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With the ubiquity of smart phones, wearable equipment, and wireless sensors, the topologies of networks composed by them
change along with time. The immunization strategies in which network immune nodes are chosen by analyzing the static
aggregation network topologies have been challenged. The studies about interaction propagations between two pathogens show
that the interaction can change propagation threshold and the final epidemic size of each other, which provides a new thinking
of immunization method. The eradication or inhibition of the virus can be achieved through the spread of its opposite party.
Here, we put forward an immunization strategy whose implementation does not depend on the analysis of network topology. The
immunization agents are randomly placed on a few of individuals of network and spread out from these individuals on network in
a propagation method.The immunization agents prevent virus infecting their habitat nodes with certain immune success rate. The
analysis and simulation of evolution equation of the model show that immune propagation has a significant impact on the spread
threshold and steady-state density of virus on a finite size of BA networks. Simulations on some real-world networks also suggest
that the immunization strategy is feasible and effective.

1. Introduction

Every year, there are a lot of new viruses that appeared on
the Internet and theMobile Internet, which threaten not only
the safety of networks and hosts, but also the information
security of network users, including their accounts, pass-
words, confidentiality, and privacy. To inhibit the spread of
viruses, a variety of immune strategies are put forward, such
as target immunization, annular immunization, acquain-
tances immunization, local immunization, and first delete
edge immunization [1–5]. An immunization strategy is often
defined as the choice of a set of individuals who neither
catch nor transmit the disease. The choice method is mainly
based on the attributes of nodes in the network topology.
However, it is not always effective and feasible to access
and calculate properties of each node in order to pick out
immune nodes in a large network. Wireless connection
devices are ubiquitous in modern society, such as smart
phones, wearable equipment, and wireless sensors. Various
online social networks and services spring up on the Internet.

The edges between nodes change along with time on these
networks [6–8]. There is often a greater difference between
the actual property values of network nodes and the topology
attributes or dynamic attributes of network nodes computed
on the basis of static aggregation networks.

At the beginning of the 21st century, the worm Red Code
had almost paralyzed the whole Internet by flooding a lot of
useless packets [9]. Thereafter, there appeared a new worm
calledGreenCode and its goal is to find and remove theworm
Red Code. The worm Green Code also spread by means of
flooding. Its harm is even more than its benefits, but it gives
us a new idea about the inhibitionmethod of the virus spread.
Immunization agents and countermeasures [10, 11] can be
spread just like viruses do. Immunization agent’s role is to
inhibit the spread of virus, which can be seen as a competitive
spread between good viruses and bad viruses.

There are growing researches about dynamic interac-
tions of multiple epidemics in recent years. The method of
generating function was used by Newman et al. to study

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 971497, 7 pages
http://dx.doi.org/10.1155/2014/971497



2 Discrete Dynamics in Nature and Society

the competing epidemics of two kinds of virus agents,
which promote or inhibit the spread of each other [12–
14]. Bond percolation theory and the generating function
method can exactly demonstrate the various attributes of the
network structure and analyze the final size of the epidemic
outbreak and epidemic threshold of virus. But they ignore
the time evolution process during the outbreak. Another
mathematical modeling method for theoretical analysis of
infectious disease spread is the compartment model. It
describes the time evolution of the epidemic and yet simpli-
fies propagation model parameters. The studies of dynamic
interaction betweenmultiple pathogens spreading on overlay
networks need to consider more factors such as joint degree
distribution of overlapping nodes. Reference [15] adopts
the bond percolation theory and [16] uses compartment
method to model and analyze dynamic interaction of two
pathogens on overlay networks. These models and analyses
of their evolution equations are often more complex and
difficult to be handled. Moreover, the interaction of two
pathogens is not always symmetrical. The interaction model
from [17] consists of two propagation particle species A
and B, in which A induces B while B suppresses A. For
another thing, the spread of infectious diseases tends to cause
increasing awareness of individual about disease and changes
of individual behavior [18–21]. The changes of individual
consciousness and behavior make healthy people reduce
their susceptibility about disease to avoid being infected
and infected persons reduce their infectivity by self-imposed
quarantine and practice of better hygiene, which shorten
duration of infection and extend duration of immunity. In
computer networks, the behavioral responses to computer
virus from users are often shown as the alteration of user
operation behaviors, for example, more willing to update the
antivirus software and accept patches, avoiding clicking on
strange suspicious links, and opening the strange spam.

