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Nanocomposites have a great potential to work as efficient, multifunctional materials for energy conversion and photoelectro-
chemical reactions. Nanocomposites may reveal more improved photocatalysis by implying the improvements of their electronic
and structural properties than pure photocatalyst. This paper presents the recent work carried out on photoelectrochemical
reactions using the composite materials of ZnO with CdS, ZnO with SnO

2
, ZnO with TiO

2
, ZnO with Ag

2
S, and ZnO with

graphene and graphene oxide.The photocatalytic efficiencymainly depends upon the light harvesting span of amaterial, lifetime of
photogenerated electron-hole pair, and reactive sites available in the photocatalyst. We reviewed the UV-Vis absorption spectrum
of nanocomposite and photodegradation reported by the same material and how photodegradation depends upon the factors
described above. Finally the improvement in the absorption band edge of nanocomposite material is discussed.

1. Introduction

A humongous amount of water pollutants is discharged into
the environment by the industries on daily basis which causes
many hefty problems for humans, amphibious environments,
and microorganisms [1–11]. The main sources of the water
pollutants are fertilizers [12–14], microorganisms [15–18],
application of pesticides and chemicals to soils [19–25],
sewage [26–29] andwastewater [30–32], septic tanks [33–36],
underground storage and tube leakages [37], atmospheric
deposition [38–41], industrial waste which usually contains
sulphur [42], asbestos, lead, mercury, nitrates and phos-
phates, oils, textile dyes, and so forth. These water pollutants
cause the death of aquatic animals [43–49], disruption of
food chains, different human diseases [50–59], destruction of
ecosystems, and so on.

To decontaminate the contaminated water, researchers
have taken many steps and have suggested many pollu-
tants remediation techniques. One method is to treat the
wastewater on site by the treatment plants, as it has a great

potential [60–63]. There are a variety of water treatment
processes like chemical, physical, and biological techniques,
but each has its limitations for the application, cost, and
effectiveness point of view. The pollutants are being trans-
ferred to solid phase from liquid phase by physical techniques
like adsorption, precipitation, or air stripping; hence the
pollutants are not destroyed. Chemical oxidationmay be slow
tomoderate in the rate and selective or rapid but nonselective,
hence generating oxidant cost. When the feed is inhibitory
or toxic to bioculture, the limitation of biological oxidation
takes place. Rest of the techniques are limited due to oxidative
potential, economics, or tendency to farm harmful byprod-
ucts [64, 65]. Due to these limitations theremay be offered an
effective particular process which may be the combination of
the available techniques in such a way to exploit their indi-
vidual strength, thus an appropriate solution obtained within
the economic constraints. Nowadays the most appropriate
techniques for the water treatment are advanced oxidation
processes (AOPs) which have very fewer limitations [66–
70]. Among AOPs, heterogeneous photocatalysis is a tertiary
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Figure 1: Stick and ball representation of different ZnO crystal structures: (a) cubic rocksalt, (b) cubic zinc blende, and (c) hexagonal wurtzite.
The shaded gray and black spheres denote Zn and O atoms, respectively [96].

water treatment process and has attracted the interest of
researchers due to its ability to completely decompose the
target pollutants [71–73].

There is a great potential for the mitigation of the
toxic chemicals from the polluted water by photocatalytic
degradation using nanostructured semiconductors [74, 75].
Currently, the hot issue among themost important challenges
faced by science researchers for clean energy, pollutant-free
water and air is designing new materials for the maximal
harvesting of solar radiation. An extensive work has been
carried out on ZnO and TiO

2
for the application of photo-

catalysis and photovoltaic cells due to their advantage of high
stability against photocorrosion, suitable bandgap, and good
photovoltaic and photocatalysis efficiencies [76–82].

The photocatalytic behavior of the nanocomposites varies
with morphologies [83–93]. For ZnO, the difference in
photocatalytic behavior occurs due to polar planes, surface
areas, and oxygen vacancies. Xu et al. synthesized different
morphologies of ZnO by solvothermal method and used
them as photocatalyst for the degradation of phenol [83].
They suggested thatNPs andnanoflowers exhibited enhanced
photodegradation results compared to nanorods, nanotubes,
nanoflowers, and hour-glass-like ZnO spheres. Liu et al.
prepared TiO

2
nanostructures with different morphologies

like NPs, nanorods, and microspheres via hydrothermal
route and applied them for the photodegradation of phenol
[87].They observed excellent photodegradation results when
nanorods were used as photocatalyst.

Although ZnO has been studied since 1935, new tech-
niques and advance equipment make it possible to explore
its remarkable properties [94]. ZnO is now considered to
be the future material for various optoelectronics devices
and sensors and as a catalyst. The characteristic of ZnO as
photocatalyst becomes more prominent due to the enhanced
photocatalytic efficiency of ZnO in the pure and doped forms

and as a physical mixture. The figure of merits of doped
and undoped ZnO nanomaterials is high carrier mobility,
environmental sustainability, high photocatalytic efficiency,
facile, simple tailoring of structures, nontoxicity, low cost for
massive synthesis, and so forth.

