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Malaria is a public health problem for more than 2 billion people globally. About 219 million cases of malaria occur worldwide
and 660,000 people die, mostly (91%) in the African Region despite decades of efforts to control the disease. Although the disease
is preventable, it is life-threatening and parasitically transmitted by the bite of the female Anopheles mosquito. A deterministic
mathematical model with intervention strategies is developed in order to investigate the effectiveness and optimal control strategies
of indoor residual spraying (IRS), insecticide treated nets (ITNs) and treatment on the transmission dynamics ofmalaria inKaronga
District, Malawi. The effective reproduction number is analytically computed, and the existence and stability conditions of the
equilibria are explored. The model does not exhibit backward bifurcation. Pontryagin’s Maximum Principle which uses both the
Lagrangian and Hamiltonian principles with respect to a time dependent constant is used to derive the necessary conditions for
the optimal control of the disease. Numerical simulations indicate that the prevention strategies lead to the reduction of both the
mosquito population and infected human individuals. Effective treatment consolidates the prevention strategies.Thus, malaria can
be eradicated in Karonga District by concurrently applying vector control via ITNs and IRS complemented with timely treatment
of infected people.

1. Introduction

Malaria is a vector-borne infectious disease found mainly
in tropical regions (Sub-Saharan Africa, Central and South
America, the Indian subcontinent, Southeast Asia, and the
Pacific islands) [1]. It is a life-threatening disease transmitted
through the bites of infected mosquitoes [2]. There are four
different types of Plasmodium parasites: Plasmodium falci-
parum (the only parasite which causes malignant malaria),
Plasmodium vivax (causes benign malaria with less severe
symptoms; the vector can remain in the liver for up to three
years and can lead to a relapse), Plasmodium malariae (also
causes benignmalaria and is relatively rare), and Plasmodium
ovale (causes benign malaria and can remain in the blood

and liver for many years without causing symptoms). This
study focuses mainly on malignant malaria. Severe malaria
can affect the patient’s brain and central nervous system and
can be fatal [2, 3]. Furthermore,Medicinenet [4] has reported
another relatively new species Plasmodium knowlesi which
has been causing malaria in Malaysia and areas of Southeast
Asia. It is also a dangerous species that is typically found
only in long-tailed and pigtail macaque monkeys. Like P.
falciparum, P. knowlesi may be deadly to anyone infected
[5].

Beyond the human toll, malaria wreaks significant eco-
nomic havoc in endemic regions, decreasing gross domestic
product (GDP) by as much as 1.3% in countries with high
levels of transmission—the disease accounts for up to 40%
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of public health expenditures, 30–50% of in-patient hospital
admissions, and up to 60% of out-patient health clinic visits
[2]. The Government of Malawi has put in place several
control strategies through the National Malaria Control
Programme to reduce and possibly (ultimately) eliminate
malaria. The main strategic areas that have been identified
for scaling-up of malaria control activities include malaria
case management, intermittent preventive treatment (IPT) of
pregnantwomenusing sulfadoxine-pyrimethamine (SP), and
malaria prevention with special emphasis on the use of ITNs
as well as IRS [8].

Various compartmental models for the spread of malaria
have been proposed [10–12]. Extensive review of mathemat-
ical models of malaria dynamics using 𝑆𝐸𝐼𝑅𝑆-type models
and their variants can be found in Chiyaka et al. [13, 14].
For information on the unexpected stability of malaria elimi-
nation and eradication and additional literature on malaria
dynamics see Smith et al. [15], who also showed that if
mosquito birth rate is increased by 25%, then the minimal
effective spraying period is reduced by half, and if doubled,
the period is reduced by three-quarters. Our goal is to assess
the role of optimal control of preventive measures, namely,
ITNs and IRS as well as treatment of the transmission dynam-
ics of malaria in Karonga District, Malawi, without actually
targeting a certain high-risk group. Despite a plethora of
studies on the dynamics of malaria and its control (see
Chiyaka et al. [14] and Smith et. al. [15]), to the best of our
knowledge, the proposed model with exposed immigrants is
seemingly new: the use of optimal values of a combination
of three intervention strategies, namely, indoor residual
spraying (IRS), insecticide treated nets (ITNs), and treatment
to investigate the effectiveness and optimal control strategies
in the transmission dynamics of malaria in a locality in a
resource constrained setting.

