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The traditional solar photovoltaic fault diagnosis system needs two to three sets of sensing elements to capture fault signals as fault
features and many fault diagnosis methods cannot be applied with real time. The fault diagnosis method proposed in this study
needs only one set of sensing elements to intercept the fault features of the system, which can be real-time-diagnosed by creating the
fault data of only one set of sensors.The aforesaid twopoints reduce the cost and fault diagnosis time. It can improve the construction
of the huge database. This study used Matlab to simulate the faults in the solar photovoltaic system. The maximum power point
tracker (MPPT) is used to keep a stable power supply to the system when the system has faults. The characteristic signal of system
fault voltage is captured and recorded, and the dynamic error of the fault voltage signal is extracted by chaos synchronization.Then,
the extension engineering is used to implement the fault diagnosis. Finally, the overall fault diagnosis system only needs to capture
the voltage signal of the solar photovoltaic system, and the fault type can be diagnosed instantly.

1. Introduction

In 2013, Hsieh and Shiu proposed a new method of the
photovoltaic system fault diagnosis based on chaotic signal
synchronization [1]. That method had many advantages.
However, it is an offline fault diagnostic scheme. In order to
improve the defect, this paper proposes the intelligent solar
photovoltaic system real-time fault diagnostic device.Manual
detection is replaced by the intelligent solar photovoltaic
system real time fault diagnostic device. Its advantage is
that, in the spacious solar photovoltaic array, as long as the
output end of the array is measured and compared with
previously created diagnostic data, the type of fault can be real
time quickly diagnosed withoutmanual inspection.Thus, the
manual diagnosis time is shortened, while themanpower and
cost losses are reduced.Therefore, this paper aims to research
and develop an intelligent solar photovoltaic system real-time
fault diagnostic device.

The traditional fault diagnostic device uses a neural
network [1–4], Fourier analysis [5–7], or wavelet analysis
[8–13] for fault diagnosis. The solar photovoltaic system fault
diagnoses of different diagnostic methods are introduced

below. In 2011, Shimakage et al. proposed the artificial
neural network control for solar photovoltaic array fault
diagnosis [14]. The diagnostic effect of the artificial neural
diagnostic method proposed in that study was better than
the effect of the traditional neural network. Because the
authors increased the number of training layers in the
neural network to three, the diagnostic effect was very good.
However, an additional sensor must be mounted on each
series branch solar cell to measure the voltage signal, so the
cost increases with the number of solar photovoltaic arrays.
In 2011, Syafaruddin et al. discussed solar photovoltaic system
fault diagnosis [15]. The assumed state of the solar fault in
that study is similar to that in the present study, and the
diagnosticmethods used in that studyweremeasurement and
observation. That study recorded the power generated by the
faulted solar photovoltaic system and then compared it with
the presently measured power. Although the fault diagnosis
based on measurement and observation is simple, there are
merely four fault types proposed by the authors. If the number
of faults increases, there may be different types of faults.
However, the fault category cannot be recognized in the case
of identical power. In 2011, Zhao et al. proposed the fault
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analysis of inverse connection of the solar photovoltaic
array at low light level [16]. That study proposed the I-
V curve analysis for fault diagnosis, where the condition
configuration is a serial array inverse connection in the
array. This condition is equivalent to a major hardware
configuration error in a solar photovoltaic array that burns
the line. Although the I-V curve analysis is simple and easy to
implement, the observation of variance in the current costs
both manpower and time. In 2012, Gokmen et al. proposed
decision tree-based diagnosis of solar photovoltaic array fault
types [17]. That study divided the I-V characteristic curve
into four regions, whereby the regions represented four fault
categories.Themeasured voltage and current and the voltage
and current of the maximum power point were recorded,
and the decision tree method was used to compare the
values of the four regions. Finally, the fault category was
diagnosed. The experimental results showed that, although
the diagnostic rate was as high as 99.8%, the decision-making
condition needed 1,637 comparisons, and the best decision-
making condition was found by multiple simulations and
experiments; thus, the process was very complex. In 2012,
Zhao et al. proposed a simple method to diagnose solar
photovoltaic systems [18]. That study used three parameter
values, including the temperature coefficient of the solar cell,
the illumination, and the temperature when there was a fault,
to work out the variance in power, so as to diagnose the
fault condition.Themethod only needs two simple equations
to diagnose the fault condition, but the data volume of
the parameters is huge, and the establishment of parameter
data of various temperature and illumination changes takes
considerable time. In 2013, Zhao et al. [19] proposed a new
image recognition method (ICA) to identify defects in the
solar cell surface. In 2013, Zhang et al. proposed the fault
analysis and overcurrent protection of the solar photovoltaic
array line [20].