2. ZnO Properties and Crystal Structure

ZnO occurs as a white powder. ZnO is an amphoteric oxide.
ZnO is II-VI compound semiconductor whose iconicity lies
at the borderline between ionic and covalent semiconductors.
ZnO has three crystal structures, cubic zinc blende, cubic
rocksalt, and hexagonal wurtzite, as shown in Figure 1.
Hexagonal wurtzite structure is most common as it is most
stable at ambient conditions; rocksalt can be formed at
relatively high pressure, approximately 10GPa, and a large
volume decreases about 17% [95], while zinc blende can
only be synthesized from cubic substrates [96]. Wurtzite and
hexagonal ZnO have two crystal lattice parameters, 𝑎 =
3.2495 Å and 𝑐 = 5.2069 Å, and 𝑐/𝑎 ratio is 1.60. A wide
range of novel structures has been grown of ZnO by changing
growth conditions. The main objective of this review is to
appraise the recent research of one-dimensional ZnO hier-
archical nanostructures used in photodegradation of water
pollutants.

3. Photocatalysis

Photocatalysis was first reported in 1839 [97]. However, boom
took place in the field of heterogeneous photocatalysis after
an article reported by Fujishima and Honda in 1972. They
reported photo-assisted catalysis of water on irradiation on
TiO
2
with photons of energy greater than the bandgap of

TiO
2
semiconductor [98]. Figure 2 illustrates the underlying

science of photocatalysis of a pure semiconductor. As the
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Figure 2: Schematics of principle of photocatalysis.

photon with an equivalent or more energy hits the surface of
the semiconductor, an electron jumps from the conduction
band to valance band, thus creating an electron-hole pair.
These photo-induced electrons and holes move separately to
the surface of the semiconductor and react with O

2
and ∙OH

involved in the dye solutions. This leads to the formation of
hydroxyl radicals (∙OH), superoxide radical anions (∙O

2
), and

hydroperoxyl radicals (∙OOH) [99].
Several scenarios have been implemented to improve

the harvesting spectrum to improve photo-assisted catalysis
[100–109]. One of them is to synthesize 1D nanostruc-
tures. Researchers have fabricated different morphologies
of nanostructures like NPs, NWs, nanoneedles, nanobelts,
nanocombs, and flower-like nanostructures as shown in
Figure 3. Doping of transitionmetal has limited success [110–
117]. The addition of second metal oxide has also been used
to enhance the light harvesting spectrum of ZnO.

3.1. Photocatalysis by Pure ZnO Nanostructures. ZnO is a
promising material for the degradation of water pollutants.
Lu et al. synthesized ZnO dense nanosheets-built network
and applied it for the degradation ofmethyl orange [118].They
observed high photocatalytic activity due to high surface
to volume ratio. Wang et al. synthesized ZnO NPs, NWs,
and nanorods in the ionic solution at low temperature
[119]. They used them for the photodegradation of RhB and
showed size/shape dependent photocatalytic activity. Yan et
al. grew films of ZnO nanoneedles, NPs, and flower-like
structures and used them for decomposition of methyl blue
under the principle of photocatalysis [120]. The efficiency of
photocatalysis depends upon harvested region of the solar
spectrum by ZnO nanostructures and the lifetime of the
generated electron-hole pair. As ZnO is a wide bandgap
semiconductor and its bandgap is in UV region, thus it can
only harvest UV region. UV light is just 5% of the solar

spectrum [121]. To improve efficiency, the first step is to
harvest larger spectrum of sunlight so that more electron-
hole pairs can be generated. The second step is to improve
efficiency of photon to electron conversion. The third step is
to increase the lifetime of photogenerated electron-hole pair.

3.2. Photocatalysis by ZnO Nanocomposite. A narrow
bandgap metal oxide is doped in ZnO which increases the
range of a sensitization process (SP). Primarily SP is limited
by the relative positions of the conduction bands of the wide
and narrow bandgap semiconductors and also by the nature
of the interfaces in the system [122, 123]. The former factor
can be controlled by tuning bandgap of sensitizer and also
by choosing the appropriate material [124]. In order to ease
the facile electron transfer the creation of heterojunction
or favorable interface is still a challenge. Currently, a lot
of researchers have reported their attempts to create the
efficient heterojunctions for CdS-ZnO [125–127], thus
improving efficiency. One way to improve the photocatalytic
efficiency of the photovoltaic cell is to synthesize the one-
dimensional (1D) nanomaterials of ZnO. One-dimensional
nanomaterials have better crystallinity and may provide the
more direct path for the transfer of electron and will decrease
the charge recombination, thus increasing the efficiency
[79–82, 128, 129]. Another possibility to enhance efficiency is
to increase the photon to electron ratio of photocatalyst and
one can achieve this by introducing the light scattering by
light scatterers into photocatalyst. Cao et al. described a new
technique to improve photoconversion efficiency by using
ZnO submicrometer spheres as photocatalyst film. For light
scattering they used polydisperse ZnO aggregates, while
to achieve the higher adsorption of dye molecules in the
photocatalyst film the increased surface area and necessary
mesoporous structure were provided by the compositive
monocrystalline ZnO [130, 131].
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Figure 3: Electron microscopy images of common morphologies of ZnO 1D nanostructures reported in literature. (a) Nanorods with sharp
tips [229]. (b) Nanobelt. The inset clearly shows a rectangular belt-shape width [230]. (c) Nanocombs with secondary arms [229]. (d)
More complex mixed morphologies [231] and (e) long nanowires [232]. Interestingly some of these morphologies may be considered as
2D structures but conventionally they come under 1D category [233].

