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Coral recruit and algae abundance and diversity were studied in Kenyan reefs to determine the influence of terrestrial discharge
(nutrients and sediments) and the recovery potential of coral reefs after disturbances. Reefs affected by sediments and nutrientswere
found to have high total, turf, and macroalgae but reduced coralline algae abundance and coral recruit density. Interestingly, this
response was found to be the greatest in reefs close to nutrient sources relative to “pristine” reefs and those affected simultaneously
by sediments and nutrients. Further, enhanced levels of brown algae and pocilloporid recruits were observed in reefs affected by
terrestrial run-off whereas acroporid recruit, coralline, and calcareous algae abundance was high in reefs under low terrestrial
input. Our results show that whereas increased sediment levels negatively affect coral recruit density individually, their interaction
with nutrients improves recruit density in reefs simultaneously affected by sediment and nutrients. These findings suggest that the
assessment of local factors that enhance inhibitory and those that suppress promotional processes involved in coral settlement and
recruitment is an important aspect to consider in the conservation andmanagement of coral reefs in the face of local anthropogenic
stress as well as future climate disturbance dynamics and their interaction.

1. Introduction

Coral reefs are among the most diverse and productive
marine ecosystems on the planet directly providing food, pro-
tection, and income to many coastal and island inhabitants.
However, over the past few decades, coral reefs globally have
experienced increased stress from a combination of natural
and anthropogenic pressures. Reefs continue to be adversely
affected by disturbances such as climate change, destructive
fishing, and overharvesting as well as land and marine-
based pollution [1–4]. Disturbances such as sediment influx,
overfishing, and organic and inorganic pollution have been
linked to local ecological modifications in reefs worldwide
[5–7] with severe consequences on coral reef communities,
processes [7–12], and the socioeconomics of coastal commu-
nities. Presently, countering the effects of these stressors poses
the greatest challenge in coral conservation andmanagement.
The adoption and implementation of scientifically based
solutions and strategies for protection and conservation of

coral reefs are likely to improve the efficacy and efficiency of
contemporary intervention protocols.

Poor land use and coastal development activities increase
sediment and nutrient discharge into coastal and marine
areas adversely affecting early and adult life stages of marine
biota [6, 13–21]. For instance, terrestrial run-off has been
reported to negatively impact important ecological processes
[20–24] responsible for the replenishment of populations
in disturbed reefs. Studies [17, 23, 24] have indicated that
the recovery of such reefs is principally determined by
local environmental factor dynamics, habitat conditions and
characteristics, and the success of early coral growth phases
(regrowth of coral fragments or settlement, growth, and
mortality). Algal dominance in many degraded reef areas
has become a major concern worldwide due to its negative
impact on coral settlement and reef resilience. Moreover,
predicted climate change events [25] and coral diseases [26]
are expected to potentially enhance more algal colonization
and reduce the reproductive capacity of coral populations
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[27–29] further interfering with coral settlement, coral reef
ecological processes, and recovery potential.

In coral reefs, a few ecological processes have been found
to exhibit large disproportionate impacts on community
composition, structure, and functioning of reef ecosystems.
One such process in benthic reef communities and dynamics
is competition between corals and algae. A number of studies
have shown corals to be inferior competitors relative to
algae [30, 31]; however, other authors have found corals
to be the superior competitors, only releasing algae from
competitive inhibition under stressful conditions [4, 32],
such as land-based (terrestrial) discharge. Modification of
algal-coral competition by disturbances of terrestrial origin
may thus play a crucial role in mediating optimal habitat
characteristics, diversity, resilience, and recovery potential
of disturbed reefs [33–37]. Herbivorous fishes regulate algal
growth on coral reefs and are important for maintaining
resilient, coral-dominated ecosystems. Increased sediment
levels directly affect ecological processes and significantly
reduce/inhibit feeding rates of herbivorous and detritivorous
fish species [12–14]. Consequently, algal development [16]
and dominance are enhanced with direct negative effects on
coral settlement [15], benthic communities, and reef recovery
potential [12–15, 22, 23]. This problemmay be exacerbated in
highly exploited reefs by the removal of grazing and browsing
fish populations [16, 20, 30, 38].