This study used a 10-series 2-parallel solar photovoltaic
array as the model of fault diagnosis. The fault condition
is the short circuit set in the solar cell, and then it is
diagnosed by using the chaotic synchronization signal-based
fault diagnosis method, proposed in this study, and the
intelligent classification of the extension theory. The chaotic
system is very sensitive to change in the system, and the
system parameters must change if the solar photovoltaic
system has a fault. Therefore, this method only needs to
import the initial value signal of the photovoltaic system
with faults into the chaotic synchronization system according
to the variance in initial value, to capture the variance in
dynamic error, and then it is imported into the extension
theory to effectively distinguish the fault state. Moreover,
the extension theory does not need learning time, so the
diagnosis is very rapid.

2. Solar Photovoltaic System MPPT Control

The major function of a solar photovoltaic system is to con-
vert solar irradiation into electrical energy using a solar pho-
tovoltaic cell and an electric power converter. The equipped
electric power converter can stabilize, increase, and reduce

the output voltage or convert the frequency according to
the requirements of the output load, and the output power
depends on the area of solar photovoltaic cell, conversion
efficiency, solar illumination, ambient temperature, and effect
of the load.The solar photovoltaic array used in this study is a
10-series 2-parallel array, equippedwith a boost converter and
MPPT algorithm. This algorithm guarantees the maximum
power output when the solar photovoltaic array has faults.
The voltage variation is measured in the system operation to
distinguish the fault.

The power characteristic generated by the solar photo-
voltaic cell is not linear, as the power varies with the current
sunshine intensity and ambient temperature. In order to keep
the output power at the maximum value of the characteristic
curve, the solar photovoltaic system must be equipped with
MPPT control to guarantee the maximum output power, so
as to maximize the system output efficiency. At present, the
common MPPT control methods are [21–25] (1) the voltage
feedback method, (2) the power feedback method, (3) the
straight-line approximationmethod, (4) the perturbation and
observation method, and (5) the incremental conductance
method. This paper further discusses the incremental con-
ductancemethod.The extension theory is combinedwith this
method to control the step output, which is compared with
the general fixed step and the variable step.

3. Chaos Synchronization Theory and
Extension Theory

3.1. Chaos Synchronization Theory. The behavior of the slave
chaotic system tracking master chaotic system is chaos
synchronization [26–29]. The master-slave chaotic system is
described below:

master system: 𝑥̇ (𝑡) = 𝑓 (𝑡, 𝑥) ,

slave system: ̇𝑦 (𝑡) = 𝑓 (𝑡, 𝑦) + 𝑢 (𝑡) .
(1)

Among which, 𝑥(𝑡) = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
] ∈ 𝑅𝑛 and 𝑦(𝑡) =

[𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
] ∈ 𝑅𝑛 are the status values of master system

and slave system, 𝑓 : 𝑅 ×𝑅
𝑛

→ 𝑅
𝑛 is the nonlinear function,

𝐵 ∈ 𝑅𝑛×1 and𝐶 ∈ 𝑅1×𝑛, 𝑢 is the controller in the slave system,
and the control objective is

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩 󳨀→ 0. (2)

The primary fault characteristic signal in the research on
solar power system fault diagnosis may be transient and
fast, but the analysis of long-term signal characteristics takes
much time, and too many data diagnoses are likely to cause
misrecognition. Therefore, this study proposes the chaos
synchronization whereby the instantaneous fault signal of
the voltage is captured as the diagnostic basis of the chaotic
system. Moreover, it defines the master chaotic system as the
reference system and the slave chaotic system as the tracking
reference system. The slave system is designed to track the
reference system in a cycle length. Its tracking dynamic error
convergence characteristic is used to extract dynamic error
signals, and the fault feature is recorded.
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3.1.1. Lorenz Chaos Synchronization System. Since the chaotic
system is very sensitive to the change in system parameters,
this paper specifically uses this characteristic of chaos. The
solar photovoltaic system fault voltage signal is captured
for chaos synchronization transformation, the trajectories of
dynamic errors are extracted, and these dynamic trajecto-
ries are the fault features, so the extension theory is used
to recognize fault conditions. From [1], the Lorenz chaos
synchronization system is expressed as (3)
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The master-slave system error state can be expressed as
𝑒
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is observed, so that the control signal is chosen as 𝑢
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According to [1], if the eigenvalue of the system is
negative, the error system state is steady, so the chaotic
attractor can be generated, and the dynamic trajectory of
the chaotic attractor is used for various studies. This paper
observes the dynamic trajectory of the chaotic attractor to
distinguish the fault types of the solar photovoltaic system.