Bulk ZnO is wide bandgap semiconductor, thus a low
efficient harvester of sunlight which is the disadvantage
of ZnO for the use of visible light. To increase the effi-
ciency of wide bandgap semiconductors for the visible light
harvesting, different narrow bandgap semiconductors have
been introduced as photosensitizers like InAs [132], CdS
[133–135], CdSe [136–140], InP [141], PbS, and so forth.
The nanoheterostructures which are also called combined
nanocrystals show improved property which is distinct from
that of any component in them. The mutual transfer of
photogenerated charge carriers of nanomaterials of different
semiconductors can enhance the photocatalytic efficiency
[142–144]. On the basis of electron transfer process for two
or more desirable semiconductors where photogenerated
electrons can flow from one semiconductor with a higher
CBM to the other with a lower CBM, is of great importance
in better realization of photocatalytic degradation of organic

pollutants [145–147]. It has many advantages like the oxida-
tion and reduction processes taking place at different sites.
There are also some particular advantages of using the narrow
bandgap semiconductors: due to the quantum size effect
one can harvest the required bandwidth of optical spectrum
by tailoring the particle size; one can achieve the longer
charge carrier separation by decreasing electron-hole pair
recombination due to charge injection from narrow bandgap
semiconductor to wide bandgap semiconductor [148].

Our work is focused on the review of photocatalytic
properties of composite nanostructures of ZnO with CdS
[81, 126, 127, 145, 148–166], TiO

2
[167–177], SnO [178], SnO

2

[179–194], CdSe [195], In
2
O
3
[196], PbS, GaAs, Gas, CuO

[197, 198], WO3 [199], graphene [200–215], Ag
2
S [216–218],

and so forth. The absorption band edge comparision of UV-
Vis results of different ZnO nanocomposites are given in
Table 1.
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Table 1: Composites described here for light harvesting and photocatalytic activity.

Composite Nanocomposite type Year of
publication

UV-Vis absorption
range/edge (nm) Reference Remarks

ZnO/CdS Nanospheres August 2011 480 [148]
ZnO-CdS Core-shell nanorods August 2010 540 [150]

CdS@ZnO Nanourchins December 2012 512 [151] Enhanced efficiency due to specific
morphology which increased reactive area.

CdS-ZnO
CdS NPs on ZnO
disk and CdS NPs
on ZnO nanorods

August 2011 550 [153]
Metallic features of both polar surfaces
provide more feasible path for charge transfer
between ZnO and CdS, thus enhancing PC
performance.

ZnO/CdS ZnO/CdS core-shell
nanorods October 2012 480 [154]

CdS3 showed superior absorption; the
photocatalytic efficiency was better due to
ZnO and CdS3 favorable synergetic effect.

ZnO/CdS
Flower-like ZnO
modified by CdS

NPs
July 2011 500 [155]

ZnO/CdS nanoheterostructures exhibit
superior PC activities due to increased
photoresponding range and increased charge
separation rate.

ZnO/CdS CdS NPs/ZnO NWs March 2009 550 [156]

ZnO-CdS@Cd
Rod-like Cd core
and a ZnO-CdS
heterostructural

shell

December 2012 570 [157]

ZnO/TiO
2

Composite
nanofibers February 2010 386.5 [168]

Superior PC activity of ZnO/TiO
2
composite

nanofibers. The reason behind that was
superior light harvesting capacity and better
quantum efficiency.

ZnO/TiO
2

Nanoscale coupled
oxides June 2010 460 [176]

Better UV-Vis absorption for ZnO/TiO
2

approximately band edge at 460 nm.
Enhanced photocatalytic activity for coupled
ZnO/TiO

2
due to bonded heterostructures,

thus increasing quantum efficiency.

ZnO-SnO
2

Nanoporous
ZnO-SnO

2

heterojunction
June 2012 390 [182]

Nanoporous heterojunction of ZnO-SnO
2

exhibited excellent photocatalytic behavior
although UV-Vis band edge was not higher
than ZnO.

ZnO/SnO
2 Nanofibers May 2010 396 [189]

Mesoporous ZnO/SnO
2
nanofibers were

synthesized with Sn % content from 25, 33,
and 50% and then calcinated at different
temperatures. UV-Vis absorption
spectroscopy was done and band edges were
at about 390 nm. Photodegradation was better
for the sample with molar ratio of Zn : Sn 2 : 1
and calcinated at 500∘C.

ZnO-SnO
2

Hollow spheres and
hierarchical
nanosheets

November 2007 390 [190]

Higher photocatalytic efficiency due to
increased life time of photogenerated
electron-hole pair and also the nanosheets
provided the favorable condition for the
transfer of electron-hole to the surface.

Mn-ZnO/graphene NPs April 2014 600 [205]
Enhanced photocatalysis was observed for 3%
Mn-ZnO/graphene nanocomposite and
UV-Vis DRS showed better results for
Mn-ZnO/graphene.

