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In generalizing the Maxwell field to nonlinear electrodynamics, we look for the magnetic solutions. We consider a suitable real
metric with a lower bound on the radial coordinate and investigate the properties of the solutions. We find that in order to have a
finite electromagnetic field near the lower bound, we should replace the Born-Infeld theorywith another nonlinear electrodynamics
theory. Also, we use the cut-and-paste method to construct wormhole structure. We generalize the static solutions to rotating
spacetime and obtain conserved quantities.

1. Introduction

A wormhole can be defined as a tunnel which can join two
universes [1–3]. Since General Relativity does not preclude
the existence of (traversable) wormholes, a large number of
papers have beenwritten which clarify, support, or contradict
much of the research about wormholes.

Morris et al. [1–3] have shown that in order to construct a
traversable wormhole, one needs to have extraordinarymate-
rial, denoted as exoticmatter. Exoticmatter can guarantee the
flare-out condition of the wormhole at its throat. Unlike the
classical formofmatter [4], it is believed that the exoticmatter
violates the well-known energy conditions such as the null
energy conditions (NEC), weak energy conditions (WEC),
strong energy conditions (SEC), and dominant energy con-
ditions (DEC). One of the open questions about the exotic
matter is that if it can be formed in macroscopic quantities
or not. We should note that these energy conditions are
violated by certain states of quantum fields, amongst which
one may refer to the Casimir energy, Hawking evaporation,
and vacuum polarization [5–12]. Furthermore, it has been
shown that one of the effective causes of the (late time) cosmic
acceleration is an exotic fluid [13–16]. Hence, one ismotivated
to study wormhole solutions, at least geometrically.

Many authors have extensively considered the non-
linear electrodynamics and used their results to explain

some physical phenomena [17–55]. A charged system whose
performance cannot be described by the linear equations
may be characterized with nonlinear electrodynamics. From
mathematical point of view, since Maxwell equations orig-
inated from the empirical nature, we can consider a gen-
eral nonlinear theory of electrodynamics and state that
the Maxwell fields are only approximations of nonlinear
electrodynamics, where these approximations break down for
the small distances. From physical viewpoint, generalizations
of Maxwell theory to nonlinear electrodynamics were intro-
duced to eliminate infinite quantities in theoretical analysis
of the electrodynamics [29–40]. In addition, one may find
various limitations of the linear electrodynamics in [56, 57].

Recently, we have taken into account new classes of non-
linear electrodynamics, such as Born-Infeld- (BI-) like [53–
55] and power-Maxwell invariant (PMI) [41–52] nonlinear
electrodynamics, in order to obtain new analytical solutions
in Einstein and higher derivative gravity. Traversable worm-
holes in the Dvali-Gabadadze-Porrati theory with cylindrical
symmetry have been studied in [58]. Higher dimensional
Lorentzian wormholes have been analyzed by several authors
[59–61]. Moreover, wormhole solutions of higher derivative
gravity with linear and nonlinear Maxwell fields have been
considered in [62–66]. For other kinds of wormhole solu-
tions, we refer the reader to [62–83] and references therein.
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Motivated by the above considerations, in this paper
we look for the analytical magnetic horizonless solutions of
Einstein gravity with nonlinear Maxwell source. Properties
of the solution will be investigated.

2. Field Equations and Wormhole Solutions

The field equations of Einstein gravity with an arbitrary 𝑈(1)

gauge field as a source may be written as

𝐺𝜇] + Λ𝑔𝜇] =
1

2
𝑔𝜇]𝐿 (F) − 2𝐿F𝐹𝜇𝜆𝐹

𝜆

] , (1)

𝜕𝜇 (√−𝑔𝐿F𝐹
𝜇]
) = 0, (2)

where𝐺𝜇] is the Einstein tensor,Λ = −3/2𝑙
2 denotes the four-

dimensional negative cosmological constant, and 𝐿(F) is an
arbitrary function of the closed 2-form Maxwell invariant
F = 𝐹𝜇]𝐹

𝜇] and 𝐿F = 𝑑𝐿(F)/𝑑F.
In addition to PMI and BI theories, in this paper, we take

into account the recently proposed BI-like models [53–55],
which we called as exponential form of nonlinear electro-
dynamics theory (ENE) and logarithmic form of nonlinear
electrodynamics theory (LNE), whose Lagrangians are

𝐿 (F) =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

−F𝑠, PMI

4𝛽
2
(1 − √1 +

F

2𝛽2
) , BI

𝛽
2
(exp(−

F

𝛽2
) − 1) , ENE

−8𝛽
2 ln(1 +

F

8𝛽2
) , LNE,

(3)

where 𝑠 and 𝛽 are two nonlinearity parameters. Expanding
the mentioned Lagrangians near the linear Maxwell case
(𝑠 → 1 and 𝛽 → ∞), one can obtain

