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Constructing rooted phylogenetic networks from rooted phylogenetic trees has become an important problem in molecular
evolution. So far, many methods have been presented in this area, in which most efficient methods are based on the incompatible
graph, such as the CASS, the LNETWORK, and the BIMLR.This paper will research the commonness of the methods based on the
incompatible graph, the relationship between incompatible graph and the phylogenetic network, and the topologies of incompatible
graphs. We can find out all the simplest datasets for a topology 𝐺 and construct a network for every dataset. For any one dataset
C, we can compute a network from the network representing the simplest dataset which is isomorphic toC. This process will save
more time for the algorithms when constructing networks.

1. Introduction

The evolutionary history of species is usually represented as a
(rooted) phylogenetic tree, in which one species has only one
parent. Actually, the evolution of species has caused reticulate
events such as hybridizations, horizontal gene transfers, and
recombinations [1–5], so species may have more than one
parent. Then, the phylogenetic trees cannot describe well
the evolutionary history of species. However, phylogenetic
networks can represent the reticulate events, and they are a
generalization of phylogenetic trees. Phylogenetic networks
can also represent the conflicting evolution information that
may be from different datasets or different trees [6–9].

Phylogenetic networks can be classified into unrooted
[10–12] and rooted networks [4, 13–19]. An unrooted phy-
logenetic network is an unrooted graph whose leaves are
bijectively labelled by the taxa. A rooted phylogenetic net-
work is a rooted directed acyclic graph (DAG for short)
whose leaves are bijectively labelled by taxa [20–22]. The
rooted phylogenetic networks have been studied widely for
representing the evolution of taxa, as evolution of species is
inherently directed. The paper will study relevant properties
of the rooted phylogenetic networks constructed from the
rooted trees.

The algorithms constructing rooted phylogenetic net-
works from rooted phylogenetic trees are mainly classified
into three types: the cluster network [17] based on the Hasse
diagram; the galled network [16] based on the seed-growing
algorithm; theCass [23], the Lnetwork [24], and the BIMLR
[25] based on the decomposition property of networks. In
particular, the third type of methods (Cass, Lnetwork, and
BIMLR) can construct more precise networks than the other
methods. In the following, unless otherwise specified, we
refer to rooted phylogenetic networks as networks.

Let X be a set of taxa. A proper subset of X (except for
both 0 andX) is called a cluster. A cluster𝐶 is trivial if |𝐶| = 1;
otherwise, it is nontrivial. Let 𝑇 be a rooted phylogenetic tree
on X; if there is an edge 𝑒 = (𝑢, V) in 𝑇 such that the set
of taxa which are descendants of V equals 𝐶, we say that 𝑇

represents 𝐶. Figure 1 shows two rooted phylogenetic trees
𝑇
1
and 𝑇

2
and all nontrivial clusters represented by 𝑇

1
and

𝑇
2
. Here, all trivial clusters are not listed. Given a network 𝑁

and a cluster𝐶, when just connecting one incoming edge and
disconnecting all other incoming edges for each reticulate
node (i.e., its incoming edges >1), if there is a tree edge 𝑒 =

(𝑢, V) (i.e., incoming edge of V ≤ 1) in 𝑁 such that the set
of taxa which are descendants of V equals 𝐶, we say that 𝑁

represents 𝐶 in the softwired sense. On the other hand, if
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Figure 1: Two rooted phylogenetic trees 𝑇
1
and 𝑇

2
.

there is a tree edge 𝑒 = (𝑢, V) in 𝑁 such that the set of taxa
which are descendants of V equals𝐶, we say that𝑁 represents
𝐶 in the hardwired sense.

The abovementioned three types ofmethods constructing
networks are based on clusters; that is, they first compute all
of the clusters represented by input trees and then construct
a network representing all clusters in the softwired sense. In
this process, the third type of methods (Cass, Lnetwork,
and BIMLR) will recur to the incompatibility graph (will
be discussed in the following). This paper will discuss the
relationship between the incompatibility graphs and the
constructed networks.