(GO/ZnO) GO/ZnO nanorods
hybrid November 2014 600 [206]

The synergic effect between GO and ZnO was
responsible for an improved photogenerated
carrier separation. 3% GO/ZnO showed
superior photocatalytic activity.
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Table 1: Continued.

Composite Nanocomposite type Year of
publication

UV-Vis absorption
range/edge (nm) Reference Remarks

ZnO/Ag
2
S Core-shell nanorods August 2014 700 [216]

The absorption peak also shifted to 470 nm
from 374 nm, while overall absorbance
spectrum was broadened up to 700 nm.The
photodegradation results were also much
better than ZnO nanorods.

ZnO/Ag
2
S CSNPs August 2015 550 [217]

Visible region exhibits the main peak around
550 nm. A huge difference in efficiency of
photocatalytic degradation was observed and
ZnO/Ag

2
S CSNPs showed tremendous

results.

ZnO/Ag
2
S NPs June 2012 500 [218]

Photodegradation experiment was carried out
under sunlight with nearly constant flux. NPs
of ZnO/Ag

2
S showed better performance

than bare ZnO NPs, commercial ZnO, P25,
and TiO

2
Merck.

The most explored composite material with ZnO for
photocatalysis is CdS. CdS has been used as sensitizer. After
CdS sensitization, there was clear absorption of visible light.
With the increase of CdS loading (from 10% to 40%), there
was continuous red shift of absorption edges.The results indi-
cated that, with CdS as photosensitizer for Ba

0.9
Zn
0.1
TiO
3
,

there was better harvesting of solar light [151]. A clear
absorption of visible light by using CdS as sensitizer was
reported by Zou et al. [133]. One can see in Figure 4(a) that
UV-Vis absorption spectrum of CdS is covering most of the
region, which is the reason to use CdS as sensitizer ZnO
photocatalyst.

3.2.1. ZnO/CdS Nanocomposite Photocatalysis. Bandgap of
bulkCdS is 2.40 eV at room temperature. CdShas higher elec-
tron affinity than ZnO. The bandgap diagram of CdS-ZnO
composite is shown in Figure 4(e). According to Anderson’s
model, between CdS and ZnO a type II model is formed. As
the visible light is radiated on the CdS-ZnO composite, the
electron is generated in the conduction band of CdS and it
jumps to the conduction band of ZnO by ballistic diffusion
[219]. The time required for electron to be transferred from
conduction band of CdS to conduction band of ZnO is 18
picoseconds which is less than the lifetime of electron in CdS
[220].

Shen et al. synthesized ZnO/CdS hierarchical nano-
spheres. They first synthesized ZnO nanospheres by hydrol-
ysis of zinc salt under ultrasound irradiation. Then CdS
nanocrystals were grown on ZnO nanospheres selectively.
UV-Vis absorption spectroscopy of ZnO nanomaterials sug-
gested that the peak at around 370 nm for both films was
due to the bandgap of ZnO nanostructures as shown in
Figure 4(b) [148]. An extra peak at around 420 nm was also
observed by Shen et al. for ZnO nanospheres film; its cause
was the light scattering which was due to large secondary col-
loidal spheres. As Figure 4(c) depicts, a red shift from 370 nm
(curve (B), ZnO) to 480 nm (curves (D)–(F))was observed by
increasing the dipping time, and the absorption intensity was
increased gradually. The science behind this phenomenon is

the quantization size effect which caused the longer wave-
length due to large particle size. Hence the light absorption
and charge separation were significantly enhanced [148].

As compared to pure ZnO, the optical absorption
edges of the ZnO-CdS core-shell nanorods are extended
into visible light range at about 540 nm approximately as
shown in Figure 4(d). It was found that the absorption edge
of hydrothermally synthesized (ZnO)x-(CdS)y core-shell
nanorods is not sensitive to the increased amount of CdS after
the ratio of CdS to ZnO is larger than 0.2 : 1 [150]. Barpuzary
et al. synthesized CdS@Al

2
O
3
and CdS@ZnO nanourchins-

like structure by hydrothermal route using autoclave. They
grew CdS NWs on oxide core and found enhanced photo-
catalytic results. There were two sharp absorption steps for
CdS@ZnO photocatalyst: one at ca. 380 nm is for ZnO and
the other at ca. 512 nm is for CdS. The apparent quantum
yield (AQY) of 8% for CdS NWs has been enhanced up
to 11% and 15% by growing hierarchically over Al

2
O
3
and

ZnO, respectively [151]. Wang et al. fabricated the CdS
NPs on ZnO disks and CdS NPs on ZnO nanorods by
hydrothermal technique. The percentage of polar facets of
ZnO was controlled by the concentration of NaOH. Both
the polar surfaces (0001) and (0001) behaved like metals
while rest of the surfaces behaved like semiconductors.These
metallic facets provided a more feasible path for the transfer
of charges between ZnO and CdS. This feature contributed
mainly to enhancing the photocatalytic activity by shifting
the absorption edge to 550 nm [153]. Khanchandani et al.
prepared CdS coated ZnO nanorods by surface function-
alization route. They fabricated ZnO nanorods of 100 nm
and CdS as shell with variable shell thickness (10–30 nm).
UV-Vis spectrum shows that after CdS coating the band
edge had a red shift. The sample with CdS coating of 30 nm
(CdS
3
) showed more superior absorption, which may lead to

enhanced visible light degradation efficiency [154].
Li and Wang synthesized flower-like heterostructures of