𝐿 (F)

→ 𝐿Max +

{{{

{{{

{

−F ln (F) (𝑠 − 1) + 𝑂(𝑠 − 1)
2
, PMI

+
𝜒F2

16𝛽2
+ 𝑂(

F3

𝛽4
) , others,

(4)

where Maxwell Lagrangian 𝐿Max = −F and 𝜒 = 1, 2, and 8

for LNE, BI, and ENE branches, respectively.
Investigation of the effects of the higher derivative

corrections to the gauge field seems to be an interesting
phenomenon.These nonlinear electrodynamics sources have
different effects on the physical properties of the solutions.
For example, in black hole framework, these nonlinearities
may change the electric potential, temperature, horizon
geometry, energy density distribution, and also asymptotic
behavior of the solutions. In what follows, we study the effects
of nonlinearity on the magnetic solutions.

Motivated by the fact that we are looking for the horizon-
less magnetic solution (instead of electric one), one can start
with the following 4-dimensional spacetime:

𝑑𝑠
2
= −

𝑟
2

𝑙2
𝑑𝑡
2
+

𝑑𝑟
2

𝑓 (𝑟)
+ Υ
2
𝑙
2
𝑓 (𝑟) 𝑑𝜃

2
+ 𝑟
2
𝑑𝜙
2
, (5)

where Υ is a constant and will be fixed later. We should note
that because of the periodic nature of 𝜃, one can obtain the
presentedmetric (5)with local transformations 𝑡 → 𝑖𝑙Υ𝜃 and
𝜃 → 𝑖𝑡/𝑙 in the Schwarzschild metric with zero curvature
boundary, 𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡

2
+𝑑𝑟
2
/𝑓(𝑟)+𝑟

2
(𝑑𝜃
2
+𝑑𝜙
2
). In other

words, metric (5) may be locally mapped to Schwarzschild
spacetime but not globally. Considering the mentioned local
transformation, one can find that the nonzero component of
the gauge potential is 𝐴𝜃:

𝐴𝜇 = ℎ (𝑟) 𝛿
𝜃

𝜇
, (6)

where ℎ(𝑟) is an arbitrary function of 𝑟. Using (2) with the
metric (5), we find ℎ(𝑟) = ∫𝐸(𝑟)𝑑𝑟 in which

𝐸 (𝑟) =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

2𝑞𝑙
2
Υ
2

𝑟2/(2𝑠−1)
, PMI

2𝑞𝑙
2
Υ
2

Γ𝑟2
, BI

2𝑞𝑙
2
Υ
2

𝑟2
exp (−

𝐿𝑊

2
) , ENE

𝛽
2
𝑟
2
(1 − Γ)

𝑞
, LNE,

(7)

where 𝐿𝑊 = Lambert𝑊(𝑋), 𝑋 = −16𝑞
2
𝑙
2
Υ
2
/𝛽
2
𝑟
4, and

Γ = √1 + 𝑋/4 and therefore the nonzero component of
electromagnetic field tensor is

𝐹𝑟𝜃 = 𝐸 (𝑟) . (8)

We should note that the physical gauge potential should
vanish for large values of 𝑟. This condition is satisfied for
1/2 < 𝑠 < 3/2 and arbitrary 𝛽 (the mentioned constraint
for 𝑠 is used throughout the rest of the paper). In addition,
in order to have real solutions, one should restrict the radial
coordinate of BI and LNE branches to 𝑟 ≥ 𝑟0 in which

𝑟0 =

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

0, PMI

√
2𝑞𝑙Υ

𝛽
, BI

2√
𝑞𝑙Υ

𝛽
exp (1) , ENE

√
2𝑞𝑙Υ

𝛽
, LNE.

(9)
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Figure 1: 𝐸(𝑟) versus 𝑟 for 𝑞 = 1, Υ = 1, 𝑙 = 1, and 𝑠 = 1.4 (solid
line), 𝑠 = 1.2 (dashed line), 𝑠 = 1 “Maxwell field” (bold line), 𝑠 = 0.8

(dotted line), and 𝑠 = 0.6 (dash-dotted line).