2. Model Formulation and Analysis

We formulate an optimal control model for malaria with the
population under study being subdivided into compartments
according to individuals’ disease status. We consider the
total population sizes denoted by 𝑁ℎ(𝑡) and 𝑁V(𝑡) for the
human hosts and Anopheles female mosquitoes, respectively.
We employ the 𝑆𝐸𝐼𝑅𝑆 framework to describe a disease with
temporary immunity on recovery from infection. The 𝑆𝐸𝐼𝑅𝑆
model indicates that the passage of individuals is from the
susceptible class, 𝑆ℎ, to the exposed class, 𝐸ℎ, then to the
infectious class, 𝐼ℎ, and finally to the recovery class, 𝑅ℎ. 𝑆ℎ(𝑡)
represents the number of individuals not yet infectedwith the
malaria parasite at time 𝑡. The latent or exposed class 𝐸ℎ(𝑡)
represents individuals who are infected but not yet infectious.
Individuals in the 𝐼ℎ(𝑡) class are infected with malaria
and are capable of transmitting the disease to susceptible
mosquitoes. 𝑅ℎ(𝑡) represents the class of individuals who
have temporarily recovered from the disease. The susceptible
human population is increased by recruitment (birth) at
a constant rate, Λ ℎ, while others are generated through
migration by (1 − 𝜅1)𝜃𝑁ℎ, where 𝜅1 is the proportion of
infected immigrants into the exposed class and 𝜃 is the rate

at which people migrate into Karonga District. All the re-
cruited individuals are assumed to be naive when joining the
community.

There is some finite probability, 𝛽Vℎ, that the parasites
(in the form of sporozoites) will be passed onto the humans
when an infectious female Anopheles mosquito bites a sus-
ceptible human. The parasite then moves to the liver where
it develops into its next life stage, merozoites. Using the
approach adopted in [6], susceptible individuals acquire
malaria through contact with infectious mosquitoes at the
rate 𝜗. The infected person moves to the exposed class at
the rate (1 − 𝑢1)𝜆ℎ𝐼V𝑆ℎ. The preventive variable 𝑢1(𝑡) ∈

[0, 1] represents the use of ITNs as a means of minimizing
or eliminating mosquito-human contacts. After a certain
period of time, the parasite (in the form of merozoites)
enters the blood stream, usually signaling the clinical onset
of malaria. Then the exposed individuals become infectious
and progress to the infected state at a constant rate 𝛼ℎ. The
individuals who have experienced infectionmay recover with
temporary immunity at a constant rate 𝜌 and move to the
recovery class, while some infectious humans after recovery
without immunity become immediately susceptible again at
the rate (1−𝜌). Infectious individuals recover due to treatment
at a rate 𝜂𝑢2 with 𝑢2(𝑡) ∈ [0, 1] representing the control
effort on treatment and 𝜙 being the proportion of indi-
viduals who recover spontaneously. Recovered individuals
lose immunity at a rate 𝜓. The natural and disease induced
death rates are 𝜇ℎ and 𝛿ℎ, respectively. The disease induced
death rate is very small in comparison with the recovery
rate.

The mosquito population 𝑁V is divided into three com-
partments: susceptible 𝑆V(𝑡); exposed 𝐸V(𝑡); and infectious
𝐼V(𝑡). FemaleAnophelesmosquitoes enter the susceptible class
through birth at a rate Λ V. The parasites in the form of
gametocytes enter the mosquito population with probability
𝛽ℎV. This happens when the mosquito bites an infectious
human and the mosquito moves from the susceptible to
the exposed class. Mosquitoes are assumed to suffer death
due to natural causes at a rate 𝜇V. The exposed mosquitoes
progress to the class of symptomatic mosquitoes 𝐼V at a rate
𝛼V. It is assumed that the disease does not induce death
to the mosquito population. Finally, the mortality rate of
the mosquito population increases at a rate proportional to
𝜏𝑢3(𝑡), where 𝜏 > 0 is a rate constant when using IRS and
𝑢3(𝑡) ∈ [0, 1] is a constant rate of IRS. Figure 1 represents a
schematic flow diagram of the proposed model.

The model state variables are represented in Table 1.
Table 2 represents prevention and control strategies practised
in the district. Table 3 shows parameters of the model.