ZnO/CdS by a facile two-step precipitation method. The
flower-like nanostructures of ZnO were modified by CdS
NPs and successfully applied them in the photocatalytic
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Figure 4: (a) UV-Vis absorbance spectra of as-prepared photocatalyst [133]. (b) UV-Vis absorption spectra of ZnO nanospheres and ZnO
nanoparticle films. (c) UV-Vis absorption spectra of the ITO/ZnO electrode dipped in the reaction solution for different times [148]. (d)
UV-Vis absorption spectra of ZnO, the ZnO-CdS core-shell nanorods ((ZnO)

1
-(CdS)x, 𝑥 = 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, are denoted as 101,

102, 103, 104, 105, and 106, resp.), and CdS [150]. (e) ZnO/CdS electron transfer process. (f) ZnO precursor. (Inset: the bandgap of ZnO/CdS
nanoheterostructure is estimated from the absorption edge [155].)
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degradation of RhB [155]. They suggested that the char-
acteristic absorption of RhB at 553 nm decreased rapidly
with extension of the exposure time. The peak completely
disappeared after about 90 minutes showing efficient and
enhanced results for the ZnO/CdS nanoheterostructures. For
ZnO/CdS nanoheterostructures, the photoresponse range
was extended and more light energy was utilized than
pure ZnO under the simulated sunlight irradiation. UV-
Vis absorption spectroscopy showed enhanced absorp-
tion with ZnO/CdS nanoheterostructures absorption up
to 500 nm approximately as in Figure 4(f). More impor-
tantly, the enhanced photocatalytic efficiency of ZnO/CdS
nanoheterostructures is mainly due to the inhibition of
electron-hole pair recombination by a charge transfer process
in ZnO-CdS heterostructures [155]. Tak et al. fabricated CdS
NPs/ZnO NWs heterostructures array; ZnO NWs arrays
were vertically aligned. They reported that a bare ZnO
nanowire array absorbed only the light of the wavelength
less than 400 nm. However, CdS NPs deposition increased
the light absorption limit up to 550 nm. They investigated
photoelectrochemical cell performances of CdS NPs/ZnO
NWs photoanodes prepared at different deposition condi-
tions. It was also suggested that enhanced photocurrent of the
CdS NP/ZnO NW heterostructures was due to their higher
visible light absorption capability and charge carrier transfer
efficiency [156]. Wang et al. synthesized a rod-like ZnO-
CdS@Cd heterostructure in which Cd was core and ZnO-
CdS was heterostructural shell.They were grown by chemical
method which consisted of two steps: replacement and
sulfurization reactions. The absorption edge was increased
to 570 nm and photocatalytic activity was improved due
to Z-Scheme and the shortened charge carrier transport
length in thin ZnO-CdS heterostructural shell and due to
efficient charge carrier transport channel provided by Cd
[157].

3.2.2. ZnO/TiO
2
Nanocomposite Photocatalysis. Bandgap of

TiO
2
is 3.2 eV. As there is a strong effect of optical properties

on photocatalytic performance, the relationship between
bandgap energy, particle size, and performance is well
described for TiO

2
[121]. ZnO-TiO

2
nanocomposite is a

potential material for high efficiency photocatalyst because
TiO
2
has high reactivity and ZnO has large binding energy.

TiO
2
is also preferred due to its resistance to photocorrosion

and low toxicity [221]. They both have lower prices as well.
Liu et al. fabricated composite nanofibers of TiO

2
/ZnOby

electrospinning. UV-Vis absorption spectroscopy proved that
the ZnO/TiO

2
composite nanostructures were superior with

respect to light harvesting range. They fabricated ZnO/TiO
2

composite nanostructures with different weight percentages
of ZnO. TiO

2
/ZnO-2 15.8% showed better UV-Vis results and

also in the photocatalytic degradation of RhB as shown in
Figures 5(a) and 5(b).The reason behind this is the increased
quantum efficiency of the system due to coupling effect of
TiO
2
and ZnO in grain-like composite NPs. Because of this,

efficient charge separation increased the lifetime of electron-
hole pair and reduced its recombination in the composite
nanofibers [168].