The immunization strategies whose implementations
depend on the analysis of network global topology structure
are difficult to quickly implement on the real-world networks.
Here, we put forward a simple immunization strategy on the
basis of interaction propagation of virus and immunization
agent. The vaccine against a given virus or worm, namely,
immunization agent, propagates on networks analogous to
the spread behavior of virus. If an individual is infected by
immunization agent and successfully obtain immunization,
it will be free from infection by the virus, which curbs the
spread of the virus, just like the inhibitory effect of the worm
Green Code on the worm Red Code.

2. Model

When the virus is epidemic on the network, the immuniza-
tion agent is placed on a random chosen node and begins to
propagate on network, whose works are similar to that of the
worm program in the computer network. The transmission
way of immunization agent is designed for SIS (susceptible-
infected-susceptible) propagation mode [22]. Based on the
version of the SIS model, each individual belongs to either a
susceptible (S) or infected (I) state at any given time. When a
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Figure 1: State transition diagram of the immune model.

susceptible individual and an infected individual interact, the
former may be infected by the latter at some infection rate.

The immunization agent is transmitted in SIS mode
rather than SI mode. First, the example of worm Green Code
shows that its cost brought by excessive propagation (flood
propagation mode) and complex function far exceeds the
resulting revenue. Second, immunization is not permanent
in many cases of reality. On a host, immunization programs
are likely to be treated as malicious programs by a security
software or conflict with some application software and
therefore be shut down or even removed. Immune program
itself may be out of order and unable to run.The host systems
possibly collapse and are reinstalled.Thesemake the host turn
back to the susceptible state from the immune state. Finally, SI
transmissionmode is a special case of SIS transmissionmode
where the recovery rate is zero.

Figure 1 shows the state transition diagramof the immune
model. Due to the influence of two kinds of spread agents,
there are two spread state values on each node of the system
at the same time. The spread states of any node 𝑖 are denoted
by (𝑋(1), 𝑋(2))𝑖, where the symbols 𝑋(1)and 𝑋(2) signify the
spread state of virus and immunization agent, respectively.

Immunization agents have two functions, namely,
immune function and spread function. Immune function
is that the immunization agents prevent successfully the
transmission of the virus to the immunized nodes from
their neighbors with probability 𝛿 at each time step. Spread
function of immunization agent is described as follows. At
each time step, each infected node by immunization agent
propagates immunization agent in its neighbor nodes in
probability 𝛼(2) and recover itself into a susceptible state in
probability 𝛽(2). In fact, the spreadingmode of immunization
agents is the pure SIS spreading mode.

As shown in Figure 1, each node infected by the virus
infects its neighbor nodes with transmission rates 𝛼(1) in each
time step, but the infectious success rate for a neighbor node
infected by immunization agent is only 1 − 𝛿. If the node 𝑖 is
the neighbor of node 𝑗 and node 𝑗 has been infected by virus,
the node 𝑖 has the following three situations in the spread of
the virus.

(1) If the node 𝑖 is not infected by virus and immunization
agent, the probability that the node 𝑖 is infected by
virus from its neighbor node 𝑗 is 𝛼(1).
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(2) If the node 𝑖 is not infected by virus but is infected
by immunization agent, the probability that the node
𝑖 is infected by virus from its neighbor node 𝑗 is (1 −
𝛿)𝛼
(1).