The state variables in Table 1, the prevention and control
parameters in Table 2, and the model parameters in Table 3
for the malaria model satisfy (1). It is assumed that all
state variables and parameters of the model which moni-
tors human and mosquito populations are positive for all
𝑡 ≥ 0. We will, therefore, analyse the model in a suitable
region.

The assumptions lead to the following deterministic
system of nonlinear ordinary differential equations which
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Figure 1: The malaria model with interventions flowchart.

describe the evolutionary dynamics of a malaria model with
a combination of interventions:

𝑑𝑆ℎ

𝑑𝑡
= Λ ℎ + (1 − 𝜅1) 𝜃𝑁ℎ + (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝐼ℎ

− (1 − 𝑢1) 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ,

𝑑𝐸ℎ

𝑑𝑡
= (1 − 𝑢1) 𝜆ℎ𝑆ℎ + 𝜅1𝜃𝑁ℎ − 𝛼ℎ𝐸ℎ − 𝜇ℎ𝐸ℎ,

𝑑𝐼ℎ

𝑑𝑡
= 𝛼ℎ𝐸ℎ − (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝐼ℎ − (𝜙 + 𝜂𝑢2) 𝜌𝐼ℎ

− (𝜇ℎ + 𝛿ℎ) 𝐼ℎ,

𝑑𝑅ℎ

𝑑𝑡
= (𝜙 + 𝜂𝑢2) 𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ,

𝑑𝑆V

𝑑𝑡
= Λ V − 𝜆V𝑆V − (𝜇V + 𝜏𝑢3) 𝑆V,

𝑑𝐸V

𝑑𝑡
= 𝜆V𝑆V − 𝛼V𝐸V − (𝜇V + 𝜏𝑢3) 𝐸V,

𝑑𝐼V

𝑑𝑡
= 𝛼V𝐸V − (𝜇V + 𝜏𝑢3) 𝐼V,

(1)

where 𝜆ℎ = 𝛽Vℎ𝜗𝐼V/𝑁ℎ, 𝜆𝑉 = 𝛽ℎV𝜗𝐼ℎ/𝑁ℎ.
The term 𝛽Vℎ𝜗𝑆ℎ𝐼V/𝑁ℎ denotes the rate at which the

human hosts 𝑆ℎ become infected by infectious mosquitoes 𝐼V
and 𝛽ℎV𝜗𝑆V𝐼ℎ/𝑁ℎ refers to the rate at which the susceptible
mosquitoes 𝑆V are infected by the infectious human hosts 𝐼ℎ.

Adding the first six equations of model (1) and assuming
that there is no disease induced death, that is, 𝛿ℎ = 0, gives
𝑑𝑁ℎ/𝑑𝑡 = Λ ℎ − 𝜇ℎ𝑁ℎ, so that 𝑁ℎ(𝑡) → Λ ℎ/𝜇ℎ as 𝑡 → ∞

[16]. Thus, Λ ℎ/𝜇ℎ is an upper bound of 𝑁ℎ(𝑡) provided that
𝑁ℎ(0) ≤ Λ/𝜇ℎ. Further, if 𝑁ℎ(0) > Λ ℎ/𝜇ℎ, then 𝑁ℎ(𝑡)

will decrease to this level, Λ ℎ/𝜇ℎ. Similar calculation for the
vector equations shows that𝑁V → Λ V/𝜇V as 𝑡 → ∞.

Table 1: State variables of the malaria model.

Symbol Description
𝑆ℎ(𝑡) Number of susceptible individuals at time t
𝐸ℎ(𝑡) Number of exposed individuals at time t
𝐼ℎ(𝑡) Number of infectious humans at time 𝑡
𝑅ℎ(𝑡) Number of recovered humans at time 𝑡
𝑆V(𝑡) Number of susceptible mosquitoes at time 𝑡
𝐸V(𝑡) Number of infected mosquitoes at time 𝑡
𝐼V(𝑡) Number of infectious mosquitoes at time 𝑡
𝑁ℎ(𝑡) Total number of individuals at time 𝑡
𝑁V(𝑡) Total mosquito population at time 𝑡

Table 2: Prevention and control variables in the model.

Symbol Description

𝑢1(𝑡)
Preventive measure using insecticide treated bed nets
(ITNs)

𝑢2(𝑡)
The control effort on treatment of infectious
individuals

𝑢3(𝑡)
Preventing measure using indoor residual spraying
(IRS)

𝜏 Rate constant due to use of indoor residual spraying
𝜂 Rate constant due to use of treatment effort

Table 3: Parameters variables of the malaria model.