2. Preliminaries

A rooted phylogenetic network 𝑁 = (𝑉, 𝐸) on X is a rooted
DAG, and its leaves are bijectively labelled asX.The indegree
of a node V ∈ 𝑉 is denoted by indeg(V). A node V with
indeg(V) ≥ 2 is called a reticulate node, a node V with
indeg(V) ≤ 1 is called a tree node, and, specially, the tree node
with indegree 0 is the root node.The reticulation number in a
network 𝑁 = (𝑉, 𝐸) is ∑indeg(V)>0(indeg(V) − 1) = |𝐸| − |𝑉| + 1.

Given a set of taxa X, two clusters 𝐶
1
and 𝐶

2
on X are

called compatible, if they are disjoint or one contains the
other; that is, 𝐶

1
∩ 𝐶
2

= 0 or 𝐶
1

⊆ 𝐶
2
or 𝐶
2

⊆ 𝐶
1
; otherwise,

they are incompatible. Obviously, a trivial cluster and any one
cluster are compatible. Given two incompatible clusters 𝐶

1

and 𝐶
2
, 𝐶
1

∩ 𝐶
2
is called the incompatible taxa with respect

to 𝐶
1
and 𝐶

2
. A set of clusters C on X is called compatible,

ifC is pairwise compatible; otherwise, it is incompatible. For
a set of clusters C, its incompatibility graph IG(C) = (𝑉, 𝐸)

is an undirected graph with node set 𝑉 = 𝐶 and edge set 𝐸,
where an edge connects two incompatible clusters.

Given a cluster setC onX and a subset 𝑆 ofX, the result
of removing all elements in X \ 𝑆 from each cluster in C is
called the restriction of C to 𝑆, denoted by C|

𝑆
. If 𝑆 (where

|𝑆| > 1) and any one cluster 𝐶 ∈ C are compatible and C|
𝑆

is also compatible, then we say that 𝑆 is an ST-set (Strict Tree
Set) with respect toC. If there are no other ST-sets containing
𝑆 except itself, we say that 𝑆 is maximal. For a maximal ST-set
𝑆, there is a subtree constructed by the set of clusters {𝐶 | 𝐶 ∈

C, 𝐶 ⊂ 𝑆} ∪ 𝑆.
For each maximal ST-set 𝑆 with respect to C, after

collapsing it into a single taxon 𝑆, the result set is denoted as
Collapse(C). For example, C = {{1, 2}, {1, 2, 3}, {3, 4}}, {1, 2}

is the only maximal ST-set; then, Collapse(C) = {{3, 4}, {{1,
2}, 3}}.Then, the taxa of Collapse(C) are {{1, 2}, 3, 4}, denoted
as X(Collapse(C)). A set of clusters C is called the simplest
if it has no maximal ST-set with respect toC.

Let C be a set of clusters on X and let 𝑁 be a network
representingC. Usually, a tree edge in 𝑁 can represent more
than one cluster inC and a cluster inC can be represented by
more than one tree edge in 𝑁. A mapping 𝜖 is defined from
C to the set of tree edges of 𝑁, such that 𝜖(𝐶) is a tree edge of
𝑁 that represents 𝐶 for any one cluster 𝐶 ∈ C. A network 𝑁

is decomposable with respect to C if there exists a mapping
𝜖 : C → 𝐸

 (𝐸 is the set of tree edges of 𝑁) such that

(i) for any two clusters 𝐶
1
, 𝐶
2

∈ C, 𝐶
1
and 𝐶

2
lie in

the same connected component of the incompatibility
graph IG(C) if and only if two tree edges 𝜖(𝐶

1
)

and 𝜖(𝐶
2
) are contained in the same biconnected

component of 𝑁.

Then, we also say that the network 𝑁 has the decompo-
sition property. The decomposition property makes the net-
work constructed by an appropriate divide-and-conquer (DC
for short) strategy; that is, it first constructs a subnetwork for
each one connected component of the incompatibility graph
and thenmerges all subnetworks into a whole network.Then,
the constructed network is called DC network, and the algo-
rithms are called DC algorithms. The paper [23] has proven
the DC networks satisfying the decomposition property.