(3) If the node 𝑖 is infected by virus, the probability that
the node 𝑖 recovers itself into a susceptible state is 𝛽(1)
whether or not it is infected by immunization agents.
Consider the following:

(S, S)𝑖 + (I, ∗)𝑗
𝛼
(1)

󳨀󳨀→ (I, ∗)𝑖 + (∗, ∗)𝑗,

(S, I)𝑖 + (I, ∗)𝑗
(1−𝛿)𝛼

(1)

󳨀󳨀󳨀󳨀󳨀󳨀→ (I, ∗)𝑖 + (∗, ∗)𝑗,

(I, ∗)𝑖
𝛽
(1)

󳨀󳨀→ (S, ∗)𝑖,

(1)

where the symbol ∗ represents S state or I state.
If the node 𝑗 is a neighbor node of node 𝑖, the node 𝑖 has

the following two situations in the spread of immunization
agent. Consider the following:

(∗, S)𝑖 + (∗, I)𝑗
𝛼
(2)

󳨀󳨀→ (∗, I)𝑖 + (∗, ∗)𝑗,

(∗, I)𝑖
𝛽
(2)

󳨀󳨀→ (∗, S)𝑖.

(2)

The expression 𝜌(1)
𝑘
(𝑡) and 𝜌(2)

𝑘
(𝑡) denotes the infectious

density of virus and immunization agents on nodes with
degree 𝑘 of network at time 𝑡, respectively. Then, 1 −

𝜌
(2)

𝑘
(𝑡) is the probability that a node with degree 𝑘 is not

infected by immunization agent at time 𝑡. The expression
(1 − 𝛿)𝜌

(2)

𝑘
(𝑡) is the probability that a node with degree 𝑘

is infected by immunization agent and immunized failure,
which means that a node is infected by immunization agent
that is unsuccessful to prevent invasion from virus. The
combination of the above two probabilities equals 1−𝛿𝜌(2)

𝑘
(𝑡),

which signifies the probability that a node with degree 𝑘 of
network is not immunized.Therefore, the evolution equation
of virus propagation is obtained as

𝑑𝜌
(1)

𝑘
(𝑡)

𝑑𝑡
= 𝛼
(1)
𝑘 [1 − 𝜌

(1)

𝑘
(𝑡)]

× [1 − 𝛿𝜌
(2)

𝑘
(𝑡)] 𝜃 (𝜌

(1)
(𝑡)) − 𝛽

(1)
𝜌
(1)

𝑘
(𝑡) .

(3)

The evolution equation of immunization agents spread is

𝑑𝜌
(2)

𝑘
(𝑡)

𝑑𝑡
= 𝛼
(2)
𝑘 [1 − 𝜌

(2)

𝑘
(𝑡)] 𝜃 (𝜌

(2)
(𝑡)) − 𝛽

(2)
𝜌
(2)

𝑘
(𝑡) , (4)

where

𝜃 (𝜌
(1)
(𝑡)) =

1

< 𝑘 >
∫

∞

0

𝑘𝑃 (𝑘) 𝜌
(1)

𝑘
𝑑𝑘, (5)

𝜃 (𝜌
(2)
(𝑡)) =

1

< 𝑘 >
∫

∞

0

𝑘𝑃 (𝑘) 𝜌
(2)

𝑘
𝑑𝑘. (6)
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Figure 2:The virus spread threshold𝜆𝐶 as a function of the immune
success rate 𝛿 on the finite size BA networks, for the different
effective transmission rate 𝜆2 of immunization agent. Network node
number𝑁 = 2000 and edge number from each new node𝑚 = 5.

3. Threshold Analysis on the BA Networks

When system reaches steady state, the left side of (4) equals
zero. We can obtain the infectious density of immunization
agents on nodes with degree 𝑘 of network:

𝜌
(2)

𝑘
=

𝑘𝜆2𝜃2

1 + 𝑘𝜆2𝜃2

. (7)

The symbol 𝜆2 = 𝛼2/𝛽2 is the effective transmission rate
of immune spread. Parameter 𝜃2 is the abbreviation of the
symbol 𝜃(𝜌(2)(𝑡)) of (4), which is a function about 𝜆2.