Symbol Description
Λ ℎ Recruitment rate of individuals by birth
𝜅
1

Proportion of exposed immigrants into exposed class
𝜃 Proportion of people migrating into Karonga District
𝜇ℎ Per capita natural death rate of humans
𝜇V Per capita natural death rate of mosquitoes
𝛿
ℎ

Per capita disease induced death rate for humans

𝛼
ℎ

Progression rate of humans from exposed state to the
infectious state

𝛽Vℎ
Probability that a bite results in transmission of
infection to human

𝛽ℎV

Probability that a bite results in transmission of the
parasite from an infectious human to the susceptible
mosquitoes

𝜗 Biting rate of mosquito

𝜆ℎ
Force of infection for susceptible humans to exposed
individuals

𝜆V
Force of infection for susceptible mosquitoes to
exposed mosquito class

𝜌 Per capita rate of recovery with temporary immunity
𝜙 Proportion of spontaneous individual recovery
𝜓 Per capita rate of loss immunity

𝛼V
Progression of exposed mosquitoes into infected
mosquitoes
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The feasible region

Φ = { (𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, 𝐸V, 𝐼V) ∈ R
7

+
:𝑁ℎ ≤

Λ ℎ

𝜇ℎ

= 𝑁
∗

ℎ
,

𝑁V ≤
Λ V

𝜇V
= 𝑁
∗

V }

(2)

is positive-invariant and attracting.

Lemma 1. The region Φ ∈ R7
+
is positively invariant for the

model system (1) with initial conditions in R7
+
.

Proof. Let 𝑡 = sup{𝑡 > 0 : 𝑆ℎ > 0, 𝐸ℎ > 0, 𝐼ℎ > 0, 𝑅ℎ > 0, 𝑆V >
0, 𝐸V > 0, 𝐼V > 0} ∈ [0, 𝑡] give 𝑡 > 0. The first equation of
model (1) gives

𝑑𝑆ℎ

𝑑𝑡
= Λ ℎ + (1 − 𝜅1) 𝜃𝑁ℎ + (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝐼ℎ

− (1 − 𝑢1) 𝜆ℎ𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ

≥ Λ ℎ − ((1 − 𝑢1) 𝜆ℎ + 𝜇ℎ) 𝑆ℎ,

(3)

which can be rewritten as

𝑑

𝑑𝑡
[𝑆ℎ (𝑡) 𝑒

∫
𝑡

0
(1−𝑢
1
)𝜆
ℎ
(𝑠)𝑑𝑠+𝜇

ℎ
𝑡
]

≥ Λ ℎ𝑒
∫
𝑡

0
(1−𝑢
1
)𝜆
ℎ
(𝑠)𝑑𝑠+𝜇

ℎ
𝑡
.

(4)

Therefore,

𝑆ℎ (𝑡) 𝑒
∫
𝑡

0
{(1−𝑢

1
)𝜆
ℎ
(𝑠)𝑑𝑠}+𝜇

ℎ
𝑡
− 𝑆ℎ (0)

≥ ∫

𝑡

0

Λ ℎ𝑒
∫
𝑢

0
(1−𝑢
1
)𝜆
ℎ
(𝑤)𝑑𝑤+𝑢

ℎ
𝑢
𝑑𝑢,

(5)

so that

𝑆ℎ (𝑡) ≥ 𝑆ℎ (0) 𝑒
−(∫
𝑡

0
(1−𝑢
1
)𝜆
ℎ
(𝑠)𝑑𝑠+𝜇

ℎ
𝑡)

+ 𝑒
−(∫
𝑡

0
(1−𝑢
1
)𝜆
ℎ
(𝑠)𝑑𝑠+𝜇

ℎ
𝑡)

× {∫

𝑡

0

Λ ℎ𝑒
∫
𝑢

0
(1−𝑢
1
)𝜆
ℎ
(𝑤)𝑑𝑤+𝜇

ℎ
𝑢
𝑑𝑢} > 0.

(6)

Similarly, it can be shown that 𝐸ℎ > 0, 𝐼ℎ > 0, 𝑅ℎ > 0, 𝑆V > 0,
𝐸V > 0, and 𝐼V > 0, for all 𝑡 > 0.This completes the proof.