ZnO NPs doped TiO
2
nanofibers were synthesized by

electrospinning followed be hydrothermal process. As shown
in Figure 5(c) that ZnO-TiO

2
hierarchical nanostructures

eliminated the methyl red blue less than 90min and RhB
before 105min, even the other nanostructures did not remove
any pollutant even after 3 hours. Again the incorporation of
ZnO NPs in TiO

2
nanofibers enhanced the photocatalytic

activity to a certain extent [170]. ZnO-TiO
2
nanocompos-

ites were prepared by distribution of TiO
2
NPs over ZnO

nanorods and their original structure was well preserved as
reported by Chen et al. [173]. The higher donor density for
the nanocomposite electrode was also reported in the same
article. Coupled ZnO-TiO

2
nanocomposite was used for the

photocatalytic degradation of activemethylene blue as model
reaction. It was clear that the photocatalytic degradation
results of coupled nanocomposite were better than individual
ZnO nanorods or TiO

2
NPs [173]. Zhang et al. synthesized

ZnO/TiO
2
photocatalyst by two-step method, the homoge-

neous hydrolysis and low temperature crystallization [176].
UV-Vis absorption results revealed that ZnO/TiO

2
coupled

oxides are better light harvesting photocatalysts than ZnO
and TiO

2
individually as shown in Figure 5(d). Degradation

of MO was evaluated by photocatalysis and MO was easily
degraded under UV irradiation by using coupled ZnO/TiO

2

and highest photocatalytic activity was observed, which is
shown in Figure 5(e). The reason behind enhanced photo-
catalytic activity of coupled ZnO/TiO

2
was bonded surface

heterostructure which increased lifetime of photogenerated
electron-hole pair, thus increasing quantum efficiency [176].
Rakkesh and Balakumar synthesized ZnO/TiO

2
core-shell

nanostructures by wet chemical method [222]. Core-shell
nanostructures exhibited excellent optical properties and
their spectrum was up to visible light wavelength. They
used them for the degradation of acridine orange under
sunlight irradiation. ZnO/TiO

2
core-shell nanostructures

showed higher photocatalytic activity than ZnO and TiO
2

nanostructures.

3.2.3. ZnO/SnO
2
Nanocomposites Photocatalysis. SnO

2
is a

wide direct bandgap semiconductor and its bandgap at room
temperature is 3.7 eV [223]. It is a rutile structure and six
oxygen atoms surround one tin atom in an octahedral way.
The conduction band of ZnO is higher than the conduction
band of SnO

2
, so the conduction band of SnO

2
acts like a sink

for the photogenerated electrons [178]. Holes will be injected
in opposite direction. The recombination rate will be slow;
thus more carriers will be available to produce free radicals
by interfacial charge transfer [178].

Zhang et al. synthesized one-dimensional ZnO-SnO
2

nanofibers by combining sol-gel process and electrospinning
technique. In Figure 6(a) UV-Vis absorption spectra are
shown for SnO

2
, ZnO, andZnO-SnO

2
nanofibers.Theoverall

absorption spectrum for ZnO-SnO
2
was better than the rest

of the two.The reason for high photocatalytic activity was the
heterojunction between ZnO and SnO

2
which could enhance

the separation of photogenerated electrons and holes. The
material is also recyclable as the recycles photocatalytic
activity is shown in Figure 6(b) [180]. Uddin et al. fabricated
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Figure 5: (a) UV-Vis diffuse reflectance spectra of nanofibers: (A) TiO
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/ZnO-3, and (D) pure TiO

2
[168].

(b) Photocatalytic degradation of RhB in an aqueous solution in the presence of nanofibers [168]. (c) Effect of ZnO nanoflowers, pristine
titanium oxide nanofibers (TiO

2
), titanium oxide nanofibers incorporating ZnO NPs (ZnO doped TiO

2
), and the newly introduced

ZnO/titanium oxide nanostructure on the photocatalytic degradation of RhB dye [170]. (d) Ultraviolet-visible absorption spectra of pure
ZnO, TiO

2
, and ZnO/TiO

2
[176]. (e) Photocatalytic degradation of MO by various photocatalysts.
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Figure 6: (a) UV-Vis diffuse reflectance spectra of the electrospun nanofibers: (A) ZnO nanofibers, (B) ZnO-SnO
2
nanofibers, and (C)

SnO
2
nanofibers [180]. (b) Photocatalytic activity of the ZnO-SnO

2
nanofibers for RB degradation with three times of cycling uses [180]. (c)

UV-Vis diffuse reflectance spectra (a) and plots of (𝐹(𝑅)) versus Wavelength (nm) (A) SnO
2
, (B) SnO

2
-ZnO, and (C) ZnO. (d) ln (𝐶/𝐶

0
) as a

function of the irradiation time for calcined SnO
2
(triangle), SnO

2
-ZnO (square), and ZnO (circle) photocatalysts [182]. (e) Photodegradation

of MO by the as-synthesized samples: (A) SnO
2
, (B) ZnO, and (C) SnO

2
/ZnO nanocatalyst. The commercial TiO

2
(Degussa P25) is used as

a photocatalytic reference [183].
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nanoporous ZnO-SnO
2
heterojunction by two-step method:

first, the fabrication of nanosized SnO
2
particles by homoge-

neous precipitation along with hydrothermal treatment and,
second, their reaction with zinc acetate followed by calcina-
tion at 500∘C. UV-Vis diffused reflectance showed average
results and band edge for ZnO-SnO

2
was at 390 nm as shown

in Figure 6(c), but good photocatalytic activity was observed
for the same heterojunction due to enhanced separation of
photogenerated electrons and holes as shown in Figure 6(d).
So it is potential material for photocatalytic applications
[182]. Zheng et al. fabricated SnO

2
/ZnO heterojunction

photocatalyst by simple two-step solvothermal method. The
samples of ZnO/SnO

2
, SnO

2
, and ZnO were prepared and

were applied for the photodegradation of methyl orange.The
photocatalytic activity of nanostructured ZnO/SnO

2
hetero-

junction photocatalyst was found to be superior than others
and even better than the standard Degussa P25 as exhibited
by the graphs shown in Figure 6(e). Two main reasons were
reported by the author for enhanced photodegradation ofMB
by nanostructured ZnO/SnO

2
heterojunction photocatalyst.