Given a set of clustersC, the DC algorithms first compute
the incompatibility graph IG(C) and then compute the sub-
network for the result set after collapsing each one maximal
ST-set into one taxon for each biconnected component of
IG(C); next, “decollapse,” that is, replace each leaf labelled by
a maximal ST-set by a maximal subtree, and finally integrate
those subnetworks into a final network. The paper [25] has
proven that there exists a DC network 𝑁 for any one set of
clusters C. Figure 2 shows the construction process of the
DC algorithms for the set of clusters in Figure 1, in which
constructing subnetwork for each one connected component
(i.e., Step 2) is crucial.

The Cass, the Lnetwork, and the BIMLR algorithms
are the DC algorithms, which can construct the networks
with fewer reticulations than other algorithms. The net-
works constructed by the BIMLR and the Lnetwork have
fewer redundant clusters except for the input clusters than
other available methods. When constructing phylogenetic
networks, the BIMLR and the Lnetwork are faster than the
Cass, and the constructed networks are more stable, that is,
the difference between constructed networks for the same
dataset when different input orders are used is smaller than
the Cass. Figure 3 shows three networks constructed by the
Cass for the same dataset with different input orders, while
BIMLR and Lnetwork can construct only one network 𝑁

1

for the dataset with different input orders [25].

3. Topologies of Incompatibility Graphs

Definition 1. Two networks 𝑁
1

= (𝑉
1
, 𝐸
1
) and 𝑁

2
= (𝑉
2
, 𝐸
2
)

onX are isomorphic if and only if there exists a bijection 𝐻

from 𝑉
1
to 𝑉
2
such that
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Figure 2: A network constructed by the DC algorithms for the set of clusters in Figure 1.
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Figure 3: All networks constructed by theCass for the set of clusters
C = {{1, 2}, {2, 3}}.

(i) (𝑢, V) is an edge in 𝐸
1
if and only if (𝐻(𝑢), 𝐻(V)) is an

edge in 𝐸
2
;

(ii) the label of 𝑤 is equal to the label of 𝐻(𝑤) for any one
leaf 𝑤 ∈ 𝑉

1
.

Given two sets of clustersC
1
onX
1
andC

2
onX
2
, letC

1

and C
2
be the results after collapsing all maximal ST-sets of

C
1
andC

2
, respectively,C

1
onX
1
andC

2
onX
2
.

Definition 2. C
1
and C

2
are isomorphic, if and only if there

is a bijection 𝐺 fromX
1
toX
2
such that

(i) 𝑎 and 𝑏 are in the same cluster 𝐶
1

∈ C
1
if and only if

𝐺(𝑎) and 𝐺(𝑏) are in the same cluster 𝐶
2

∈ C
2
.

By Definition 2, we have that the isomorphism of the
cluster sets is an equivalence relation; that is, it is reflexive,
symmetric, and transitive.

Lemma 3. Given a DC network 𝑁 representing the set of
clusters C, then any one maximal ST-set with respect to C is
a maximal subtree in 𝑁.

Proof. From the constructing process of DC networks, this
conclusion is obvious.

Lemma 4. Let C
1
and C

2
be two sets of clusters on X

1
and

X
2
, respectively.C

1
andC

2
are isomorphic. There exists a DC

network 𝑁
1
representing C

1
if and only if there exists a DC

network 𝑁
2
representingC

2
.

Proof. Theremust exist a DC network𝑁
1
forC
1
. Given a tree

edge 𝑒 = (𝑢, V), the subtree of the root V in 𝑁
1
is a maximal

subtree if and only if the set of taxa 𝑆 is a maximal ST-set with
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respect to C
1
, where the taxa in 𝑆 are labels of leaves which

are descendants of V. Replace each maximal subtree of 𝑁
1
by

a node, and then denote the result network as 𝑁


1
. Obviously,

𝑁


1
represents the set of clustersC

1
. From Definition 2, there

exists a bijection 𝐺 from X
1
to X
2
such that 𝑎 and 𝑏 are in

the same cluster 𝐶
1

∈ C
1
if and only if 𝐺(𝑎) and 𝐺(𝑏) are in

the same cluster 𝐶
2

∈ C
2
.