In BA network with 𝑁 nodes and 𝑚 new edges of each
node, its parameters can be obtained as follows [23]. The
average degree of the network is 2𝑚, minimum degree is 𝑚,
maximum degree 𝐾𝑐 equals 𝑚𝑁

1/2, and node degree proba-
bility distribution 𝑝(𝑘) equals 2𝑚2𝑘−3/(1−𝑁−1). Substituting
the above parameters and (7) into (6), we obtain

𝜃2 =
1 − 𝑁

−1/2
𝑒
(1−𝑁

−1
)/𝑚𝜆2

𝑚𝜆2 (𝑒
(1−𝑁−1)/𝑚𝜆2 − 1)

. (8)

When the spread of virus reaches steady state, we obtain
by (3)

𝜌
(1)

𝑘
=

𝑘𝜆1𝜃1 (1 − 𝛿𝜌
(2)

𝑘
)

1 + 𝑘𝜆1𝜃1 (1 − 𝛿𝜌
(2)

𝑘
)

. (9)

The symbol 𝜆1 = 𝛼1/𝛽1 is the effective transmission
rate of virus spread. Parameter 𝜃1 is the abbreviation of the
symbol 𝜃(𝜌(1)(𝑡)) of (3), which is a function about 𝜆1 and 𝜆2.
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Substituting the above parameters of finite size BA network
and (9) into (5), we obtain

𝜃1 =
1

< 𝑘 >
∫

𝑘𝑐

𝑚

𝜆1𝑘
2
𝑃 (𝑘) [1 + (1 − 𝛿) 𝜆2𝜃2𝑘] 𝜃1

1 + (𝜆1𝜃1 + 𝜆2𝜃2) 𝑘 + (1 − 𝛿) 𝜆1𝜆2𝜃1𝜃2𝑘
2
𝑑𝑘.

(10)

We define an auxiliary function as follows:

𝑓 (𝜃1) =
1

< 𝑘 >

× ∫

𝑘𝑐

𝑚

𝜆1𝑘
2
𝑃 (𝑘) [1 + (1 − 𝛿) 𝜆2𝜃2𝑘] 𝜃1

1 + (𝜆1𝜃1 + 𝜆2𝜃2) 𝑘 + (1 − 𝛿) 𝜆1𝜆2𝜃1𝜃2𝑘
2
𝑑𝑘.

− 𝜃1

(11)

Because the function 𝑓(𝜃1) is convex,𝑓
󸀠󸀠
(𝜃1) < 0, 𝑓(0) =

0, and 𝑓(1) < 0, the sufficient and necessary condition that
the equation 𝑓(𝜃1) = 0 has nonzero solutions in the interval
0 < 𝜃1 < 1 is 𝑓

󸀠
(0) > 0. Consider the following:

𝑓
󸀠
(0) =

𝑚𝜆1

1 − 𝑁−1
[
1

2
ln𝑁 − 𝛿 ln(1 + 𝜆2𝜃2𝑚𝑁

1/2

1 + 𝜆2𝜃2𝑚
)]

− 1 > 0

𝜆1 >
1 − 𝑁

−1

𝑚
[
1

2
ln𝑁 − 𝛿 ln(1 + 𝜆2𝜃2𝑚𝑁

1/2

1 + 𝜆2𝜃2𝑚
)]

−1

,

(12)

𝜆
𝐶

1 =
1 − 𝑁

−1

𝑚
[
1

2
ln𝑁 − 𝛿 ln(1 + 𝜆2𝜃2𝑚𝑁

1/2

1 + 𝜆2𝜃2𝑚
)]

−1

. (13)