3.2. Extension Theory. The extension theory can solve the
compatibility and contradictory problems, it describes the
quality of things quantitatively without learning, and it has
high accuracy. Based on the aforesaid characteristics, it is very
suitable for classification recognition. This paper therefore
uses extension theory as the solar photovoltaic system fault
diagnosis method.

3.2.1. Definition of Extension Matter Element. In order to
distinguish the differences among things, names are assigned.
The extension can use the matter-element concept to present
the differences among things in the matter-element model,
expressed as [30]

𝑅 = (𝑁, 𝐶, 𝑉) =
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, (5)

where 𝑁 is the matter, 𝑐
𝑗
is the characteristic of the matter,

and V
𝑗
is the value of the characteristic 𝑐

𝑗
.

3.2.2. Definition of the Extension Set. In classical mathemat-
ics, the classical set uses 0 and 1 to describe the characteristics
of things, whereas, in fuzzy mathematics, the fuzzy set uses 0
to 1 to describe the fuzzy degree of characteristics of things.
The extension set extends the range of the set to −∞ to∞ to
represent the extension degree of the characteristics of things.
The extension correlation function is of two intervals in the
real number field ⟨−∞,∞⟩, which are the classical domain
𝑆
𝑜

= ⟨𝑎, 𝑏⟩ and the joint domain 𝑆
𝑝

= ⟨𝑐, 𝑑⟩, and interval
𝑆
𝑜

∈ 𝑆
𝑝
. If there is a random point 𝑠 in the real number

field, the correlation function can be described as (6), and the
overall extension set correlation grade can be expressed as in
Figure 1:
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where𝐾(𝑠) is the grade of correlation between 𝑠 and 𝑆
𝑜
.When

𝐾(𝑠) ≧ 0, it is the degree of 𝑠 belonging to 𝑆
𝑜
; when𝐾(𝑠) < 0,

it is the degree of s not belonging to 𝑆
𝑜
.

3.3. Diagnostic Process Architecture of the Chaos Synchroniza-
tion System and Extension Diagnosis. Figure 2 is the chaotic
signal synchronization and extension diagnostic system flow
chart. First, the measured voltage of the solar photovoltaic
system is recorded, and then the recorded voltage signal to
be measured is imported into the slave system of the chaotic
signal synchronization system. The chaotic synchronization
system then generates the chaotic dynamic error signal after
subtraction between the master and slave systems, and the
dynamic trajectory formed of the chaotic dynamic error
signal is themain basis of extension diagnosis, that is, the fault
feature of the solar photovoltaic system. Finally, as long as the
chaotic dynamic error signal is imported into the finished
extension matter-element model, the fault category can be
identified rapidly and accurately by extension diagnosis of the
fault conditions.

4. Experimental Results

4.1. Extension Incremental Conductance Method. In terms of
the solar photovoltaic system MPPT, this paper proposes
the extension incremental conductance method (EICM) and
compares it with the general fixed step incremental con-
ductance method (FICM) and the variable step incremental
conductance method (VICM). As the fixed step incremental
conductance method has only one set of steps (step = 0.001),
the tracking speed is always the same whatever the 𝑑𝑃/𝑑𝑉 is.
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Figure 1: Schematic diagram of the correlation function.
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Figure 2: Chaotic signal synchronization and extension diagnostic
system flow chart.

Neither the speed nor the step can be adjusted, which
becomes the main defect in the most fundamental incre-
mental conductance method. The variable step incremental
conductance method has large steps (step = 0.005) and small
steps (step = 0.001), and its tracking speed is much higher
than that of the general fixed step incremental conductance
method, but the 𝑑𝑃/𝑑𝑉 identification mode is not intelligent

Table 1: Matter-element model of the extension incremental con-
ductance method for 𝑑𝑃/𝑑𝑉.