Earlier studies on the effects of high algal biomass and
sediment levels on coral settlement, survival, and diversity
[15, 16, 32, 39, 40] have provided interesting results. High
sediment levels have been found to have both inductive
and inhibitive cues for planktonic larval settlement [41, 42].
For example, increased sedimentation has been found to
reduce [15], enhance [6], or even have no effect on coral
larval settlement [38]. Similarly, the effects of sediments on
benthic algae have not been found to be categorical either,
with both positive and negative effects (low as well as high
algal abundance) being associated with elevated sediment
levels [6, 16, 37, 43–45]. Additionally, observed variations
in the response of different algae types to terrestrial run-off
imply equally variable coral-algae competition outcomes [17].
Moreover, sediment characteristics andquality have also been
observed to modify herbivory intensity with consequences
on the growth and biomass of algae [12, 13, 16, 30] and,
therefore, coral settlement and recruitment. The foregoing
findings therefore suggest that the outcome and general
importance of coral-algae competition may be much more
complex than previously understood. Assessment of the
different mechanisms and factors determining the outcomes
of algae-coral interactions, more so during the early life
stages of corals, is thus critically important for improved reef
management, especially with the continuing harvest of reef
herbivores and the increased frequency and severity of local
and global anthropogenic disturbances.

This has important coral reef conservation/management
implications and application in the face of changes occa-
sioned by the interaction between local and global climate
change as well as forecasting the resilience and capacity
of corals to resist or recover from disturbances. Here, we
report on the effect of elevated terrestrial discharge on algal
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Figure 1: Map of the Kenyan coast showing the four studied marine
protected areas (MPAs): Malindi, Watamu, Mombasa, and Shimoni
(Kisite/Mpunguti).

abundance and diversity and the consequent impact on coral
recruit composition and settlement in Kenyan coral reef
lagoons.

2. Materials and Methods

2.1. Study Sites. Four fully protected reefs, Malindi, near the
mouth of River Sabaki and under river influence during
the northeast monsoon season (nutrient and sediment laden
freshwater), twomangrove-fringed reefs (Watamu andMom-
basa), and an offshore reef (Shimoni) were chosen for this
study (Figure 1). Watamu reef lies adjacent to the 360 km2
Mida mangrove creek while Mombasa is a lagoonal fringing
reef that experiences occasional water exchange with two
creeks (Tudor andMtwapa) on either side of the reef. All four
reefs have had protection from fishing and shell collection for
over 15 years now and are fully described in [6].

2.2. Physicochemical and Biological Parameters. Temperature
and salinity measurements were taken monthly using an
automatic probe and current velocity with amodified current
drogue. Chlorophyll a, phosphate, and nitrate concentrations
were determined spectrophotometrically afterwater filtration
of triplicate 1 L samples through 0.45 𝜇m glass filters. Nitrates
were first reduced to nitrites by passing samples through a
column containing copper coated cadmium fillings followed
by diazotization with sulfanilamide and coupling with N-(1-
naphthyl)ethylenediamine. Phosphate samples were reacted
with a composite reagent containing molybdic acid, ascorbic
acid, and trivalent antimony. The absorbance of the resultant
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Table 1: Environmental parametersmeasured for each reef from the studywith significant levels indicated by∗ <0.05 and ns = nonsignificant.
1Trapped (deposited sediments) collected from sediment traps.

