

2
− 𝑐
1
𝑐
3
)

𝑐
3

1

𝑒
4

𝑘
+ 𝑂 (𝑒

5

𝑘
) . (9)
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Method II. For the suitably given 𝑥
0
,

𝑧
𝑘
= 𝑥
𝑘
+ 𝑞𝑓 (𝑥

𝑘
) , 𝑘 = 0, 1, 2, . . . ,

𝑦
𝑘
= 𝑥
𝑘
−

𝑓 (𝑥
𝑘
)

𝑓 [𝑥
𝑘
, 𝑧
𝑘
]

,

𝑢
𝑘
= 𝑦
𝑘
−

𝑓 (𝑦
𝑘
) 𝑓 [𝑥

𝑘
, 𝑧
𝑘
]

𝑓 [𝑥
𝑘
, 𝑦
𝑘
] 𝑓 [𝑦

𝑘
, 𝑧
𝑘
]

,

𝑥
𝑘+1

= 𝑢
𝑘
−

𝑓 (𝑢
𝑘
)

𝑏
2
− 𝑏
1
𝑏
4

,

(10)

and its error expression is given by

𝑒
𝑘+1

=

(1 + 𝑞𝑐
1
)
4

𝑐
2
(2𝑐
2

2
− 𝑐
1
𝑐
3
) (2𝑐
4

2
− 𝑐
1
𝑐
2

2
𝑐
3
− 𝑐
2

1
𝑐
2

3
+ 𝑐
2

1
𝑐
2
𝑐
4
)

𝑐
7

1

× 𝑒
8

𝑘
+ 𝑂 (𝑒

9

𝑘
) ,

(11)

where 𝑏
1
, 𝑏
2
, 𝑏
3
, and 𝑏

4
are defined as in (7) and 𝑐

𝑖
= 𝑓
(𝑖)

(𝜉)/𝑖!.
Now we are concerned with the extension of the above

schemes in methods with memory, since its error equations
contain the parameter which can be approximated in such
a way that it increases the local order convergence. For this
purpose, we put 𝑝 = 𝑝

𝑘
and 𝑞 = 𝑞

𝑘
, where 𝑝

𝑘
= −1/𝑐

1
and

𝑞
𝑘
= −1/𝑐

1
. Here, 𝑐

1
and 𝑐
1
are two different approximations

of 𝑐
1
and given by

𝑐
1
= 𝑁


3
(𝑥
𝑘
) , (12)

𝑐
1
= 𝑁


4
(𝑥
𝑘
) , (13)

where

𝑁


3
(𝑥
𝑘
) = [

𝑑

𝑑𝑡

𝑁
3
(𝑡)]

𝑥=𝑥𝑘

= [

𝑑

𝑑𝑡

𝑁
3
(𝑡; 𝑥
𝑘
, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑧
𝑘−1

)]

𝑥=𝑥𝑘

= [

𝑑

𝑑𝑡

(𝑓 (𝑥
𝑘
) + 𝑓 [𝑥

𝑘
, 𝑦
𝑘−1

] (𝑡 − 𝑥
𝑘
)

+ 𝑓 [𝑥
𝑘
, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑡 − 𝑥
𝑘
) (𝑡 − 𝑦

𝑘−1
)

+ 𝑓 [𝑥
𝑘
, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑧
𝑘−1

] (𝑡 − 𝑥
𝑘
)

× (𝑡 − 𝑦
𝑘−1

) (𝑡 − 𝑥
𝑘−1

))]

𝑥=𝑥𝑘

= 𝑓 [𝑥
𝑘
, 𝑦
𝑘−1

] + 𝑓 [𝑥
𝑘
, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑥
𝑘
− 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑧
𝑘−1

] (𝑥
𝑘
− 𝑦
𝑘−1

) (𝑥
𝑘
− 𝑥
𝑘−1

) ,

𝑁


4
(𝑥
𝑘
) = [

𝑑

𝑑𝑡

𝑁
4
(𝑡)]

𝑥=𝑥𝑘

= [

𝑑

𝑑𝑡

𝑁
4
(𝑡; 𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑧
𝑘−1

)]

𝑥=𝑥𝑘

= [

𝑑

𝑑𝑡

(𝑓 (𝑥
𝑘
) + 𝑓 [𝑥

𝑘
, 𝑢
𝑘−1

] (𝑡 − 𝑥
𝑘
)