Then, we can obtain a network 𝑁


2
from 𝑁



1
by replacing

each one taxon 𝑎 inX
1
by 𝐺(𝑎) inX

2
. Obviously, 𝑁



2
repre-

sents C
2
. Finally, we replace each leaf labelled by a maximal

ST-set with respect toC
2
in𝑁


2
by amaximal subtree, and the

result network is denoted as 𝑁
2
which representsC

2
.

For two isomorphic sets of clusters C
1
and C

2
, let 𝑁

1
be

a DC network representing C
1
. Lemma 4 tells us that there

is a DC network 𝑁
2
representing C

2
, which can be obtained

from 𝑁
1
.

Lemma 5. Let C = {C | C 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠}, where
IG(C) is a biconnected component with two nodes. Then, any
one elementC in C is isomorphic toC

0
= {{1, 2}, {2, 3}}.

Proof. Any one elementC ∈ C has two incompatible clusters.
Let C

1
= {𝐶

11
, 𝐶
12

} and C
2

= {𝐶
21

, 𝐶
22

} be two sets of
clusters inC, where𝐶

11
and𝐶

12
are incompatible and𝐶

21
and

𝐶
22
are incompatible. Let 𝐴

1
= 𝐶
11

∩𝐶
12
be the incompatible

taxa with respect to𝐶
11
and𝐶

12
, and let𝐴

2
= 𝐶
21

∩𝐶
22
be the

incompatible taxa with respect to𝐶
21
and𝐶

22
. Let𝐵

11
= 𝐶
11

\

𝐴
1
, 𝐵
12

= 𝐶
12

\ 𝐴
1
, 𝐵
21

= 𝐶
21

\ 𝐴
2
, and 𝐵

22
= 𝐶
22

\ 𝐴
2
; then,

C
1

= {{𝐵
11

, 𝐴
1
}, {𝐵
12

, 𝐴
1
}} andC

2
= {{𝐵
21

, 𝐴
2
}, {𝐵
22

, 𝐴
2
}}.

Each one of 𝐵
11
, 𝐴
1
, 𝐵
12
, 𝐵
21
, 𝐴
2
, and 𝐵

22
is a maximal

ST-set if it contains more than one taxon; then, we can
collapse it into one taxon which is also denoted by itself.
Denote the set of clusters after collapsing all maximal
ST-sets as C

1
and C

2
. Obviously, there is a bijection 𝐺 from

X
1

= {𝐵
11

, 𝐴
1
, 𝐵
12

} toX
2

= {𝐵
21

, 𝐴
2
, 𝐵
22

}, and any two taxa
𝑎, 𝑏 ∈ X

1
are in the same cluster in C

1
if and only if 𝐺(𝑎)

and 𝐺(𝑏) are in the same cluster in C
2
. Hence, C

1
and C

2

are isomorphic. Accordingly, any one set of clustersC ∈ C is
isomorphic toC

0
= {{1, 2}, {2, 3}} becauseC

0
∈ C.

For a cluster set C, there may be several cluster sets
isomorphic to C, but the simplest set of clusters isomorphic
to C is only one, denoted as C

0
. Let 𝑁

0
be the DC

network representingC
0
. Then, we can obtain a DC network

representing C from 𝑁
0
. Lemmas 4 and 5 show there is a

DC network for any one set of clusters whose incompatible
graph is a biconnected component with two nodes, and it is
obtained from the network𝑁

0
(see Figure 3) representingC

0
.

Lemma 6. Let C = {C | C 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠}, where
IG(C) is a linear biconnected component with three nodes (see
Figure 4). Let C

1
= {{1, 3}, {1, 2}, {1, 3, 4}}, C

2
= {{1, 3},

{1, 2, 4}, {1, 2, 3}},C
3

= {{1, 2}, {2, 3}, {3, 4}}, andC
4

= {{1, 2},

{2, 3, 5}, {3, 4}}. Then, any one set of clusters C (C ∈ C) is
isomorphic to one ofC

1
,C
2
,C
3
, andC

4
.