Parameter Malindi Watamu Mombasa Shimoni 𝐹 𝑝

Current (m s−1) 0.3 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 1.86 ∗

Chlorophyll a (𝜇g l−1) 0.6 ± 0.2 0.7 ± 0.2 0.3 ± 0.3 0.4 ± 0.3 4.13 ∗

Nitrates (mg l−1) 1.5 ± 0.5 1.2 ± 0.3 0.9 ± 0.4 0.8 ± 0.4 2.35 ∗

Phosphates (mg l−1) 1.0 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.44 ns
TSS (g l−1) 28.5 ± 4.8 28.1 ± 4.3 23.9 ± 1.1 21.5 ± 0.6 7.00 ∗

Trapped1 (g m−2 day−1) 10.1 ± 1.8 7.1 ± 1.5 2.3 ± 0.7 3.1 ± 0.4 11.5 ∗

Trapped Insolubles (%) 9.7 ± 0.8 7.1 ± 0.1 6.4 ± 1.5 8.2 ± 1.1 7.52 ns
Bottom Insolubles (%) 8.3 ± 0.5 6.3 ± 0.5 5.7 ± 0.5 3.5 ± 0.5 4.74 ∗

colored complexes was then measured with a spectropho-
tometer, standard curves were generated for each nutrient
species, and concentrations were calculated using the slope
and 𝑦-intercept of these graphs. Sediment traps were used for
estimating sedimentation (deposition) rates while suspended
sediment (TSS) concentration and sedimentation rates were
determined as described in [6]. Acid-insoluble fraction of
sediment (noncarbonate fraction of terrestrial origin) was
measured by digesting 5–10 g samples with 5% hydrochloric
acid [6, 46].

2.3. Algal Abundance and Composition. Algal biomass and
diversity were studied using 20–30 settlement tiles (15 cm ×
15 cm) deployed in each reef over a 120-day period [6] and
thereafter transported to the laboratory in formalin. At the
laboratory, tiles were first washed with fresh water to remove
formalin and marine sediments, algae samples taken from
each tile, and algal biomass determined by drying overnight
in an oven at 80–100∘C. The remaining algae sample on
tiles was used for algal identification microscopically to
genus level and percent abundance of each taxon estimated
using a square grid. At each of the reefs, algal cover on
natural substrate was also studied by completing nine to
twelve 10m benthic transects loosely draped on the substrate
for description of the bottom cover [47]. The length of
transect (>3 cm) covered by turf, coralline, calcareous, and
macroalgae was recorded.

2.4. Coral Recruitment and Diversity. Recruitment tiles were
collected after 120 days, sediments were washed off, and tiles
were sun-dried and then bleached to reveal coral recruits
[6]. Coral recruits were examined microscopically at high
magnification, counted, and identified to the family level
following [48, 49]. Live corals on natural substrate were
identified (to genus level) along nine 10m transects at each
reef site as described in [47] and were then compared to
results of recruits on settlement tiles.

2.5. Data and Statistical Analysis. Physicochemical and bio-
logical data was log- and square-root-transformed, respec-
tively, and normalized before analyses. One-way ANOVA
was used for testing for differences in resultant data between
reefs. Bartlett’s and Shapiro-Wilk tests were used to test for
homoscedasticity and normality of variance assumptions,
respectively. Comparison between means was done using

Tukey’s HSD where significant differences were detected
in order to find out which means differed. The statistical
programs JMP 7 and STATISTICA 6.0 for Windows were
used for the above analyses. Multivariate analysis was used
to explore the relationship between physicochemical and
biological parameters using PRIMER and PERMANOVA.
Resemblance matrices were calculated using Euclidean dis-
tances and patterns of similarity or differences were visu-
alized using principal component analysis (PCA). PCA
and a stepwise distance based linear model (DistLM) were
employed to further explore significant correlations and
facilitate data interpretation and also help in determining
which factors (variables) captured as much of the variability
of the response and differences between reefs in the dataset
as possible.

3. Results

3.1. Physicochemical and Biological Parameters. Temperature,
salinity, phosphates, and deposited (trapped) sediment acid
insolubles did not differ between reefs but TSS and sediment
deposition rates were found to be higher in Malindi and
Watamu relative to the other study reefs (Table 1). Addition-
ally, high bottom sediment acid-insoluble residue, current
speed, and nitrate concentration were measured in Malindi
but were found to be lower in Shimoni compared to the rest
of the study reefs. Chlorophyll a also differed significantly
between reefs and was found to be lower in Mombasa and
Shimoni but higher in Watamu and Malindi.