2.1. Existence and Stability of Equilibrium Points. We analyse
system (1) to obtain the equilibrium points of the system and
their stability. Let (𝑆∗

ℎ
, 𝐸
∗

ℎ
, 𝐼
∗

ℎ
, 𝑅
∗

ℎ
, 𝑆
∗

V , 𝐸
∗

V , 𝐼
∗

V ) be the equilib-
rium points of system (1). At an equilibrium point, we have

𝑆
󸀠

ℎ
(𝑡) = 𝐸

󸀠

ℎ
(𝑡) = 𝐼

󸀠

ℎ
(𝑡) = 𝑅

󸀠

ℎ
(𝑡) = 𝑆

󸀠

V (𝑡) = 𝐸
󸀠

V (𝑡) = 𝐼
󸀠

V (𝑡) = 0.

(7)

2.1.1. Disease-Free Equilibrium, 𝐸0. In the absence of malaria,
that is, 𝐸∗

ℎ
= 𝐼
∗

ℎ
= 𝑅
∗

ℎ
= 𝐸
∗

V = 𝐼
∗

V = 0, model system (1) has
an equilibrium point called the disease-free equilibrium, 𝐸0,
and is given by

𝐸0 = (
Λ ℎ

𝜇ℎ

, 0, 0, 0,
Λ ℎ

𝜇V
, 0, 0) . (8)

To establish the linear stability of 𝐸0, we employ van den
Driessche and Watmough’s next generation matrix approach
[17]. A reproduction number obtained this way determines
the local stability of the disease-free equilibrium point for
𝑅𝑒 < 1 and instability for𝑅𝑒 > 1. Following van denDriessche
and Watmough [17], the associated next generation matrices
𝐹 and 𝑉 of system (1) can be determined from F𝑖 and V𝑖,
respectively, where

F𝑖 =

[
[
[
[
[
[
[
[
[

[

(1 − 𝑢1) 𝛽Vℎ𝜗𝐼V𝑆ℎ

𝑁ℎ

+ 𝜅1𝜃𝑁ℎ

0

𝛽ℎV𝜗𝐼ℎ𝑆V

𝑁ℎ

0

]
]
]
]
]
]
]
]
]

]

,

V𝑖 =
[
[
[
[

[

(𝛼ℎ + 𝜇ℎ) 𝐸ℎ

(𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) 𝐼ℎ − 𝛼ℎ𝐸ℎ

(𝛼V + 𝜇V + 𝜏𝑢3) 𝐸V
(𝜇V + 𝜏𝑢3) 𝐼V − 𝛼V𝐸V

]
]
]
]

]

.

(9)

The Jacobian matrix ofF𝑖 andV𝑖 is given by

𝐹 =
[
[
[

[

0 0 0 𝑟1

0 0 0 0

0 𝑗 0 0

0 0 0 0

]
]
]

]

, 𝑉 =
[
[
[

[

𝑚 0 0 0

−𝛼ℎ 𝑛 0 0

0 0 𝑎 0

0 0 −𝛼V b

]
]
]

]

, (10)

where

𝑟1 = (1 − 𝑢1) 𝛽Vℎ𝜗, 𝑗 =
𝛽ℎV𝜗Λ V𝜇ℎ

Λ ℎ𝜇V
,

𝑚 = 𝛼ℎ + 𝜇ℎ, 𝑛 = 𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ,

𝑎 = 𝛼V + 𝜇V + 𝜏𝑢3, 𝑏 = 𝜇V + 𝜏𝑢3.

(11)

Algebraic manipulation of the matrices leads to the effective
reproduction number

R𝑒 = (𝛽ℎV𝛽Vℎ𝜗
2
𝛼ℎ𝛼V (1 − 𝑢1) Λ V𝜇ℎ

× ( (𝛼ℎ + 𝜇ℎ) (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)

×(𝛼V + 𝜇V + 𝜏𝑢3)(𝜇V + 𝜏𝑢3)𝜇VΛ ℎ)
−1

)

1/2

,

(12)

where

R𝑒V =
𝛽ℎV𝛼V𝜗Λ V

𝜇V (𝛼V + 𝜇V + 𝜏𝑢3) (𝜇V + 𝜏𝑢3)
(13)



Abstract and Applied Analysis 5

is the contribution of themosquito populationwhen it infects
the humans, and

R𝑒ℎ =
𝛽Vℎ𝜗𝜇ℎ𝛼ℎ (1 − 𝑢1)

Λ ℎ (𝛼ℎ + 𝜇ℎ) (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)
(14)

is the human contribution when they infect the mosquitoes.
The expression for the effective reproduction number,

R𝑒, has a biological meaning that is readily interpreted from
terms under the square root sign. Consider the following
terms.