Under the influence of immune transmission, the virus
spread threshold is

𝜆𝐶 = max {𝜆𝐶SIS, 𝜆
𝐶

1 } , (14)

where the symbol 𝜆𝐶SIS is the spread threshold of pure SIS
transmission method in the finite size of BA networks. It
satisfies

𝜆
𝐶

SIS =
< 𝑘 >

< 𝑘2 >
=

2 (1 − 𝑁
−1
)

𝑚 ln (𝑁)
. (15)

As shown in Figure 2, the virus spread threshold increases
rapidly with the increase of immune success rate 𝛿 and
effective transmission rate 𝜆2 on the finite size of BA net-
work. The greater the immune success rate 𝛿 is, the greater
the increasing rate of virus spread threshold 𝜆𝐶 is. The
propagation of virus can be completely ended by choosing
the appropriate immune effective transmission rate 𝜆2 and
guaranteeing certain immune success rate 𝛿 on the finite size
of BA networks.
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Figure 3: The node density 𝜌(1) infected by virus as a function
of virus effective transmission rate 𝜆1, for the different effective
transmission rate 𝜆2 of immune agent, where 𝛿 = 1. TV prefix figure
legend item is theory analytical values calculated according to (19),
and SV prefix figure legend item is corresponding simulation values.
Network node number𝑁 = 2000, new edge number from each node
m = 5, the recovery rate of the virus spread 𝛽(1) = 0.001, and the
recovery rate of the immune agent spread 𝛽(2) = 0.01.

When the immune success rate satisfies 𝛿 = 1 in
particular, we obtain 𝜆𝐶1 = 𝜆2 by (8) and (13). Under this
condition, threshold value of the virus spread 𝜆𝐶 equal to
max{𝜆𝐶SIS, 𝜆2} and (9) is written as

𝜌
(1)

𝑘
=

𝑘𝜆1𝜃1 (1 − 𝜌
(2)

𝑘
)

1 + 𝑘𝜆1𝜃1 (1 − 𝜌
(2)

𝑘
)

. (16)

Substituting parameters of the finite size of BA network
and (16) into (5) we obtain

𝜃1 =

1 − 𝑁
−1/2

𝑒
(1−𝑁

−1
)/𝑚𝜆1 − 𝑚𝜆2𝜃2 (𝑒

(1−𝑁
−1
)/𝑚𝜆1 − 1)

𝑚𝜆1 (𝑒
(1−𝑁−1)/𝑚𝜆1 − 1)

.

(17)

The infectious density of the virus spread at steady state is

𝜌
(1)
= ∫

𝑘𝑐

𝑚

𝑃 (𝑘) 𝜌
(1)

𝑘
𝑑𝑘. (18)
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Figure 4: The node density 𝜌(1) infected by virus as a function of virus effective transmission rate 𝜆1, for the different effective transmission
rate 𝜆2 of immune agent on different real-world networks, respectively. (a) p2p-Gnutella06 network, (b) Email-Enron network, and (c) AS
network. The recovery rate of the virus spread 𝛽(1) = 0.25 and the recovery rate of the immune agent spread 𝛽(2) = 0.5.

Substituting parameters of the finite size of BA network
and (16) into (18) we obtain

𝜌
(1)
=
2𝑚𝜆1𝜃1

1 − 𝑁−1
[1 − 𝑁

−1/2
− 𝑚𝑤 ln( 1 + 𝑚𝑤

𝑁−1/2 + 𝑚𝑤
)] , (19)

where 𝑤 = 𝜆1𝜃1 + 𝜆2𝜃2. The parameters 𝜃1 and 𝜃2 can be
obtained by (17) and (8), respectively.

For a finite size BA of network with 2000 nodes and 5
new edges of each node, its propagation threshold for pure
SIS method is 𝜆𝐶SIS ≈ 0.0526. Figure 3 displays that the virus



6 Discrete Dynamics in Nature and Society

propagation threshold equals the immune effective transmis-
sion rate 𝜆2, where 𝜆2 > 𝜆

𝐶
SIS and the infectious density of

virus drops off with the augment of the immune effective
transmission rate 𝜆2. The above two points demonstrate that
the immune effect is remarkable under the condition of
immune success rate 𝛿 = 1 on finite size of BA networks.