+ 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

] (𝑡 − 𝑥
𝑘
) (𝑡 − 𝑢

𝑘−1
)

+ 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑡 − 𝑥
𝑘
)

× (𝑡 − 𝑢
𝑘−1

) (𝑡 − 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑧
𝑘−1

] (𝑡 − 𝑥
𝑘
)

× (𝑡 − 𝑢
𝑘−1

) (𝑡 − 𝑦
𝑘−1

) (𝑡 − 𝑥
𝑘−1

))]

𝑥=𝑥𝑘

= 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

] + 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

] (𝑥
𝑘
− 𝑢
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

] (𝑥
𝑘
− 𝑢
𝑘−1

) (𝑥
𝑘
− 𝑦
𝑘−1

)

+ 𝑓 [𝑥
𝑘
, 𝑢
𝑘−1

, 𝑦
𝑘−1

, 𝑥
𝑘−1

, 𝑧
𝑘−1

] (𝑥
𝑘
− 𝑢
𝑘−1

)

× (𝑥
𝑘
− 𝑦
𝑘−1

) (𝑥
𝑘
− 𝑥
𝑘−1

)

(14)

are Newton’s interpolatory polynomial of degrees three and
four, respectively. Now, the theoretical order of convergence
of the methods is given by the following theorem.

Theorem 1. If an initial approximation 𝑥
0
is sufficiently close

to a simple zero 𝜉 of 𝑓(𝑥) and the parameters 𝑝
𝑘
and 𝑞
𝑘
in the

iterative scheme (8) and (10) are recursively calculated by the
forms given in (12) and (13), respectively, then the 𝑅-order of
convergence of methods (8) and (10) with memory is at least
six and twelve, respectively.

Proof. Before going to show themain result, we first prove the
following two results, which we will use later.

Claim I. Consider

1 + 𝑝
𝑘
𝑐
1
∼

𝑐
4

𝑐
1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑧

𝑒
𝑘−1

. (15)

Claim II. Consider

1 + 𝑞
𝑘
𝑐
1
∼ −

𝑐
5

𝑐
1

𝑒
𝑘−1,𝑢

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑧

𝑒
𝑘−1

. (16)

For this, suppose that there are 𝑠 nodes 𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑠
from the

interval 𝐷 = [𝑎, 𝑏], where 𝑎 is the minimum and 𝑏 is the
maximum of these nodes, respectively.Then, for some 𝜁 ∈ 𝐷,
the error expression of Newton’s interpolation polynomial
𝑁
𝑠
(𝑡) of degree 𝑠 is given by

𝑓 (𝑡) − 𝑁
𝑠
(𝑡) =

𝑓
(𝑠+1)

(𝜁)

𝑠 + 1!

𝑠

∏

𝑗=0

(𝑡 − 𝑡
𝑗
) . (17)
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For 𝑠 = 3, the above equation assumes the form (keeping in
the mind 𝑡

0
= 𝑥
𝑘
, 𝑡
1
= 𝑦
𝑘−1

, 𝑡
2
= 𝑥
𝑘−1

, and 𝑡
3
= 𝑧
𝑘−1

)
𝑓 (𝑡) − 𝑁

3
(𝑡)

=

𝑓
4

(𝜁
3
)

4!

{(𝑡 − 𝑥
𝑘
) (𝑡 − 𝑦

𝑘−1
) (𝑡 − 𝑥

𝑘−1
) (𝑡 − 𝑧

𝑘−1
)} .

(18)
Differentiating (18) with respect to 𝑡 and putting 𝑡 = 𝑥

𝑘
, we

get

𝑓


(𝑥
𝑘
) − 𝑁



3
(𝑥
𝑘
)

=

𝑓
4

(𝜁
3
)

4!

{(𝑥
𝑘
− 𝑦
𝑘−1

) (𝑥
𝑘
− 𝑥
𝑘−1

) (𝑥
𝑘
− 𝑧
𝑘−1

)} .

(19)

Now,
𝑥
𝑘
− 𝑦
𝑘−1

= (𝑥
𝑘
− 𝜉) − (𝑦

𝑘−1
− 𝜉) = 𝑒

𝑘
− 𝑒
𝑘−1,𝑦

. (20)
Similarly,

𝑥
𝑘
− 𝑥
𝑘−1

= 𝑒
𝑘
− 𝑒
𝑘−1

,

𝑥
𝑘
− 𝑧
𝑘−1

= 𝑒
𝑘
− 𝑒
𝑘−1,𝑧

.