Proof. Figure 4 shows the topology of the linear biconnected
component with three nodes.C

𝑖
is the simplest set of clusters,

A B

G1

C1 C2 C3

Figure 4: The topology of the linear biconnected component with
three nodes.

and its incompatible graph is the topology in Figure 4. Next,
we will prove that C

𝑖
(1 ≤ 𝑖 ≤ 4) are all simplest sets of

clusters for the topology in Figure 4.
Any one set of clusters in C has three clusters denoted as

𝐶
1
,𝐶
2
, and𝐶

3
. Let𝐴 be the incompatible taxa with respect to

𝐶
1
and 𝐶

2
, and let 𝐵 be the incompatible taxa with respect to

𝐶
2
and 𝐶

3
; then 𝐴 and 𝐵 have the following cases: (i) 𝐴 = 𝐵;

(ii) 𝐴 ⊂ 𝐵; (iii) 𝐵 ⊂ 𝐴; (iv) 𝐴 ∩ 𝐵 = 0; (v) 𝐴 ∩ 𝐵 ̸= 0, 𝐴 ̸⊆ 𝐵

and 𝐵 ̸⊆ 𝐴.

(i)𝐴 = 𝐵. Since there is no edge between𝐶
1
and𝐶

3
,𝐶
1
and𝐶

3

are compatible; that is, 𝐶
1

∩ 𝐶
3

= 0, or 𝐶
1

⊆ 𝐶
3
, or 𝐶
3

⊆ 𝐶
1
.

Because 𝐴 ⊆ 𝐶
1
and 𝐴 ⊆ 𝐶

3
, we have that 𝐶

1
∩ 𝐶
3

̸= 0.
Therefore, 𝐶

1
⊆ 𝐶
3
or 𝐶
3

⊆ 𝐶
1
. Then, we have the simplest

set of clustersC
1

= {{1, 3}, {1, 2}, {1, 3, 4}}, and any one set of
clusters in this case is isomorphic toC

1
.

(ii)𝐴 ⊂ 𝐵.Assume that𝐵 = {𝐴, 𝐵
0
}. It is similar to the case (i),

and we have that 𝐶
1

⊆ 𝐶
3
. Then, the simplest set of clusters is

C
2

= {{1, 3}, {1, 2, 4}, {1, 2, 3}}, and any one set of clusters in
this case is isomorphic toC

1
.

(iii) 𝐵 ⊂ 𝐴.This case is similar to case (ii). The sets of clusters
are in case (ii) if and only if they are in case (iii). Hence, any
one set of clusters in case (iii) andC

2
are isomorphic.

(iv) 𝐴 ∩ 𝐵 = 0. Then, 𝐶
1

∩ 𝐶
3

= 0. We have that |𝐴| = 1

and |𝐵| = 1 in the simplest set of clusters, since they can be
collapsed if |𝐴| ≥ 2 or |𝐵| ≥ 2. Assume that 𝐶

1
= {𝐴, 𝐵

1
}

and 𝐶
3

= {𝐵, 𝐵
2
}. We have that |𝐵

1
| = 1 and |𝐵

2
| = 1

in the simplest set of clusters, since they can be collapsed if
|𝐵
1
| ≥ 2 or |𝐵

2
| ≥ 2. Then, |𝐶

1
| = 2 and |𝐶

3
| = 2 in

the simplest set of clusters. C
3

= {{1, 2}, {2, 3}, {3, 4}} and
C
4

= {{1, 2}, {2, 3, 5}, {3, 4}} are the simplest sets of clusters
in this case. Therefore, any one set of clusters in this case is
isomorphic toC

3
orC
4
.