Now, one can expand (7) to obtain the leading nonlinearity
correction of Maxwell field as follows:
𝐸(𝑟)|near the linear case

=
2𝑞𝑙
2
Υ
2

𝑟2
+

{{{{

{{{{

{

8𝑞𝑙
2
Υ
2 ln (𝑟)

𝑟2
(𝑠 − 1) + 𝑂(𝑠 − 1)

2
, PMI

2𝜒𝑞
3
𝑙
4
Υ
4

𝛽2𝑟6
+ 𝑂(

1

𝛽4
) . others.

(10)

In addition, we can investigate the behavior of electromag-
netic fields near the lower bound 𝑟0 as

lim
𝑟→𝑟
+

0

𝐸 (𝑟) =

{{{{{{

{{{{{{

{

+∞, PMI
+∞, BI
𝛽Υ𝑙

2
, ENE

2𝛽Υ𝑙, LNE.

(11)

In order to examine the effect of nonlinearity on the
electromagnetic field, we plot Figures 1 and 2. Figure 1 shows
that when we reduce the nonlinearity 𝑠, the electromagnetic
field of the PMI branch diverges for 𝑟 → 0 more rapidly
and for large distances it goes to zero more quickly. Figure 2
shows that for all BI-like branches, the electromagnetic field
(the same behavior as in Maxwell case) vanishes for large 𝑟.
Moreover, in addition to (11), Figure 2 shows that near the
lower bound (𝑟0), unlike BI branch, the electromagnetic fields
of LNE and ENE branches have finite values. In other words,
considering the LNE and ENE branches, we could remove the
lower bound divergency of electromagnetic field.

Taking into account the electromagnetic field tensor, we
are in a position to find the function 𝑓(𝑟). In order to obtain
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Figure 2: 𝐸(𝑟) versus 𝑟 for 𝑞 = 1, Υ = 1, 𝑙 = 1, and 𝛽 = 1. BI (solid
line), ENE (dashed line), LNE (dotted line), andMaxwell field (bold
line).

it, one may use any components of (1). We simplify the
components of (1) and find that the nonzero independent
components of (1) are

𝑓

(𝑟) +

2𝑓

(𝑟)

𝑟
+ 2Λ + Δ 1 (𝑟) = 0,

𝑓

(𝑟) +

𝑓 (𝑟)

𝑟
+ Λ𝑟 + Δ 2 (𝑟) = 0,

(12)

with

Δ
1 (𝑟) =

{{{{{{{{{{{{{{{{
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2
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𝛽
2
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−2ℎ
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(𝑟)
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8𝛽
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ℎ

(𝑟)

2𝛽Υ𝑙
)

2

] , LNE,

Δ
2 (𝑟)

=
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𝑟

2
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2ℎ
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)

𝑠
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2𝑟𝛽
2
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ℎ
2
(𝑟)

𝛽2Υ2𝑙2
)

−1/2

− 1] , BI

𝑟𝛽
2

2
{1 − [1 + (
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(𝑟)

𝛽Υ𝑙
)

2

] exp(
−2ℎ
2
(𝑟)
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2
{ln[1 + (

ℎ

(𝑟)
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1 + (2𝛽Υ𝑙/ℎ (𝑟))
2
} , LNE,

(13)
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where prime and double prime are first and second deriva-
tives with respect to 𝑟, respectively. After some cumbersome
manipulation, the solutions of (12) can be written as

𝑓 (𝑟)

=
−2𝑚

𝑟
−

Λ𝑟
2

3

+

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑟
2
(2𝑠 − 1)

2

2 (2𝑠 − 3)
(
8𝑞
2
𝑙
2
Υ
2

𝑟4/(2𝑠−1)
)

𝑠

, PMI

2𝛽
2
𝑟
2

3
−

2𝛽
2

𝑟
∫ Γ𝑟
2

𝑑𝑟, BI

−
𝛽
2
𝑟
2

6
−

2𝛽𝑞𝑙Υ

𝑟
∫(

1

√−𝐿
𝑊

− √−𝐿
𝑊
)𝑑𝑟, ENE

−
4𝛽
2

𝑟
∫ 𝑟
2 ln(

𝛽
2
𝑟
4
(1 − Γ)

2𝑞2Υ2𝑙2
)𝑑𝑟 +

4𝛽
2

𝑟
∫ 𝑟
2

(1 − Γ) 𝑑𝑟, LNE,

(14)

where 𝑚 is the integration constant which is related to
the mass parameter. In order to investigate the effect of
nonlinearity on themetric function, simplistically, we expand
𝑓(𝑟) for 𝑠 → 1 for PMI and 𝛽 → ∞ for other branches.
After some manipulation, we obtain

𝑓 (𝑟)

= 𝑓Max (𝑟)

+

{{{{

{{{{

{

−

4𝑞
2
𝑙
2
Υ
2
[6 + ln (8𝑞

2
Υ
2
𝑙
2
𝑟
4
)]