[Joint domain, 𝑐
1
, ⟨0, 10000⟩]

[Large step, 𝑐
1
, ⟨5.0001, 10000⟩]

[Small step, 𝑐
1
, ⟨0, 5⟩]

Table 2: Solar panel model and specifications.

Solar panel model SM 1611
Open circuit voltage 3.0 V
Short circuit current 0.8 A
Maximum power point voltage 2.36V
Maximum power point current 0.7 A
Maximum power 1.65W

Table 3: Solar photovoltaic system fault category.

Fault
type Fault condition (short circuit set in faulted solar cell)

SCF1
There is no fault in the two-series branch solar
photovoltaic system.

SCF2
One solar cell fault occurs in any series branch of the
two-series branch solar photovoltaic system.

SCF3
Two solar cell faults occur in any series branch of the
two-series branch solar photovoltaic system.

SCF4
Three solar cell faults occur in any series branch of the
two-series branch solar photovoltaic system.

SCF5
One solar cell fault occurs in each series branch of the
two-series branch solar photovoltaic system.

SCF6
Two solar cell faults occur in each series branch of the
two-series branch solar photovoltaic system.

SCF7
One solar cell fault occurs in one series branch and two
solar cell faults occur in the other branch of the
two-series branch solar photovoltaic system.

SCF8
One solar cell fault occurs in one series branch and four
solar cell faults occur in the other branch of the
two-series branch solar photovoltaic system.

SCF9
Two solar cell faults occur in one series branch and
three solar cell faults occur in the other branch of the
two-series branch solar photovoltaic system.

enough. The extension incremental conductance method
proposed in this paper can extend the matter-element model
according to the 𝑑𝑃/𝑑𝑉 value and reach intelligent identifi-
cation and rapid tracking under the same condition (step =
0.005 and 0.001).The result is shown in Figure 3.The classical
domain and joint domain of the extension incremental
conductance method are shown in Table 1.

4.2. Implementation of the Solar Photovoltaic System Real-
Time Fault Diagnosis. The solar cell in this paper is SM 1611;
its specifications are shown in Table 2.The solar illumination
is 1,000W/m2, and the ambient temperature is 25∘C. The
system architecture is shown in Figure 4. The connection
mode is 10-series 2-parallel, as shown in Figure 5. The fault
state should be simulated before the fault condition is diag-
nosed. The fault types are shown in Table 3 [31, 32]. The V-P
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Figure 5: Schematic diagram of faults in the solar photovoltaic array
(SCF
7
).

and V-I characteristic curves of the solar photovoltaic array
vary with the sunshine and ambient temperature. The fault
condition in this paper is the short circuit set in the solar
panel, and nine kinds of solar cell fault (SCF) are simulated.
Therefore, there are nine kinds of V-P and V-I characteristic
curves, as shown in Figures 6(a) and 6(b). The fault voltage
signal is mixed with a minute quantity of Gaussian noise,
as shown in Figure 7. The maximum power point voltage
when a fault occurs is measured and recorded, as shown
in Figure 8. The addition of Gaussian noise is helpful in
enlarging the dynamic trajectory of chaotic dynamic error, so

as to highlight the fault feature; meanwhile the tolerance of
the system for noise can be written in the extension matter-
element model, so that the system can resist noise. Finally, as
long as the nine kinds of fault voltage signal are imported into
the chaos synchronization system, the fault features can be
extracted as the base of extension matter-element modeling.
The environment noise of a physical system is usually a high
frequency signal.Therefore, a low-pass filter could be used to
pretreat the system signal.

The solar photovoltaic array for this experiment is the
Agilent Technologies E4360A modular solar array platform.
When the nine fault characteristic curves of solar energy in
Figures 6(a) and 6(b) are imported into the E4360Amodular
solar array platform, nine fault voltages can be exported. The
MPPT algorithm is implemented by dSPACE and is finally
connected to the boost converter to record the voltages of
various fault conditions for fault diagnosis. Figure 8 shows
the measured voltage with Gaussian noise. The experimental
sampling rate is 10 kHz. The master system of the chaos
synchronization system bears the normal voltage signal of
the solar photovoltaic system, and the slave system bears
the faulted voltage signal of the solar photovoltaic system.
The unmeasured voltage signal is imported into the chaos
synchronization system of (1) the chaos synchronization
error is converted into dynamic error to obtain the ̇𝑒

1
̇𝑒
2

̇𝑒
3

three-dimensional motion trajectory, as shown in Figure 9.
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The plan view of the dynamic error of the nine faults is shown
in Figure 9.