(21)

Using these relations in (19) and simplifying, we get

𝑁


3
(𝑥
𝑘
) ∼ 𝑐
1
+ 2𝑐
2
𝑒
𝑘
+ 𝑐
4
𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑧

𝑒
𝑘−1

. (22)
And thus

1 + 𝑝
𝑘
𝑐
1

= 1 −

𝑐
1

𝑁


3
(𝑥
𝑘
)

∼ 1 −

𝑐
1

𝑐
1
+ 2𝑐
2
𝑒
𝑘
+ 𝑐
4
𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑧

𝑒
𝑘−1

,

(23)

or

1 + 𝑝
𝑘
𝑐
1
∼

𝑐
4

𝑐
1

𝑒
𝑘−1,𝑦

𝑒
𝑘−1,𝑧

𝑒
𝑘−1

, (24)

which shows the first part. Similarly, taking 𝑠 = 4 in (17) and
proceeding as in the above manner, we can prove the second
relation. Now, we will prove the main result. To do this, we
first assume that the 𝑅-order of convergence of sequences 𝑥

𝑘
,

𝑧
𝑘
, 𝑦
𝑘
, and 𝑢

𝑘
is at least 𝛼, 𝛼

1
, 𝛼
2
, and 𝛼

3
, respectively. Hence,

𝑒
𝑘+1

∼ 𝐷
𝑘,𝛼

𝑒
𝛼

𝑘
∼ 𝐷
𝑘,𝛼

(𝐷
𝑘−1,𝛼

𝑒
𝛼

𝑘−1
)
𝛼

∼ 𝐷
𝑘,𝛼

𝐷
𝛼

𝑘−1,𝑟
𝑒
𝛼
2

𝑘−1
. (25)

Similarly,

𝑒
𝑘,𝑧

∼ 𝐷
𝑘,𝛼1

𝐷
𝛼1

𝑘−1,𝛼
𝑒
𝛼𝛼1

𝑘−1
, (26)

𝑒
𝑘,𝑦

∼ 𝐷
𝑘,𝛼2

𝐷
𝛼2

𝑘−1,𝛼
𝑒
𝛼𝛼2

𝑘−1
, (27)

𝑒
𝑘,𝑢

∼ 𝐷
𝑘,𝛼3

𝐷
𝛼3

𝑘−1,𝛼
𝑒
𝛼𝛼3

𝑘−1
. (28)

Method I. For method (8), it can be derived that
𝑒
𝑘,𝑧

∼ (1 + 𝑝
𝑘
𝑐
1
) 𝑒
𝑘
,

𝑒
𝑘,𝑦

∼ 𝑀
1
(1 + 𝑝

𝑘
𝑐
1
) 𝑒
2

𝑘
, where 𝑀

1
=

𝑐
2

𝑐
1

,

𝑒
𝑘+1

∼ 𝑀
2
(1 + 𝑝

𝑘
𝑐
1
)
2

𝑒
4

𝑘
, where 𝑀

2
=

𝑐
2
(2𝑐
2

2
− 𝑐
1
𝑐
3
)

𝑐
3

1

.

(29)

Using the expression of Claim (I) in (29), we have

𝑒
𝑘,𝑧

∼

𝑐
4

𝑐
1

(𝐷
𝑘−1,𝛼2

) (𝐷
𝑘−1,𝛼1

) (𝐷
𝑘−1,𝛼

) 𝑒
𝛼2+𝛼1+𝛼+1

𝑘−1
, (30)

𝑒
𝑘,𝑦

∼

𝑐
4

𝑐
1

𝑀
1
(𝐷
𝑘−1,𝛼2

) (𝐷
𝑘−1,𝛼1

) (𝐷
2

𝑘−1,𝛼
) 𝑒
𝛼2+𝛼1+2𝛼+1

𝑘−1
, (31)

𝑒
𝑘+1

∼ (

𝑐
4

𝑐
1

)

2

𝑀
2
(𝐷
2

𝑘−1,𝛼2
) (𝐷
2

𝑘−1,𝛼1
) (𝐷
4

𝑘−1,𝛼
) 𝑒
2𝛼2+2𝛼1+4𝛼+1

𝑘−1
.