𝑟2
(𝑠 − 1) + 𝑂(𝑠 − 1)

2
, PMI

−
2𝜒𝑞
4
𝑙
4
Υ
4

5𝛽2𝑟6
+ 𝑂(

1

𝛽4
) , others,

(15)

where 𝑓Max(𝑟) is the magnetic solution of Einstein-Maxwell
gravity:

𝑓Max (𝑟) =
−2𝑚

𝑟
−

Λ𝑟
2

3
−

4𝑞
2
𝑙
2
Υ
2

𝑟2
, (16)

and the second term on the right hand side of (15) is
the leading nonlinearity correction to the Einstein-Maxwell
gravity solution.

2.1. Properties of the Solutions. At first step, we should
note that the presented solutions are asymptotically anti-de
Sitter (adS) and they reduce to asymptotically adS Einstein-
Maxwell solutions for 𝑠 → 1 (PMI branch) or 𝛽 → ∞

(other branches).
The second step should be devoted to looking for the

singularities and hence we should calculate the curvature
invariants. One can show that, for the metric (5), the
Kretschmann and Ricci scalars are

𝑅𝜇]𝜌𝜎𝑅
𝜇]𝜌𝜎

= 𝑓
2

(𝑟) +
4𝑓
2
(𝑟)

𝑟2
+

4𝑓
2
(𝑟)

𝑟4
,

𝑅 = −𝑓

(𝑟) −

4𝑓

(𝑟)

𝑟
−

2𝑓 (𝑟)

𝑟2
.

(17)

Inserting (14) into (17) and using numerical calculations, one
can show that the Ricci and Kretschmann scalars diverge at
𝑟 = 𝑟0 and are finite for 𝑟 > 𝑟0 and for 𝑟 → ∞ one obtains

𝑅𝜇]𝜌𝜎𝑅
𝜇]𝜌𝜎Large 𝑟

=
8Λ
2

3
+

{{{

{{{

{

𝑂(
1

𝑟𝜉
) PMI

𝑂(
1

𝑟6
) , others,

𝑅|Large 𝑟 = 4Λ +

{{{

{{{

{

𝑂(
1

𝑟𝜉
) PMI

𝑂(
1

𝑟8
) , others,

𝜉 ∈ (3,∞) ,

(18)

which confirms that the asymptotic behavior of the solu-
tions is adS. Considering the divergency of the Ricci and
Kretschmann scalars at 𝑟0, one may think that there is a
curvature singularity located at 𝑟 = 𝑟0. This singularity will
be naked if the function 𝑓(𝑟) has no real root larger than 𝑟0

(singularity is not covered with a horizon) and we are not
interested in it. Therefore, we consider the case in which the
function 𝑓(𝑟) has at least a nonextreme positive real root
larger than 𝑟0. It is notable that the function 𝑓(𝑟) is negative
for 𝑟 = 𝑟+ − 𝜖 (𝜖 is an infinitesimal number) and positive for
𝑟 > 𝑟+ where 𝑟+ is the largest positive real root of 𝑓(𝑟) = 0.
Negativity of the function𝑓(𝑟) leads to an apparent change of
metric signature and it forces us to consider 𝑟+ ≤ 𝑟 < ∞. We
should state that although the metric function 𝑓(𝑟) vanishes
at 𝑟 = 𝑟+, we have 𝑓


(𝑟 = 𝑟+) > 0. In addition, there is no

curvature singularity in the range 𝑟+ ≤ 𝑟 < ∞. Following
the procedure of [84], one may find that there is a conic
singularity at 𝑟 = 𝑟+.

Removing this conical singularity by adjusting Υ =

1/[𝑙𝑓

(𝑟+)] [84], we desire to interpret the obtained solutions

as wormholes. In order to construct wormholes from the glu-
ing, one is required to use the cut-and-paste prescription [67–
83]. In this method, we take into account two geodesically
incomplete copies of the solutions (removing from each copy
the forbidden region Ω) with two copies of the boundaries
𝜕Ω, where

Ω ≡ {(𝑡, 𝑟, 𝜃, 𝜙) | 𝑟 < 𝑟+} ,

𝜕Ω ≡ {(𝑡, 𝑟, 𝜃, 𝜙) | 𝑟 = 𝑟+} .