3.2. Algal Abundance and Composition. A total of thirty
(30) species of algae belonging to thirteen (13) genera were
observed on tiles in the present study (Table 2). The number
of algae species identified from tiles in Malindi was found
to be lower (twice or more) than that from the other
reefs. Mean algal abundance did not exceed 5% or differ
between reefs; however, mean algal biomass for Shimoni
reef was higher than all other reefs studied (Figure 2). Turf
algae dominated experimental tile surfaces with significant
differences (Table 3, 𝐹 = 26.3, 𝑝 < 0.0001) between reefs
(WTM >MSA >MLD > SHM). Macro- and calcareous algae
abundance did not differ between reefs but high coralline
algae abundance was measured in Shimoni compared to all
other reefs.
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Table 2: Algal species observed on experimental tiles and their
presence (+) or absence (−) in four Kenyan protected coral reef
lagoons.

Algae Malindi Watamu Mombasa Shimoni
Acetabularia calyculus + − − −

Acetabularia clavata + − + −

Amphiroa sp. − − + +
Anadyomene wrightii − + − −

Boergesenia forbesii − + + −

Caulacanthus sp. − − − +
Caulerpa sp. − − + −

Ceramium sp. − + − +
Chnoospora implexa − − − +
Cladophora sp. − − − +
Cladophora socialis + − − +
Dictyota sp. + + + −

Enteromorpha sp. + − + +
Gracilaria sp. − + + +
Halimeda sp. − + − −

Herposphonia secunda + + − +
Jania − + + +
Lobophora sp. − − − +
Neomeris vanbosseae − + − −

Peyssonnelia sp. − + + +
Rosenvingea orientalis − − + −

Rosenvingea sp. − − + +
Sarconema sp. + + − −

Sargassum asperifolium − + + −

Sphacelaria sp. − + + +
Turbinaria sp. − + + −

Udotea sp. − − + −

Ulva lactuca − − + −

Unidentified green algae − − + −

Unidentified red algae − + + +
Number of species 7 15 18 14

Abundance of green (Chlorophyta) and red (Rhodo-
phyta) algae showed no difference between reefs unlike that
of brown algae (Phaeophyta), which was found to be high
in Malindi and Mombasa compared to the rest of the study
reefs (Table 3, 𝐹 = 18.7, 𝑝 < 0.0001). High turf algal cover
on natural substrate was found in Mombasa and Watamu
relative to the other reefs. Mombasa reef showed the lowest
calcareous (0.1%) and coralline (4.8%) algae cover on natural
substrate while high calcareous (16.3%) and coralline (27.6%)
algae cover was measured in Malindi and Shimoni, respec-
tively. Macroalgae abundance on natural substrate showed a
general decline northward towards Malindi.

3.3. Recruit Density and Composition. Coral recruit density
did not exceed 10 recruits per tile and did not differ between
Watamu, Mombasa, and Malindi but was high in Shimoni
compared to the other reefs (Figure 3). Overall, Acroporidae,
Pocilloporidae, and Faviidae dominated recruit population
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Figure 2: Total algal abundance (%) on experimental tiles from
four Kenyan protected reef coral lagoons (MLD: Malindi; WTM:
Watamu; MSA: Mombasa; SHM: Shimoni).
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Figure 3: Coral recruit density (#/tile) in four Kenyan protected reef
lagoons (MLD: Malindi; WTM: Watamu; MSA: Mombasa; SHM:
Shimoni).
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Figure 4: Composition of coral recruits (family) settling on experi-
mental tiles deployed in Kenyan protected reef lagoons.

on individual tiles with Fungiidae recruits being the least
common. Acroporidae, Pocilloporidae, and Faviidae domi-
nated the recruit population in reefs (𝐹 = 8.1, 𝑝 < 0.001),
with more acroporid recruits being observed in Shimoni
compared to the other reefs (Figure 4 and Table 4). The
density of Faviidae, Fungiidae, and Poritidae recruits did not
differ between reefs; however, Pocilloporidae recruits were
found to be dominant in Malindi and Mombasa reefs.