The first was the higher Brunauer-Emmett-Teller (BET)
surface area. The second was the improvement of separation
of photogenerated electron-hole pair due to promotion of
interfacial charge transfer kinetics between SnO

2
and ZnO

semiconductors by the SnO
2
-ZnO heterojunction [183].

Liu et al. synthesized mesoporous ZnO/SnO
2
composite

nanofibers by electrospinning technique. Samples were calci-
nated at 700∘C and most superior absorbance was exhibited
by Zn

2
SnO
4
(ZS) with 50% Sn content with absorption edge

at 396.3 nm, followed by Zn
2
SnO
4
(Z
2
S) of Sn content 33%

with absorption edge of 393.2 nm.The ZnO/SnO
2
composite

nanofibers showed higher photocatalytic activity than pure
ZnO and SnO

2
nanofibers. This was attributed to its high

surface areas, high efficiency in the light utilization, and high
efficient separation of photogenerated electron-hole pairs
(shown in the following section). For the same Sn content,
as the calcinations temperature increases the photocatalytic
activity decreases. The reason for lower photocatalytic activ-
ity was the reduction in the surface area of ZnO/SnO

2

nanofibers. Also, SnO
2
content ratio is important because if

the SnO
2
mole percent decreases from 25% the photocatalytic

activity will decrease. If the mole percent approaches 50% the
photocatalytic activity will also decrease further because ZnO
active sites will be surrounded by SnO

2
, which may behave

like isolation between ZnO and oxygen-containing species
[189]. ZnO-SnO

2
hollow spheres and hierarchical nanosheets

were successfully synthesized, using hydrothermal method.
Although the absorption band edge of ZnO-SnO

2
nanostruc-

tures was at 390 nm, less than ZnO, ZnO-SnO
2
nanostruc-

tures showed superior photocatalytic degradation efficiency
compared to ZnO nanorods or SnO

2
nanomaterials alone.

The reasons described for the higher photocatalytic activity
were the increased lifetime of photogenerated electron-hole
pair and also the nanosheets were in favor for the transfer of
electrons and holes generated inside the crystal to the surface
[190].

Li and Liu synthesized core-shell and coupled particles
of ZnO/SnO

2
via successive precipitation and coprecipitation

methods, respectively [224]. They applied both of them for

the photodegradation of MO. The photocatalytic activity of
core-shell particles was higher and the reported reason by the
authors was the increase of charge separation efficiency [224].
Core-shell micropyramids of ZnO/SnO

2
have also enhanced

optical properties [225].

3.2.4. ZnO/Graphene Nanocomposites Photocatalysis. Gra-
phene consists of two-dimensional sheets of carbon atoms
and carbon atoms are arranged in a hexagonal structure.
Graphene has magnificent electrical conductivity and good
mechanical properties [207]. The morphology of G-ZnO
composites can enhance the photocatalytic efficiency. G-ZnO
composite thin films were synthesized using the electro-
static spray deposition technique. G-ZnO thin films were
composite of nanoplatelets of ZnO and graphene. G-ZnO
thin films of different weight percentage in the films were
annealed at different temperatures. G-ZnO was used for the
photodegradation of methyl blue. G-ZnO thin film with 0.1%
weight percentage was annealed at 300∘C suggesting better
photocatalytic degradation of MB than rest of the samples.
The reason described by Joshi et al. for the better performance
was the reduced charge recombination due to introduc-
tion of graphene [202]. Worajittiphon et al. synthesized
amine-functionalized graphene nanoplatelets decorated with
ZnO NPs using hydrothermal method. RhB was used to
evaluate the photocatalytic properties of nanostructures.
Enhanced UV-Vis absorption spectrum band edge was up to
400 nm as shown in Figure 7(a). Excellent photodegradation
results were observed for 5wt.% f-GNP/ZnO as suggested
in Figure 7(b). The reason behind good photodegradation
was the increased specific surface area of reactive sites,
increased light harvesting span, and the increased lifetime
of photogenerated electron-hole pair or suppressed charge
carrier recombination [204].

Mn doped ZnO/graphene nanocomposites were synthe-
sized by Ahmad et al. using facile single-step solvothermal
method [205]. A red shift was observed in the band edge
absorption for ZnO/graphene nanocomposites as shown in
Figure 7(c), while overall better performance was observed
after doping of Mn in ZnO/graphene nanocomposites. To
evaluate the photodegradation effects of synthesized nano-
compositesMBwas used.Therewere two phases of pollutants
degradation: the first was the adsorption, for which the 5%
Mn-ZnO/graphene showed better performance but during
photodegradation 3% Mn-ZnO/graphene showed superior
photocatalytic activity and 90% MB was degraded within
one hour with this nanocomposite as shown in Figure 7(d).
The responsible factors held by the author for this enhanced
photocatalysis were improved adsorption of dyes, improve-
ment in charge separation, enhanced visible light absorption,
efficient electron transfer, the produced hydroxyl radicals,
improved adsorption of dyes, and large surface area of contact
between Mn-ZnO and graphene [205].