(19)

Now, we identify two copies of the mentioned boundaries to
build a geodesically complete manifold. This cut-and-paste
method constructs a wormhole with a throat at 𝑟 = 𝑟+. In
order to confirm this claim, we should check the so-called
flare-out condition at the throat. To do this, one can consider
a 2-dimensional submanifold of the metric (5), 𝑑𝑠2

2-dim (with
constant 𝑡 and 𝜃), and embed it in a 3-dimensional Euclidean
flat space in cylindrical coordinates, 𝑑𝑠2

3-dim, where

𝑑𝑠
2

2-dim =
𝑑𝑟
2

𝑓 (𝑟)
+ 𝑟
2
𝑑𝜙
2
,

𝑑𝑠
2

3-dim = 𝑑𝑟
2
+ 𝑟
2
𝑑𝜙
2
+ 𝑑𝑧
2
.

(20)
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Regarding the surface 𝑧 = 𝑧(𝑟), we obtain

𝑑𝑟

𝑑𝑧

𝑟=𝑟
+

= √
𝑓 (𝑟)

1 − 𝑓 (𝑟)

𝑟=𝑟
+

= 0,

𝑑
2
𝑟

𝑑𝑧2

𝑟=𝑟
+

=
𝑓


2[1 − 𝑓]
2

𝑟=𝑟
+

=
1

2
𝑓

(𝑟 = 𝑟+) > 0,

(21)

which shows that the flare-out condition may be satisfied for
the surface 𝑧 = 𝑧(𝑟) and therefore 𝑟 = 𝑟+ is the radius
of the wormhole throat. It is clear to find that the metric
(the first fundamental form) is continuous on the boundary
𝜕Ω, while its first derivative may be discontinuous. In order
to investigate this discontinuity, one should consider the
extrinsic curvature (the second fundamental form). Here, we
give a brief remark about it [85–91]. The second fundamental
forms associated with the two sides of the throat 𝜕Ω are

𝐾
±

𝑖𝑗
= −𝑛
±

𝜇
[𝜕𝑖𝜕𝑗𝑥

𝜇
+ Γ
𝜇

𝛼𝛽
𝜕𝑖𝑥
𝛼
𝜕𝑗𝑥
𝛽
]
𝜕Ω

, (22)

in which 𝑛
±

𝜇
are the unit normals to the two boundaries 𝜕Ω

with the following explicit form:

𝑛
±

𝜇
= ±

𝜕𝛼𝐺𝜕
𝛼
𝐺


−1/2
𝜕𝜇𝐺, (23)

where 𝑖, 𝑗 = 1, 2, 3 corresponding to the boundary 𝜕Ω,
𝜇, 𝛼, 𝛽 = 1, 2, 3, 4 corresponding to original spacetime, and
𝐺 = 𝑟 − 𝑟+. We emphasize that ± sign comes from the fact
that a unit’s normal points outward fromone side of the throat
𝜕Ω and points inward on the other side. Generally, we have
𝐾
+

𝑖𝑗
̸= 𝐾
−

𝑖𝑗
, and one can write the following Einstein (Lanczos)

equation on the throat:

𝑘𝑖𝑗 − 𝑘𝑔𝑖𝑗 = −8𝜋𝑆𝑖𝑗, (24)

where 𝑘𝑖𝑗 = 𝐾
+

𝑖𝑗
− 𝐾
−

𝑖𝑗
, 𝑘 = 𝑘

𝑖

𝑖
, and 𝑆𝑖𝑗 = diag(𝜎, 𝑝𝜃, 𝑝𝜙) is

the stress-energy tensor localized in 𝜕Ω with 𝜎, the surface
energy density, and 𝑝𝜃 and 𝑝𝜙, the principal surface pressures
(tensions):

𝜎 = −

(𝑑/𝑑𝑟) [𝑟
2
𝑓 (𝑟)]

8𝜋𝑙2√𝑓 (𝑟)
,

𝑝𝜃 =

√𝑓3 (𝑟)𝑙
2
Υ
2

2𝜋𝑟
,

𝑝𝜙 =

(𝑑/𝑑𝑟) [𝑟
2
𝑓 (𝑟)]

8𝜋√𝑓 (𝑟)
.

(25)

One can use the series expansion for 𝑟 → 𝑟+ with the
obtained metric function 𝑓(𝑟) to find the signs of surface
energy density and tensions. Negative surface energy implies
the existence of ghost-like matter at the throat and the
negative signs of the tensions mean that they are indeed
pressures.

Now, we should discuss the energy conditions for the
wormhole solutions. On general grounds, it has been shown

that traversable wormholemay exist with exoticmatter which
violates the null energy condition [1–3]. In order to check
the energy conditions, we use the following orthonormal
contravariant (hatted) basis to simplify the mathematics and
physical interpretations:

e�̂� =
𝑙

𝑟

𝜕

𝜕𝑡
, e𝑟 = 𝑓

1/2 𝜕

𝜕𝑟
,

e
𝜃
=

1

Υ𝑙𝑓1/2

𝜕

𝜕𝜃
, e

𝜙
= 𝑟
−1 𝜕

𝜕𝜙
.