The nine patterns are put on the same plane.The dynamic
trajectory of each fault is shown in Figure 10. The chaotic
dynamic trajectory is used to build the extension matter-
element model. Figure 10 shows the chaotic waveform circle
0 of ̇𝑒

1
, which tends to be symmetrical. As the chaotic

dynamic trajectory of ̇𝑒
1
in ⟨−2, −0⟩ and ⟨0, 2⟩ intervals is

very apparent, ̇𝑒
1
in ⟨−2, 0⟩ and ⟨0, 2⟩ intervals is used as

the basis of the extension matter. The ̇𝑒
3
corresponding to

̇𝑒
1
interval landing point is calculated, and the average of ̇𝑒

3

landing point is extracted as the eigenvalue extracted in this
paper. The matter-element model is shown in Table 4. The
weight in this paper is set as 0.5.The solar photovoltaic system
can be diagnosed after the extensionmatter-elementmodel is
built.

If the fault diagnosis cannot implement real-time mea-
surement and diagnosis, it wastes both time and money.
Therefore, this study implemented real-time fault diagnosis of

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
22.9

22.95

23

23.05

23.1

23.15

23.2

Time (s)

V

SCF1

Figure 8: Voltage signal of SCF
1
with Gaussian noise.

the solar photovoltaic system, saving a considerable amount
of time. The fault state displayed by the diagnostic system
needs to be considered.The real-time fault diagnosis system is
implemented using the dSPACE hardware system, the system
sampling rate is 10 kHz, and the diagnosis is renewed when
the number of data is 10,000; that is, the diagnostic values
are updated per second.Therefore, the fault diagnosis system
needs only one second to diagnose the faults in the solar
photovoltaic system, so as to implement real-time diagnosis.
Figure 11 shows the system hardware facilities. Figure 12
shows the real-time diagnosis interface of dSPACE. In the
experiment of real-time diagnosis, this paper measured the
nine faults 20 times, respectively. Meanwhile five percentages
of Gaussian noise (0.1%, 0.3%, 0.5%, 1%, and 5%) were added
in to test the real-time diagnosis rate of the system and to test
the tolerance of the diagnostic system with the noise. Table 5
shows the real-time diagnosis rate.

In the traditional fault diagnosis system, once there is
a little noise interference, the diagnosis will be inaccurate.
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Table 4: Chaotic dynamic trajectory matter-element model.

Neighborhood
domains

= [
Normal 𝑐

1
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𝑐
2
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] SCF1 = [

Fault 𝑐
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⟨460, 480⟩

𝑐
2
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.

However, in the chaotic system, not only does a little noise
make the dynamic error trajectory more apparent, but also
the system can tolerate the noise interference. Therefore,
the diagnostic system in this paper resists noise, and its
diagnostic rate is still high when the noise changes drastically.

Table 5: Real-time diagnosis rate.

Percentage of
additional
Gaussian noise (%)

Number of intercepted
real-time diagnostic
signals (signals)

Diagnostic rate
(%)

0.1 180 100
0.3 180 100
0.5 180 100
1 180 100
5 180 98.89

dSPACE
interface

E4360A and
control laptop

Boost
converter

dSPACE

Figure 11: System hardware facilities.

5. Conclusions

The paper derived a real-time system to diagnose the faults
in a solar photovoltaic system. The chaos synchronization
and extension theory were used to distinguish the fault types.
The extension theory does not need to create too much data,
and neither does it require training or learning. Its diagnosis
is very fast in comparison with general neural diagnosis.
This method proposed in this paper only needs one set of
sensors to capture a voltage signal, which is then imported
into the chaos synchronization system. In the dynamic error
graph of the chaos synchronization system converted from
voltage signals, accurate, rapid, timesaving, and cost saving
fault recognition can be implemented only by capturing two
fault features. In comparison with other traditional fault
diagnosis methods which need at least three sensor modules
to capture the physical quantities before system diagnosis,
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Figure 12: dSPACE real-time diagnosis interface.

the fault diagnostic device of this paper can save the cost
of sensors while implementing real-time diagnosis. As an
intelligent fault diagnostic device, its diagnosis is very rapid
and accurate.
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