(v) 𝐴 ∩ 𝐵 ̸= 0, 𝐴 ̸⊆ 𝐵 and 𝐵 ̸⊆ 𝐴. Let 𝐴 = {𝐴
0
, 𝐴
1
} and

𝐵 = {𝐴
1
, 𝐵
0
}, where 𝐴

0
, 𝐴
1
, and 𝐵

0
are not empty. We have

{𝐴
0
, 𝐴
1
, 𝐵
0
} ⊆ 𝐶
2
, and 𝐶

1
⊆ 𝐶
3
or 𝐶
3

⊆ 𝐶
1
. If 𝐶
1

⊆ 𝐶
3
, then

𝐴
1

⊆ 𝐶
3
. So 𝐴

1
⊆ 𝐵, which contradicts the case that 𝐴 ̸⊆ 𝐵.

Similarly, we can get the contradiction when 𝐶
3

⊆ 𝐶
1
. Thus,

there exists no set of clusters in this case.

Figure 5 shows the DC networks for the simplest sets of
clustersC

1
,C
2
,C
3
, andC

4
, respectively.

Lemma 7. Let C = {C | C 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠}, where
𝐼𝐺(C) is a nonlinear biconnected component with three nodes
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Figure 5: The DC networks for all simplest cluster sets whose incompatible graphs are topologies in Figure 4.
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Figure 6: The topology of the nonlinear biconnected component
with three nodes.

(see Figure 6). LetC
1

= {{1, 3}, {1, 2, 4}, {1, 2, 5}},C
2

= {{1, 2},

{1, 3}, {1, 4}},C
3

= {{1, 2, 4}, {1, 3, 5}, {1, 2, 3}},C
4

= {{1, 2, 4},

{1, 3, 5}, {1, 2, 3, 6}},C
5

= {{1, 2}, {2, 3}, {1, 3}},C
6

= {{1, 2, 4},

{1, 3}, {2, 3}}, C
7

= {{1, 2, 4}, {1, 3, 5}, {2, 3}}, C
8

= {{1, 2, 4},

{1, 3, 5}, {2, 3, 6}}, C
9

= {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}}, C
10

=

{{1, 2, 3, 5}, {1, 2, 4}, {1, 3, 4}}, C
11

= {{1, 2, 3, 5}, {1, 2, 4, 6},

{1, 3, 4}}, and C
12

= {{1, 2, 3, 5}, {1, 2, 4, 6}, {1, 3, 4, 7}}. Then,
any one set of clusters in C is isomorphic to one ofC

𝑖
(1 ≤ 𝑖 ≤

12).

Proof. Figure 6 shows the topology of the nonlinear bicon-
nected component with three nodes. Here, 𝐶

1
, 𝐶
2
, and 𝐶

3

are the clusters, and 𝐴, 𝐵, and 𝐶 are the incompatible taxa
corresponding to them. All cases are as follows: (i) 𝐴 = 𝐵;
then,𝐴 ⊆ 𝐶 or𝐴 = 𝐶; (ii)𝐴 ⊂ 𝐵; then,𝐴 ⊂ 𝐶, and𝐶∩𝐵 = 𝐴;
(iii) 𝐴 ∩ 𝐵 = 0; then, 𝐴 ∩ 𝐶 = 0 and 𝐵 ∩ 𝐶 = 0; (iv) 𝐴 ∩ 𝐵 ̸= 0,
𝐴 ̸⊆ 𝐵, 𝐵 ̸⊆ 𝐴; then, 𝐴 ∩ 𝐶 ̸= 0 and 𝐵 ∩ 𝐶 ̸= 0.

(i) 𝐴 = 𝐵. If 𝐴 ⊆ 𝐶, then 𝐴 ⊆ 𝐶
1
, 𝐶 ⊆ 𝐶

2
, and 𝐶 ⊆ 𝐶

3
.

We have |𝐴| = 1 in the simplest set of clusters; otherwise, 𝐴

can be collapsed into one taxon. Similarly, we have |𝐶| = 2

in the simplest set of clusters. Let 𝐴 = {1} and 𝐶 = {1, 2};
then, we can obtain the only simplest set of clusters C

1
=

{{1, 3}, {1, 2, 4}, {1, 2, 5}}. Any one set of clusters meeting this
case will be isomorphic toC

1
.