3.4. Sediment Level, Algae Abundance, and Coral Recruitment.
Reefs affected by terrestrial dischargewere found to have high
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Table 3: Percent algal abundance (type and phylum) on experimen-
tal tiles and natural substrates from four Kenyan protected coral reef
lagoons including ANOVA test.

Algae Malindi Watamu Mombasa Shimoni 𝑝
On tiles
Turf 20.0 ± 4.1 45.2 ± 1.8 31.9 ± 4.1 9.2 ± 2.9 ∗
Calcareous 2.0 ± 1.6 0.7 ± 1.8 1.7 ± 1.6 0.5 ± 1.5 ns
Coralline 3.9 ± 4.1 0 0 16.8 ± 4.1 ∗
Fleshy 2.9 ± 1.1 2.0 ± 1.1 1.9 ± 1.1 1.0 ± 1.1 ns
Chlorophyta 0.9 ± 1.4 0.2 ± 1.4 0.6 ± 1.4 0.1 ± 1.3 ns
Phaeophyta 5.7 ± 1.8 0.6 ± 1.8 3.0 ± 1.5 1.8 ± 1.5 ∗
Rhodophyta 1.2 ± 1.5 3.6 ± 1.4 2.2 ± 1.5 2.7 ± 1.4 ns
On natural
substrate
Turf 25.3 ± 10.0 40.7 ± 18.1 34.2 ± 4.4 19.7 ± 9.5 ∗
Calcareous 16.3 ± 9.0 12.1 ± 10.2 0.12 ± 0.4 13.5 ± 6.4 ∗
Coralline 24.1 ± 6.0 23.9 ± 12.0 4.8 ± 0.9 27.6 ± 2.9 ∗
Fleshy 9.2 ± 6.0 8.0 ± 7.4 4.3 ± 6.7 2.4 ± 6.2 ∗

total algal and Phaeophyta abundance on tiles but low recruit
numbers, similar to the trend observed on natural substrate.
High recruit density was also measured on tiles with low
turf and high coralline algae abundance. However, contrary
to expectations, reefs with high macroalgae abundance on
tiles showed high recruit density as well. Calcareous algae
abundance dynamics and effects on coral recruitment were
not clear in the present study. The present observations also
show that high turf,macro-, andPhaeophyta algae abundance
on tiles and natural substrates were observed in reefs with
high sediment levels unlike coralline and Rhodophyta algae.
Chlorophyta abundance showed no significant changes with
riverine influence. A correlation analysis of algal “types”
showed that only total abundance of total and coralline
algae had significant effects on coral recruit density (Table 5).
These observations shed some light on the differential impact
of terrestrial discharge on algae “types” and their subse-
quent influence on coral recruitment dynamics in coral reef
lagoons. The present findings also suggest that the impact of
sediment-nutrient interaction on algal turf differs from that
of nutrient levels alone (see Watamu, Mombasa, and Malindi
data). This is a key factor in the management and future of
coral reefs adjacent to well developed coastal areas and those
near river mouths with highly modified catchment areas.

3.5. Synthesis. Terrestrial influence (sediment deposition
rates, bottom sediment organics, and nutrients), hydrody-
namics (current speed), and seasonality (temperature and
salinity variation) seem to be the dominant factors influ-
encing the dynamics of biological processes in the current
study. From the PCA analysis, the PC1 accounted for 61.3%
of the total variation which strongly correlates with three of
the original variables, increasing with increasing sediment
deposition rates, ammonium, and temperature indicating a
measure of sediment deposition rates and nutrient load-
ing. PC2 explained 29.2% of the total variation, increasing

Table 4: Number of coral recruits (family) per tile in Kenyan
protected reef lagoons (MLD: Malindi; WTM: Watamu; MSA:
Mombasa; SHM: Shimoni).