(26)

Using the mentioned basis, we can obtain

𝑇𝑡�̂� = −𝑇
𝜙𝜙

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

1

2
(
8Υ
2
𝑞
2
𝑙
2

𝑟4/(2𝑠−1)
)

𝑠

, PMI

2𝛽
2
(Γ
−1

− 1) , BI

𝛽
2

2
(1 − √

𝑋

𝐿𝑊

) , ENE

4𝛽
2 ln(

−8 (1 − Γ)

𝑋
) , LNE,

𝑇𝑟𝑟 = 𝑇
𝜃𝜃

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

(2𝑠 − 1)

2
(
8Υ
2
𝑞
2
𝑙
2

𝑟4/(2𝑠−1)
)

𝑠

, PMI

2𝛽
2
(1 − Γ) , BI

𝛽
2

2
(√

𝑋

𝐿𝑊

+ √𝑋𝐿𝑊 − 1) , ENE

𝛽
2
[8 − 4 ln(

−8 (1 − Γ)

𝑋
) +

𝑋

1 − Γ
] , LNE,

(27)

and therefore for 𝑟 ≥ 𝑟+ > 𝑟0, we have

𝑇𝑡�̂� > 0, 𝑇𝑡�̂� + 𝑇𝑟𝑟 > 0, (28)

which shows that the solutions satisfy the null and weak
energy conditions, simultaneously (see Figure 3 for more
clarification).

At the end of this section, we desire to study the effects
of the nonlinearity on energy density of the spacetime. At the
start, we can expand 𝑇𝑡�̂� near the linear case to obtain

𝑇
𝑡�̂�

= 𝑇
𝑡�̂�

Maxwell

+

{{{{

{{{{

{

4𝑞
2
𝑙
2
Υ
2 ln (8𝑞

2
Υ
2
𝑙
2
𝑟
4
)

𝑟4
(𝑠 − 1) + 𝑂(𝑠 − 1)

2
, PMI

+
6𝜒𝑞
4
𝑙
4
Υ
4

𝛽2𝑟8
+ 𝑂(

1

𝛽4
) , others,

(29)

where 𝑇𝑡�̂�|Maxwell = 4Υ
2
𝑞
2
𝑙
2
/𝑟
4 and the second term on

the right hand side of (29) is the leading nonlinearity
correction to the energy density of the Einstein-Maxwell
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theory. Investigations of the energy densities near the lower
bound 𝑟0 show that

lim
𝑟→𝑟
+

0

𝑇𝑡�̂� =

{{{{{{{{

{{{{{{{{

{

+∞, PMI

+∞, BI

𝛽
2

2
(1 − exp(−

1

2
)) , ENE

4𝛽
2 ln 2, LNE.

(30)

In addition, we plot the energy density 𝑇𝑡�̂� versus 𝑟 for
different values of nonlinearity parameter 𝑠 and also various
branches of BI-like fields. Figures 4 and 5 show that for the
arbitrary choices of 𝑟 the energy density is positive definite.
Furthermore, Figure 4 shows that the nonlinearity parameter,
𝑠, has effects on the behavior of the energy density and when
we reduce 𝑠, both divergency of energy density near the origin
and its vanishing for large values of distance occur more
rapidly. Moreover, considering Figure 5 with (30), one can
find that𝑇𝑡�̂� has a finite value for an arbitrary allowed distance
in ENE and LNE branches. LikeMaxwell and PMI theory, for
BI branch the energy density diverges near the lower bound
𝑟0.

2.2. Rotating Solutions. In this section, we want to add
angular momentum to the static spacetime (5). To do this,
one can use the following rotation boost in the 𝑡 − 𝜃 plane:

𝑡 → Ξ𝑡 − 𝑎𝜃, 𝜃 → Ξ𝜃 −
𝑎

𝑙2
𝑡, (31)

where Ξ = √1 + 𝑎2/𝑙2 and 𝑎 is a rotation parameter. Taking
into account (31) and applying it to static metric (5), one
obtains

𝑑𝑠
2
= −

𝑟
2

𝑙2
(Ξ𝑑𝑡 − 𝑎𝑑𝜃)

2
+

𝑑𝑟
2

𝑓 (𝑟)

+ Υ
2
𝑙
2
𝑓 (𝑟) (

𝑎

𝑙2
𝑑𝑡 − Ξ𝑑𝜃)