(32)

Now comparing the equal powers of 𝑒
𝑘−1

in (26)–(30), (27)–
(31), and (25)–(32), we get the following nonlinear system:

𝛼𝛼
1
− 𝛼
2
− 𝛼
1
− 𝛼 − 1 = 0,

𝛼𝛼
2
− 𝛼
2
− 𝛼
1
− 2𝛼 − 1 = 0,

𝛼
2

− 2𝛼
2
− 2𝛼
1
− 4𝛼 − 2 = 0.

(33)

After solving these equations, we get 𝛼 = 6, 𝛼
2
= 3, and 𝛼

1
=

2, which confirm the convergence of method (8).

Method II. For method (10), it can be derived that

𝑒
𝑘,𝑧

∼ (1 + 𝑞
𝑘
𝑐
1
) 𝑒
𝑘
,

𝑒
𝑘,𝑦

∼ 𝑀
1
(1 + 𝑞

𝑘
𝑐
1
) 𝑒
2

𝑘
, where 𝑀

1
=

𝑐
2

𝑐
1

,

𝑒
𝑘,𝑢

∼ 𝑀
2
(1 + 𝑞

𝑘
𝑐
1
)
2

𝑒
4

𝑘
, where 𝑀

2
=

𝑐
2
(2𝑐
2

2
− 𝑐
1
𝑐
3
)

𝑐
3

1

,

𝑒
𝑘+1

∼ 𝑀
3
(1 + 𝑞

𝑘
𝑐
1
)
4

𝑒
8

𝑘
,

where 𝑀
3
=

𝑐
2
(2𝑐
2

2
− 𝑐
1
𝑐
3
) (2𝑐
4

2
− 𝑐
2

1
𝑐
2

2
𝑐
3
− 𝑐
2

1
𝑐
2

3
+ 𝑐
1
𝑐
2
𝑐
4
)

𝑐
3

1

.

(34)

Using the expression of Claim (II) in (34), we have

𝑒
𝑘,𝑧

∼ (−

𝑐
5

𝑐
1

) (𝐷
𝑘−1,𝛼3

) (𝐷
𝑘−1,𝛼2

) (𝐷
𝑘−1,𝛼1

)

× (𝐷
𝑘−1,𝛼

) 𝑒
𝛼3+𝛼2+𝛼1+𝛼+1

𝑘−1
,

(35)

𝑒
𝑘,𝑦

∼ (−

𝑐
5

𝑐
1

)𝑀
1
(𝐷
𝑘−1,𝛼3

) (𝐷
𝑘−1,𝛼2

) (𝐷
𝑘−1,𝛼1

)

× (𝐷
2

𝑘−1,𝛼
) 𝑒
𝛼3+𝛼2+𝛼1+2𝛼+1

𝑘−1
,

(36)

𝑒
𝑘,𝑢

∼ (−

𝑐
5

𝑐
1

)

2

𝑀
2
(𝐷
2

𝑘−1,𝛼3
) (𝐷
2

𝑘−1,𝛼2
) (𝐷
2

𝑘−1,𝛼1
)

× (𝐷
4

𝑘−1,𝛼
) 𝑒
2𝛼3+2𝛼2+2𝛼1+4𝛼+1

𝑘−1
,

(37)

𝑒
𝑘+1

∼ (−

𝑐
5

𝑐
1

)

4

𝑀
3
(𝐷
4

𝑘−1,𝛼3
) (𝐷
4

𝑘−1,𝛼2
) (𝐷
4

𝑘−1,𝛼1
)

× (𝐷
8

𝑘−1,𝛼
) 𝑒
4𝛼3+4𝛼2+4𝛼1+8𝛼+1

𝑘−1
.

(38)
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Table 1: Numerical results for nonlinear equations.

Method Function |𝑥
1
− 𝜉|

|𝑥
2
− 𝜉| |𝑥

3
− 𝜉| COC

𝑥
0
= 0.35 𝑝

0
= 0.01 𝜉 = 0

(8) without memory

𝑓
1
(𝑥)

0.85173𝑒 − 2 0.12817𝑒 − 6 0.57565𝑒 − 26 4.0057

(10) without memory 0.12355𝑒 − 2 0.13471𝑒 − 20 0.25710𝑒 − 164 8.0016

(8) with memory 0.55455𝑒 − 2 0.47078𝑒 − 16 0.13739𝑒 − 95 5.6543

(10) with memory 0.54176𝑒 − 3 0.18424𝑒 − 36 0.69332𝑒 − 436 11.934

𝑥
0
= 0.6 𝑝

0
= 0.01 𝜉 = 0

(8) without memory

𝑓
2
(𝑥)