Family/reef MLD WTM MSA SHM 𝑝

Acroporidae 7.3 ± 1.6 7.8 ± 1.1 7.3 ± 1.4 11.1 ± 1.4 ∗
Faviidae 3.6 ± 1.7 3.0 ± 2.7 3.8 ± 1.7 3.8 ± 2.9 ns
Fungiidae 2.0 ± 5.1 1.0 ± 7.2 — 2.0 ± 7.2 ns
Pocilloporidae 7.0 ± 2.1 4.6 ± 1.8 6.7 ± 2.3 3.0 ± 7.2 ∗
Poritidae 3.9 ± 2.3 1.6 ± 2.4 2.1 ± 2.7 2.0 ± 2.9 ns

Table 5: Correlation analysis between recruit density and algae
types/forms from Kenyan protected lagoons, fitted to the model
𝑦 = 𝑎 + 𝑏𝑥.

n a b r r2 p
All algae 50 13.6 −0.6 0.96 0.94 ∗

Turf algae 17 74.1 −7.9 −0.71 0.50 ns
Calcareous algae 25 3.5 −0.4 −0.70 0.49 ns
Coralline algae 23 −28.1 +0.6 0.96 0.93 ∗

Macroalgae 12 4.8 −0.5 −0.83 0.68 ns

with decreasing nitrate concentrations and current speeds,
while the 3rd PC, a measure of bottom sediment organics,
accounted for 8.0% of the total variations (Table 6). From the
distance based linear model, sedimentation rate is indicated
as the major factor affecting the biological data (algae and
coral recruits). Plotting principal components reveals the
importance of nutrients, sediment deposition, and hydrody-
namics in the Malindi sediment impacted reef, for example
(Figure 5). The highest loading coefficients in PC1 relate
to sediment variables and those in PC3 to sea conditions
(hydrodynamics), and in PC2 the highest loading coefficient
relates to seawater chemistry (nutrients). Site hydrodynamics
moderate sediment impacts and sediments in turn regulate
(inhibit) the growth of algae possibly explaining the improved
coral recruitment and settlement on the Malindi reefs. This
interaction of the independent effects is captured in the
PCA by the lowered loading coefficients. Thus, the principal
components represent independent effects of the sum of
interactions among sediment, nutrient, and reef hydrody-
namics.

4. Discussion

Larval settlement and recruitment of new individuals is a key
demographic process necessary for growth andmaintenance,
existence, and persistence as well as recovery and resilience
of reef populations. However, optimum coral settlement
and survival can only occur under certain physicochemical
and biological conditions [50–52]; otherwise, coral mortality
and algal colonization and dominance are enhanced while
coral reestablishment is diminished. In the present study,
diminished coral recruitment was observed in reefs close
to nutrient sources (creeks) relative to those reefs impacted
by river discharge, similar to other findings (see [53] and
the references therein). This may possibly be attributed to
increased nutrient levels enhancing algal growth and biomass
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Table 6: Principal component analysis (PCA): summary of environmental measurements and statistics and PCA results. Percent variance
and eigenvalues explained for the first three components and environmental axis representing each.

Multivariate analysis
Principal components PC1 PC2 PC3
Eigenvalue 6.85 3.22 0.92
% variance explained 61.3 29.2 8.0
Cumulative variance explained 61.3 90.5 98.5
Variable Component loadings
Sedimentation rate 0.369 −0.146 −0.034
Temperature 0.135 −0.375 0.679
Current speed 0.302 0.280 0.360
Bottom sediment organics −0.356 0.087 0.339
Ammonium 0.345 −0.187 −0.279
Nitrates −0.097 −0.523 −0.244