2

+ 𝑟
2
𝑑𝜙
2
,

(32)

where 𝑓(𝑟) is the same as 𝑓(𝑟) given in (14). It is notable
that one can obtain the presented metric (32) with local
transformations 𝑡 → 𝑖𝑙Υ(𝑎𝑡/𝑙

2
− Ξ𝜃) and 𝜃 → 𝑖(Ξ𝑡 − 𝑎𝜃)/𝑙

in the Schwarzschild metric with zero curvature boundary;
𝑑𝑠
2
= −𝑓(𝑟)𝑑𝑡

2
+𝑑𝑟
2
/𝑓(𝑟)+𝑟

2
𝑑𝜃
2
+𝑟
2
𝑑𝜙
2.Thus, the nonzero

components of the gauge potential are 𝐴𝜃 and 𝐴 𝑡 :

𝐴𝜇 = ℎ (𝑟) (Ξ𝛿
𝜃

𝜇
−

𝑎

𝑙2
𝛿
𝑡

𝜇
) , (33)

where ℎ(𝑟) is the same as in the static case. Furthermore, the
nonzero components of electromagnetic field tensor are given
by

𝐹𝑡𝑟 =
𝑎

Ξ𝑙2
𝐹𝑟𝜃 =

𝑎

𝑙2
𝐸 (𝑟) . (34)

As we mentioned before, the periodic nature of 𝜃 helps
us to conclude that the transformation (31) is not a proper
coordinate transformation on the entire manifold and there-
fore the metrics (5) and (32) are distinct [92]. In addition,
it is desired to note that rotating solutions have no horizon
and curvature singularity. Moreover, it is worth noting that
besides themagnetic field along the 𝜃 coordinate, there is also
a radial electric field (𝐹𝑡𝑟 ̸= 0) and, therefore, unlike the static
case, the rotating wormhole has a nonzero electric charge
which is proportional to the rotation parameter.
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2.3. Conserved Quantities. Here we desire to calculate finite
conserved quantities. In order to obtain a finite value for these
quantities, we can use the counterterm method inspired by
the concept of (AdS/CFT) correspondence [93–95]. It has
been shown that for asymptotically AdS solutions the finite
energy momentum tensor is

𝑇
𝑎𝑏

=
1

8𝜋
(𝐾
𝑎𝑏

− 𝐾𝛾
𝑎𝑏

−
2𝛾
𝑎𝑏

𝑙
) , (35)

where 𝐾 is the trace of the extrinsic curvature 𝐾
𝑎𝑏 and 𝛾

𝑎𝑏 is
the induced metric of the boundary. Taking into account the

Killing vector field 𝜉, onemay obtain the quasilocal conserved
quantities in the following form:

Q (𝜉) = ∫
B

𝑑
2
𝜑√𝜎𝑇𝑎𝑏𝑛

𝑎
𝜉
𝑏
, (36)

where 𝜎 is the determinant of the boundary metric in ADM
(Arnowitt-Deser-Misner) form 𝜎𝑖𝑗, and 𝑛

𝑎 is the timelike unit
vector normal to the boundary B. Considering two Killing
vectors 𝜉 = 𝜕/𝜕𝑡 and 𝜁 = 𝜕/𝜕𝜃, we can find their associated
conserved charges which are mass and angular momentum
as follows:

𝑀 = 4𝜋
2
[3 (Ξ
2
− 1) + 1]Υ𝑚,

𝐽 = 12𝜋
2
Υ𝑚Ξ𝑎,

(37)

where the former equation confirms that 𝑎 is the rotational
parameter.

Finally, we are in a position to discuss the electric charge.
In order to compute it, we need a nonzero radial electric field
𝐹𝑡𝑟 and therefore one expects that vanishing 𝐹𝑡𝑟 (static case)
leads to zero electric charge. Taking into account the Gauss
law for the rotating solutions and computing the flux of the
electric field at infinity, one can find

𝑄 =

{{{{

{{{{

{

2
3𝑠+1

𝜋
2
Υ𝑠

4𝑙
(
(2𝑠 − 1)𝑞

(3 − 2𝑠)𝑙
)

2𝑠−1

𝑎, PMI

4𝜋
2
Υ𝑞

𝑙2
𝑎, others,

(38)

which confirms that the static wormholes do not have electric
charge.

3. Closing Remarks

In this paper, we took into account a class of magnetic
Einsteinian solutions in the presence of nonlinear source.
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The magnetic spacetime which we used in this paper may be
obtained from the Schwarzschild metric with zero curvature
boundary by the local transformations 𝑡 → 𝑖𝑙Υ𝜃 and 𝜃 →

𝑖𝑡/𝑙. It is notable that because of the periodic nature of 𝜃, the
mentioned transformations cannot be global.