4. Empirical Tests on Real Networks

The first real-world network in our research is a snapshot
of the Gnutella peer-to-peer file sharing network in August
6, 2002 [24, 25]. Nodes represent hosts in the Gnutella
network topology and edges represent connections between
the Gnutella hosts.

Enron email communication network covers all the email
communicationwithin a dataset of aroundhalfmillion emails
[26, 27]. This data was originally made public and posted
to the web by the Federal Energy Regulatory Commission
during its investigation. Nodes of the network are email
addresses and if an address 𝑖 sent at least one email to address
𝑗, the graph contains an undirected edge from 𝑖 to 𝑗.The non-
Enron email addresses act as sinks and sources in the network
as their communication with the Enron email addresses is
observed.

The graph of routers comprising the Internet can be
organized into subgraphs called autonomous systems (AS).
Each AS exchanges traffic flows with some neighbors (peers).
We can construct a communication network of who-talks-
to-whom from the BGP (Border Gateway Protocol) logs.The
datawas collected from theUniversity ofOregonRouteViews
Project-Online data and reports [28]. The dataset contains
733 daily instances which span an interval of 785 days from
November 8, 1997, to January 2, 2000.

Before doing these empirical tests, we had processed the
three networks in advance. The largest connected subgraphs
of these networks replace their networks, respectively. The
p2p-Gnutella06 network and AS network are changed to
undirected network in this way that all of one-way edges of
network are stored again according to their reverse direction,
respectively.

In the first empirical test, we randomly select one percent
of network nodes as original infected nodes of virus and
a node as the original infected node of immune agent.
Figure 4 displays that the node density infected by the virus
interacting with immune agents is smaller than one infected
by the virus in pure SIS propagation method and decreases
significantly with the increase of effective transmission rate
of immunization agents𝜆2 for different effective transmission
rates of virus 𝜆1 in all three networks.

In the second empirical test, we randomly select a node
as the virus input source. When the node density infected by
virus is more than one percent, immunization agent begins
to spread from a randomly selected node and this moment
is marked as zero moment, namely, 𝑡 = 0. As shown in
Figure 5, the node density infected by the virus interacting
with immunization agents first runs high but falls back
quickly because of the influence of the immunization agent
transmission.
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Figure 5: The fraction of infected nodes of the virus spread,
immunization agent spread, and pure SIS spread as functions of time
𝑡, respectively, on different real-world networks. (a) p2p-Gnutella06
network and (b) AS network. Their effective transmission rates are
all 0.4.The recovery rate of the virus spread 𝛽(1) = 0.25, the recovery
rate of the immunization agent spread 𝛽(2) = 0.5.

5. Conclusion

Threshold analysis of the model is done on BA networks.
Immune transmission has a significant impact on the virus
spread threshold and the virus infections density in the steady
state. The virus propagation threshold can be changed by
adjusting the immune effective transmission rate. When the
virus effective transmission rate is less than its propagation
threshold, the virus is eventually eradicated from the net-
work.

In many real situations, the network topology is difficult
to obtain globally or the network size is too big to be
handled. Dispensing with the analyses of network topological
properties, we propose the immune strategy based on the
transmissionmode.The immune strategy is fast, feasible, and
effective. We only need to measure the effective transmission
rate of virus and the immune success rate of immune agent
for actual implementation of the model, which can be done
in the local area of networks. According to the measured
parameters, immune effective transmission rate can be set to
inhibit the spread of the virus.

In realistic setting, many networks are not static. Both
its edges and nodes are not continuously active, which
has a strong effect on spreading processes. It may be very
interesting and significant to analyze the competing dynamics
on a complex system with temporal structure. This will also
be our future research interest.
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