Distance based linear model; resemblance: S17 Bray-Curtis similarity
Sequential tests
Variable AICc df SS (trace) Pseudo-𝐹 𝑝 Prop.
Sedimentation 267.02 44 1566.4 4.9552 0.01 0.10122
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Nitrates
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Figure 5: Principal component analysis plot of component 1 versus
component 2. Temp.: temperature; TSS: total suspended sediments;
Chl a: chlorophyll a.

in which case algae outcompete coral recruits for available
substrate for settlement [21, 32, 39, 41, 44]. In fact, [7, 54]
found increased turf but reduced crustose coralline algal
(CCA) growth under increased nutrient levels. Previous
studies have shown that turf algae inhibit whereas CCA
enhance coral settlement and recruitment [53, 54], possibly
explaining the low and high densities of coral recruits in
near and offshore reefs, respectively, in the present study.The
slight improvement in recruit density observed in the river
(nutrients and sediments) impacted Malindi reef suggests a
reduction in the impact of algal growth by a counteracting
effect of high sediment levels. Despite the well known direct
negative effects of sediment on coral recruitment, increased
sediment levels in coral reefs have been found to reduce the

growth of algae [16, 45, 55] and thereforemitigate the negative
effects of algae on recruit density. This is similar to previous
findings [4, 6, 8, 17, 33] where reduced algal abundance but
improved coral recruitment and settlement were reported in
reefs with increased terrestrial influence.

The compromised capacity of corals to replenish via
natural regeneration and larval settlement in reefs under
terrestrially derived disturbances has been linked to the (1)
masking of larval settlement cues, (2) interference with coral
reproductive processes, and (3) interaction between coral
larvae and settlement surfaces [54, 56, 57]. For instance,
although algal communities are an integral part of coral reef
ecosystems, in certain conditions, their presence has been
shown to cause up to 75% reductions in coral recruitment
[15, 44]. Our study results are similar to previous findings
[52, 57–59] where terrestrial discharge was reported to
indirectly affect coral recruitment.The mechanisms involved
are believed to include suppression of CCA growth, enhance-
ment of turf and macroalgal proliferation [28], accumulation
of sediments in algal turf as well as competition [8], and
increased bleaching and tissue abrasion [60]. Moreover,
increased sediments and nutrients levels have also been
reported to influence the trajectory of algal succession [17,
45, 56] with consequences on coral recruit composition. In
the present study, brown algae (Phaeophyta) and pocilloporid
coral recruits were dominant in reefs affected by terrestrial
run-off explaining the high recruit numbers but low diversity
in these reefs.

Land-based sources of pollution have been implicated in
reduced coral reproduction including lowered fecundity and
fertilization [19, 32] and subsequent low coral settlement and
recruitment rates. For example, [50] found diminished egg
size and fertilization rates, egg and embryo development, and
spat density and survival as well as metamorphosis [61], in
addition to low egg-sperm interactions, increased occurrence
of irregular embryos, and failed planulation [53, 61] in the
presence of high nutrient levels. All reefs with increased
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nutrient levels in the present study showed low coral recruit
densities, possibly indicating the negative impact of nutrient
on coral reproductive capacity and recruitment. Further-
more, the interference of sediments with coral spawning,
sperm entry into eggs, embryogenesis, and larval develop-
ment [53, 62] has also been implicated in controlling coral
recruitment success. Moreover, elevated sediment levels also
increase settlement on exposed surfaces or in cryptic habitats
where survival and growth are highly compromised [53].