We considered four forms of nonlinear electrodynamics,
namely, PMI, BI, ENE, and LNE theories, whose asymptotic
behavior leads to Maxwell theory. Obtaining real solutions
forced us to define a lower bound 𝑟0 for the radial coordinate
of spacetime. We investigated the effect of nonlinearity
parameter on the electromagnetic field and found that, for
PMI branch, if one reduces the nonlinearity parameter 𝑠,
then the electromagnetic field diverges near the origin more
rapidly and for large distances it goes to zero more quickly. In
addition, we found that for all BI-like branches, the behavior
of the electromagnetic field is the same as Maxwell case
for large values of distance, but near the lower bound, the
electromagnetic field of the ENE and LNE branches is finite
and it diverges for the BI branch. It is interesting to note
that the divergency of the BI branch has less strength in
comparison to the the Maxwell field. Consequently, in order
to have a finite electromagnetic field near the lower bound,
we could not use BI theory for our magnetic spacetime and
we may apply LNE and ENE theories for this purpose.

Then, we obtained the metric function for all branches
and found that they reduce to asymptotically adS Einstein-
Maxwell solutions for 𝑠 → 1 (PMI branch) or 𝛽 → ∞

(other branches). We also expanded the metric function near
the linear Maxwell field and calculated the curvature scalars
for large 𝑟 to find that obtained solutions are asymptotically
anti-de Sitter (adS). Taking into account the presentedmetric,
one can find that the function 𝑓(𝑟) cannot be negative since
its negativity leads to an apparent change of metric signature.
This limitation forced us to consider 𝑟+ ≤ 𝑟 < ∞. Using
numerical calculations, one can find that there is no curvature
singularity in the range 𝑟+ ≤ 𝑟 < ∞, but one may find a conic
singularity at 𝑟 = 𝑟+.

After that, we removed the mentioned conic singularity
and used the cut-and-paste prescription to construct a worm-
hole from the gluing and then we checked the so-called flare-
out condition at the throat 𝑟 = 𝑟+. Since it has been stated
before that traversable wormhole may or may not exist with
exotic matter [1–3], we investigated the energy conditions for
the obtained wormhole solutions and found that the null and
weak energy conditions are satisfied, which means that there
is no exotic matter near the throat.

We also studied the effects of nonlinearity parameter on
the energy density. For PMI branch, we found that when we
reduce 𝑠, both divergency of energy density near the origin
and its vanishing for large values of distance occur more
rapidly.Moreover, one can find that energy density has a finite
value for an arbitrary distance for LNE andENEbranches and
it diverges near the lower bound for BI branch.

We generalized the static solutions to rotating ones and
obtained the conserved quantities. We found that, unlike the
static case, for the spinning spacetime, thewormhole has a net
electric charge density. We also found that in spite of the fact
that the mentioned nonlinear theories change the properties

of the solutions significantly, they do not have any effect on
mass and angular momentum.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The author thanks the anonymous referees for the useful
criticisms and comments which permitted him to improve
this paper. The author is indebted to A. Poostforush and
H. Mohammadpour for reading the paper. The author also
wishes to thank Shiraz University Research Council. This
work has been supported financially by Research Institute for
Astronomy and Astrophysics of Maragha (RIAAM), Iran.

References

[1] M. S. Morris and K. S. Thorne, “Wormholes in spacetime
and their use for interstellar travel: a tool for teaching general
relativity,” American Journal of Physics, vol. 56, no. 5, pp. 395–
412, 1988.

[2] M. S. Morris, K. S. Thorne, and U. Yurtsever, “Wormholes,
timemachines, and theweak energy condition,”Physical Review
Letters, vol. 61, no. 13, pp. 1446–1449, 1988.

[3] D. Hochberg and M. Visser, “Dynamic wormholes, antitrapped
surfaces, and energy conditions,” Physical Review D, vol. 58, no.
4, Article ID 044021, 1998.

[4] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of
Space-Time, Cambridge University Press, Cambridge, UK, 1973.

[5] M. Visser, Lorentzian Wormholes: From Einstein to Hawking,
AIP Press, Woodbury, NY, USA, 1995.

[6] F. S. N. Lobo, “Exotic solutions inGeneral Relativity: traversable
wormholes and warp drive spacetimes,” in Classical and Quan-
tum Gravity Research, pp. 1–78, Nova Science Publishers, 2008.
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