If 𝐴 = 𝐶, then 𝐴 = 𝐵 = 𝐶. There is |𝐴| = 1 in the simplest
set of clusters; otherwise, 𝐴 can be collapsed into one taxon.
Let𝐴 = 𝐵 = 𝐶 = {1}; then, we can obtain the only simplest set
of clusters C

2
= {{1, 2}, {1, 3}, {1, 4}}. Any one set of clusters

in this case will be isomorphic toC
2
.

(ii) 𝐴 ⊂ 𝐵, 𝐴 ⊂ 𝐶, and 𝐶 ∩ 𝐵 = 𝐴. Then, we can obtain the
simplest sets of clusters C

3
= {{1, 2, 4}, {1, 3, 5}, {1, 2, 3}} and

C
4

= {{1, 2, 4}, {1, 3, 5}, {1, 2, 3, 6}}. Any one set of clusters in
this case will be isomorphic toC

3
orC
4
.

(iii) 𝐴 ∩ 𝐵 = 0; then, 𝐴 ∩ 𝐶 = 0 and 𝐵 ∩ 𝐶 = 0.Then, we can
obtain the simplest sets of clusters C

5
= {{1, 2}, {2, 3}, {1, 3}}

and C
6

= {{1, 2, 4}, {1, 3}, {2, 3}} and C
7

= {{1, 2, 4}, {1, 3, 5},

{2, 3}} and C
8

= {{1, 2, 4}, {1, 3, 5}, {2, 3, 6}}. Any one set of
clusters in this case will be isomorphic to one ofC

5
,C
6
,C
7
,

andC
8
.

(iv)𝐴∩𝐵 ̸= 0,𝐴 ̸⊆ 𝐵,𝐵 ̸⊆ 𝐴; then,𝐴∩𝐶 ̸= 0 and𝐵∩𝐶 ̸= 0. Let
𝐴∩𝐵 = 𝐴

0
; then,𝐴∩𝐶 = 𝐴

0
and𝐵∩𝐶 = 𝐴

0
.We have |𝐴

0
| =

1 in the simplest set of clusters; otherwise,𝐴
0
can be collapsed

into one taxon. Let 𝐴
0

= {1}. Then, 𝐴 = {1, 2}, 𝐵 = {1, 3},
and 𝐶 = {1, 4}. For the first case, we can obtain the simplest
sets of clusters C

9
= {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}} and C

10
=

{{1, 2, 3, 5}, {1, 2, 4}, {1, 3, 4}} and C
11

= {{1, 2, 3, 5}, {1, 2, 4,

6}, {1, 3, 4}} andC
12

= {{1, 2, 3, 5}, {1, 2, 4, 6}, {1, 3, 4, 7}}. Any
one set of clusters in this case will be isomorphic to one of
them.

Figure 7 shows the DC networks for the simplest sets of
clusters C

𝑖
(1 ≤ 𝑖 ≤ 12), respectively. Lemmas 5, 6, and

7 compute all simplest sets of clusters, whose incompatible
graphs are the biconnected components with two nodes
or three nodes. Figures 6 and 7 show the DC networks
constructed by the BIMLR algorithm for all simplest sets of
clusters; then, the DC network for a set of clusters C can
be obtained from the DC network representing the simplest
set of clusters which is isomorphic to C; that is, it does not
need to be constructed once again. This conclusion is very
important to the construction of networks.

4. Conclusion

This paper computes all simplest sets of clusters for the
topologies of incompatible graph with two nodes and three
nodes. We can construct the DC networks for those simplest
sets of clusters and save them. When constructing DC
networks for any one set of clusters C, algorithms only need
to read the DC network 𝑁

0
of the simplest set of clusters

isomorphic to C and then compute the DC network for C
from 𝑁

0
by replacing labels of leaves in 𝑁

0
by the taxa in C,

which will save more time for the algorithms.
We will compute the simplest sets of clusters for more

topologies of incompatible graph in the future.
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