Dai et al. synthesized GO/ZnO nanorods hybrid via facile
hydrothermal process. UV-Vis DRS band edge for GO/ZnO
was at 391 nm and baseline extended to 600 nm due to GO
nanosheets. Methyl blue was used to evaluate the photocat-
alytic activity of nanomaterials. LEDs with wavelength of
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Figure 7: (a) UV-Vis absorption spectra of catalysts [204], (b) photocatalytic RhB degradation [204], (c) UV-Vis absorption spectra of ZnO,
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degradation of MB in the presence of ZnO, Mn-ZnO NPs, and Mn-ZnO/graphene nanocomposites under visible light irradiation [205].

375 nm were used for irradiation for photodegradation. 3%
GO/ZnO hybrid showed better photocatalytic activity than
rest of the composites. The reason behind superior photocat-
alytic activity was larger surface area and low recombination
rate of photogenerated electron-hole pair [206]. Optical
properties of core-shell ZnO/graphene nanoparticles are far
better than ZnO [226]. Bu et al. synthesized graphene/ZnO
composite with quasi-core-shell structure by one-step wet
chemical method [227]. UV-Vis absorption spectroscopy
reveals that core-shell composite material exhibited peaks
in visible region and was found to be better photocatalyst
material than ZnO. The reported reason by the authors

was the establishment of an effective electric field between
graphene coating layer and ZnO [227].

3.2.5. ZnO/Ag
2
S Nanocomposite Photocatalysis. Bandgap of

Ag
2
S is 1.1 eV [228]. Due to low bandgap energy, Ag

2
S can

absorb a broad solar spectrum. Band alignment diagram of
ZnO and Ag

2
S is shown in Figure 8(a). ZnO/Ag

2
S core-shell

nanocomposites comprise high efficiency for light harvesting;
the conduction band offset between ZnO and Ag

2
S is small

which promotes efficient charge carrier separation of core-
shell interface [216]. Khanchandani et al. used ZnO/Ag

2
S

and ZnO/CdS core-shell nanostructures as photocatalyst
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for the degradation of MB. The light harvesting spectrum
of ZnO/Ag

2
S core-shell nanostructures was better and the

absorption peak shifted to 470 nm from 374 nm as compared
to ZnO nanorods, which is shown in Figure 8(b). ZnO/Ag

2
S

core-shell nanostructures exhibited better photodegradation
results as shown in Figure 8(c). Sadollahkhani et al. synthe-
sized ZnO/Ag

2
S core-shell nanoparticles (CSNPs) by chemi-

cal approach at relatively low temperature around 60∘C [217].
CSNPs were photocatalyst for the degradation of Eriochrome
Black T dye. UV-Vis absorption spectroscopy showed excel-
lent results for ZnO/Ag

2
S CSNPs and absorption spectrum

was broadened as shown in Figure 8(d). Photodegradation
results of ZnO/Ag

2
S CSNPs were far better than ZnO NPs as

depicted in Figure 8(e). Subash et al. synthesized ZnO/Ag
2
S

nanoparticles by sol-gel method [218]. They applied them as
photocatalyst for the degradation of acid black 1 (AB 1). The
experiment was carried out under sunlight and light flux was
nearly constant. From the diffuse reflectance spectra of the
bare ZnO andZnO/Ag

2
SNPs, it was shown that introduction

of Ag
2
S decreased the bandgap of NPs. Photoluminescence

spectroscopy reveals that ZnO/Ag
2
S NPs also have a main

peak in visible range along with a peak lying ultraviolet
range. NPs of ZnO/Ag

2
S revealed excellent results of pho-

todegradation and results were better than bare ZnO NPs,
TiO
2
-P25, commercial ZnO, and TiO

2
Merck [218], which

are shown in Figure 8(f). The above discussion suggested
that Ag

2
S improves the light harvesting spectrum along with

better photocatalysis results.

4. Conclusions

ZnO nanocomposites with CdS, TiO
2
, SnO

2
, graphene, and

Ag
2
S have been studied for the photocatalytic activities. It

was found that ternary nanocomposites should be used for
enhanced photocatalysis as they provide efficient hetero-
junction and better sensitization. Apparent quantum yield
should be increased by increasing lifetime of photogen-
erated electron-hole pair and reactive surface area. One
more characterization is also suggested which may provide
the lifetime of photogenerated electron-hole pair. For large
reactive surface area, the scientists and researchers should
determine the appropriate percentage of ZnO with other
compounds, which should be such an optimum point, where
light harvesting capability should be better along higher
photocatalytic activity, so dopants may also be added in
the nanocomposite to achieve the same. In this way, the
underlying science will be at its best level and ball will be
in the court of material engineers for industrial reactor. It is
essential to evaluate the recycled photocatalytic degradation
efficiency, which is one of the most important parameters
towards the device design.
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