The present recruit density findings from Malindi reef
were rather unexpected. Low coral recruit density has been
observed in sediment impacted reefs as a result of energy uti-
lization towards sediment removal, production of secondary
metabolites such as mucus, and reduced energy allocation
towards reproduction [4, 12, 53, 63]. Despite that, coral recruit
density in Malindi was found to be similar to that measured
in Watamu and Mombasa. We postulate that improved coral
recruit density measured in Malindi reefs resulted from
the interactive effect of sediments and nutrients on algae.
Whereas nutrients indirectly reduce coral settlement by
promoting algal growth, sediments on the other hand have
been reported to inhibit algal settlement, thus countering the
negative effects of nutrients on coral recruitment, therefore
enhancing coral settlement and recruitment [4, 8, 12, 15, 44].
Additionally, the hydrodynamic characteristics of Malindi
reef may also have played a vital role in improving coral
recruitment (see [34]). The presence of swift currents and
moderate wave action and the presence of a deep-water
channel possibly increased flushing rates, thus reducing
sediment accumulation, but enhanced larval settlement [6]
in Malindi reef.

The foregoing results suggest that the interaction of
multiple environmental factors poses unique, complex, and
interesting aspects of recruitment dynamics. For example,
two distinct scenarios emerge from sediment-algal interac-
tion on coral recruitment: (i) algae accumulate sediments,
potentially increasing turbidity and recruit smothering, and
reduce suitable substrate availability and cover of beneficial
coralline algae [64, 65], leading to low coral settlement
and recruitment rates, and (ii) sediments negatively affect
algal growth, reproduction, and recruitment processes, thus
offering corals a competitive advantage leading to increased
coral settlement and recruitment [30, 55]. However, these
scenarios likely occur in the presence of other stressful
environmental factors such as SST (bleaching), hydrody-
namic energy, ocean acidification, diseases, and exploitative
pressure. This dichotomy in sediment-algal interaction and
its impact on coral recruitment may therefore evolve into
a multiplex relationship with variable outcomes suggesting
further investigations to determine under which specific
environmental conditions and at what levels the above out-
comes will be realized.

Sediments and algae therefore have significant effects
on key life history stages of reef corals and are therefore
critical in the resilience and recovery of disturbed reefs.
Reefs with low recruitment rates will have their recovery
rates severely impaired, more so where local and global
factors interact to increase algal abundance, unsuitability of
substrate, and the risk of damage to adult coral populations.

Generally, the four main components of terrestrial run-off
(sedimentation, nutrients, organic matter, and turbidity) and
their interactions have all been implicated in inhibiting coral
pre- and postsettlement processes [53] and therefore their
management is critically important in coral reef adaptability
and resilience processes. This is especially vital since only
minor benefits to coral reefs are predicted to be realized
from current global climate change mitigation strategies
[66, 67]. It is also interesting to note that the percentages
of insoluble sediments in our nearshore study reefs were
lower than those found elsewhere [14, 68, 69]. Future studies
in such reefs should also explore the role played by other
components of terrestrially derived sediments (pollutants,
organic content, and particle size characteristics) as well as
carbonate sediments produced in situ as drivers of coral
recruitment and algal dynamics.

Changes in local and global disturbance intensity and
severity are expected to shift the competitive advantage
in coral reefs towards algae dominance with concomitant
modifications in coral pre- and postsettlement processes [70].
The capacity of such coral populations to reestablish will thus
depend on habitat and population structure as well as the
ability of few remaining individuals to supply larvae for set-
tlement and growth in already unsuitable coral reef habitats.
This is of great concern to the future health and existence of
reefs worldwide, especially in reef areas already experiencing
stress due to local anthropogenic factors. Current research
undertakings should therefore focus on management and
policy strategies that facilitate the alleviation and mitigation
of the impacts of local anthropogenic disturbances guaran-
teed to produce results in the near future as opposed to
long-term, often complex strategies employed to tackle global
climate change.

5. Conclusion

Thepresent findings suggest that the assessment of inhibitory
and/or promotional factors in recruitment and settlement of
corals is essential in reef recovery and resilience. Further,
the study of environmental conditions that enhance and/or
suppress these factors is therefore a critical aspect to consider
in the conservation and management of coral reefs in the
face of current and future disturbance dynamics. Therefore,
the quantification of ecological processes and the factors that
affect them may help in providing early evidence of reef
resilience and, perhaps importantly, also allow for the devel-
opment of models for forecasting ecosystem state of reefs.
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