0.49825𝑒 + 2 𝐼 𝐼 —
(10) without memory 0.49825𝑒 + 2 𝐼 𝐼 —
(8) with memory 0.79599𝑒 − 1 0.63127𝑒 − 7 0.67966𝑒 − 44 6.0933
(10) with memory 0.52381𝑒 − 1 0.17004𝑒 − 15 0.90974𝑒 − 186 11.734

𝑥
0
= 5.0 𝑝

0
= 0.01 𝜉 = 1

(8) without memory

𝑓
3
(𝑥)

0.14237𝑒 + 1 0.56969𝑒 + 0 0.41903𝑒 − 1 0.65246
(10) without memory 0.38340𝑒 + 0 0.32526𝑒 + 0 0.32330𝑒 − 4 9.9985
(8) with memory 0.75481𝑒 + 0 0.94847𝑒 − 2 0.13693𝑒 − 11 4.5983
(10) with memory 0.22702𝑒 + 0 0.51445𝑒 − 8 0.13746𝑒 − 98 11.712

Again comparing the equal powers of 𝑒
𝑘−1

in (26)–(35),
(27)–(36), and (28)–(37) and (25)–(38), we get the following
nonlinear system:

𝛼𝛼
1
− 𝛼
3
− 𝛼
2
− 𝛼
1
− 𝛼 − 1 = 0,

𝛼𝛼
2
− 𝛼
3
− 𝛼
2
− 𝛼
1
− 2𝛼 − 1 = 0,

𝛼𝛼
3
− 2𝛼
3
− 2𝛼
2
− 2𝛼
1
− 4𝛼 − 2 = 0,

𝛼
2

− 4𝛼
3
− 4𝛼
2
− 4𝛼
1
− 8𝛼 − 4 = 0.

(39)

After solving these equations, we get 𝛼 = 12, 𝛼
3
= 6, 𝛼

2
= 3,

and 𝛼
1

= 2 and hence we have the second part. Thus, the
proof is completed.

3. Application to Nonlinear Equations

In this section, we apply the proposed methods to solve some
smooth as well as nonsmooth nonlinear equations. Here, we
demonstrate the convergence behavior of the methods with
andwithoutmemory. Numerical computations reported here
have been carried out in a Mathematica 8.0 environment.
Table 1 shows the absolute value of the difference of the
exact root 𝜉 and approximated root 𝑥

𝑘
, where the exact root

is computed with 1000 significant digits (digits := 1000).
To check the theoretical order of convergence, we calculate
the computational order of convergence (COC) using the
following formula:

COC =

ln (




𝑓 (𝑥
𝑘
) /𝑓 (𝑥

𝑘−1
)




)

ln (




𝑓 (𝑥
𝑘−1

) /𝑓 (𝑥
𝑘−2

)




)

. (40)

For this purpose, we consider the following three test func-
tions (taken from [25, 26]):

𝑓
1
(𝑥) = 𝑒

(𝑥
2
−3𝑥)

⋅ sin (𝑥) + log (𝑥2 + 1) ,

𝑓
2
(𝑥) = 𝑒

(𝑥
2
+𝑥 cos(𝑥)−1) sin (𝜋𝑥) + 𝑥 log (𝑥 sin (𝑥) + 1) ,

𝑓
3
(𝑥) = {

𝑥 (𝑥 + 1) , 𝑥 < 0

−2𝑥 (𝑥 − 1) , 𝑥 ≥ 0.

(41)

In the table,𝐴𝑒ℎ stand for𝐴×10
ℎ and 𝐼 is indeterminate. It is

obvious from the table that the proposed methods give better
results.

4. Conclusion

In this paper, the efficiency of the existing method has been
improved by employing information from the current and
previous iteration without any additional evaluation of the
function. The efficiency index of the proposed methods is
6
1/3

= 1.8171 and 12
1/4

= 1.8612 which are higher than
efficiency index 4

1/3

= 1.5874 and 8
1/4

= 1.6818 of the
existing methods, respectively. The proposed methods are
also tested on some numerical examples. The numerical
results show that proposed method is very useful to find an
acceptable approximation of the exact solution of nonlinear
equations.
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