(i) 𝛽Vℎ𝜗𝛼V/(𝛼V+𝜇V+𝜏𝑢3)(𝜇V+𝜏𝑢3) represents the number
of secondary human infections caused by one infected
mosquito vector.

(ii) 𝛽ℎV𝜗𝛼ℎ/(𝛼ℎ + 𝜇ℎ)(𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) represents the
number of secondary mosquito infections caused by
one infected human host.

The square root represents the geometric mean of the
average number of secondary host infections produced by
one vector and the average number of secondary vector
infections produced by one host. This effective reproduction
number serves as an invasion threshold both for predicting
outbreaks and evaluating control strategies that would reduce
the spread of the disease. The threshold quantity, R𝑒, mea-
sures the average number of secondary cases generated by a
single infected individual in a susceptible human population
[18], where a fraction of the susceptible human population is
under prevention and the infected class is under treatment.
In the absence of any protective measure, the effective
reproduction numberR𝑒 with treatment is

R𝑒𝑡 = √
𝛽ℎV𝛽Vℎ𝜗

2
𝛼ℎ𝛼VΛ V𝜇ℎ

(𝛼ℎ + 𝜇ℎ) (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) (𝛼V + 𝜇V) 𝜇
2
VΛ ℎ

.

(15)

Also if ITNs are the only intervention strategy, then

R𝑒𝑁 = √
𝛽ℎV𝛽Vℎ𝜗

2
𝛼ℎ𝛼VΛ V𝜇ℎ (1 − 𝑢1)

(𝛼ℎ + 𝜇ℎ) (𝜙 + 𝜇ℎ + 𝛿ℎ) (𝛼V + 𝜇V) 𝜇
2
VΛ ℎ

. (16)

Similarly, if IRS is the only means of protection, then

R𝑒𝑠 = (𝛽ℎV𝛽Vℎ𝜗
2
𝛼ℎ𝛼V𝜇ℎΛ V

× ((𝛼ℎ + 𝜇ℎ) (𝜙 + 𝜇ℎ + 𝛿ℎ) (𝛼V + 𝜇V + 𝜏𝑢3)

× (𝜇V + 𝜏𝑢3) 𝜇VΛ ℎ)
−1
)
1/2

.

(17)

The value of the basic reproduction number can be obtained
from the value of the effective reproduction number when
there are no control measures (𝑢1 = 𝑢2 = 𝑢3 = 0):

R0 = √
𝛽ℎV𝛽𝑢ℎ𝜗

2
𝛼ℎ𝛼VΛ V𝜇ℎ

(𝛼ℎ + 𝜇ℎ) (𝜙 + 𝜇ℎ + 𝛿ℎ) (𝛼V + 𝜇V) 𝜇
2
VΛ ℎ

. (18)

In general, it is easy to prove that

R𝑒 ≤ R0 (19)

for 0 ≤ 𝑢1, 𝑢3 ≤ 1, due to reduction of likelihood of infection
by protection. This implies that ITNs and IRS have a positive
impact on the malaria dynamics as they contribute to the
reduction of secondary infections. Therefore, from van den
Driessche and Watmough [17] (Theorem 2), the following
result holds.

Lemma 2. The disease-free equilibrium, 𝐸0, of the malaria
model with intervention strategies (1), given by (8), is locally
asymptotically stable ifR𝑒 < 1 and unstable ifR𝑒 > 1.

2.1.2. Endemic Equilibrium Point, 𝐸1. When malaria is
present, the model system (1) has a steady state, 𝐸1, called
the endemic equilibrium. In order to establish the stability of
𝐸1, we express system (1) in dimensionless variables, namely,
𝑆ℎ/𝑁ℎ = 𝑠, 𝐸ℎ/𝑁ℎ = 𝑒, 𝐼ℎ/𝑁ℎ = 𝑖, 𝑅ℎ/𝑁ℎ = 𝑟, 𝑆V/𝑁V = 𝑥,
𝐸V/𝑁V = 𝑦, and 𝐼V/𝑁V = 𝑧, where 𝑑𝑁ℎ/𝑑𝑡 = Λ ℎ−𝜇ℎ𝑁ℎ−𝛿ℎ𝐼ℎ,
𝑑𝑁V/𝑑𝑡 = Λ V − 𝜇V𝑁V. Then differentiating with respect to
time, 𝑡, respectively results in the following system:

𝑑𝑠

𝑑𝑡
=

1

𝑁ℎ

[
𝑑𝑆ℎ

𝑑𝑡
− 𝑠

𝑑𝑁ℎ

𝑑𝑡
]

=
1

𝑁ℎ

[Λ ℎ + (1 − 𝜅1) 𝜃𝑁ℎ + (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝑖𝑁ℎ

− (1 − 𝑢1) 𝛽Vℎ𝜗𝑖𝑠𝑁ℎ − 𝜇ℎ𝑠𝑁ℎ + 𝜓𝑟𝑁ℎ] .

(20)

Let𝑚1 = (1−𝜅1)𝜃, 𝑛1 = (𝜙+𝜂𝑢2)(1−𝜌), and 𝑞 = (1−𝑢1)𝛽Vℎ𝜗.
Then

𝑑𝑠

𝑑𝑡
=

1

𝑁ℎ

[Λ ℎ + 𝑚1𝑁ℎ + 𝑛1𝑖𝑁ℎ − 𝑞𝑖𝑠𝑁ℎ −𝑢ℎ𝑠𝑁ℎ + 𝜓𝑟𝑁ℎ]

−
𝑠

𝑁ℎ

[Λ ℎ − 𝛿ℎ𝑖𝑁ℎ − (𝜇ℎ − 𝜃)𝑁ℎ]

=
Λ ℎ

𝑁ℎ

− [
Λ ℎ

𝑁ℎ

+ 𝜃 − 𝛿ℎ𝑖] 𝑠 + (1 − 𝜅1) 𝜃

+ (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝑖

− (1 − 𝑢1) 𝛽Vℎ𝜗𝑧𝑠 + 𝜓𝑟,

𝑑𝑒

𝑑𝑡
=

1

𝑁ℎ

[
𝑑𝐸

𝑑𝑡
− 𝑒

𝑑𝑁ℎ

𝑑𝑡
]

=
1

𝑁ℎ

[(1 − 𝑢1) 𝛽Vℎ𝜗𝑧𝑠𝑁ℎ + 𝜅1𝜃𝑁ℎ −𝛼ℎ𝑒𝑁ℎ − 𝜇ℎ𝑒𝑁ℎ]

−
𝑒

𝑁ℎ

[Λ ℎ − 𝛿ℎ𝑖𝑁ℎ − (𝜇ℎ − 𝜃)𝑁ℎ]

= (1 − 𝑢1) 𝛽Vℎ𝜗𝑧𝑠 + 𝜅1𝜃 − [
Λ ℎ

𝑁ℎ

− 𝛿ℎ𝑖 + 𝛼ℎ + 𝜃] 𝑒,
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𝑑𝑖

𝑑𝑡
=

1

𝑁ℎ

[
𝑑𝐼

𝑑𝑡
− 𝑖
𝑑𝑁ℎ

𝑑𝑡
]

=
1

𝑁ℎ

[𝛼ℎ𝑒𝑁ℎ − (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝑖𝑁ℎ

− (𝜙 + 𝜂𝑢2) 𝜌𝑖𝑁ℎ − (𝜇ℎ + 𝛿ℎ) 𝑖𝑁ℎ]

−
𝑖

𝑁ℎ

[Λ ℎ − 𝛿ℎ𝑖𝑁ℎ − (𝜇ℎ − 𝜃)𝑁ℎ]

= 𝛼ℎ𝑒 − [
Λ ℎ

𝑁ℎ

+ 𝜙 + 𝜂𝑢2 + 𝛿ℎ + 𝜃 − 𝛿ℎ𝑖] 𝑖,

𝑑𝑟

𝑑𝑡
=

1

𝑁ℎ

[
𝑑𝑅

𝑑𝑡
− 𝑟

𝑑𝑁ℎ

𝑑𝑡
]

=
1

𝑁ℎ

[(𝜙 + 𝜂𝑢2) 𝜌𝑖𝑁ℎ − (𝜇ℎ + 𝜓) 𝑟𝑁ℎ]

−
𝑟

𝑁ℎ

[Λ ℎ − 𝛿ℎ𝑖𝑁ℎ − (𝜇ℎ − 𝜃)𝑁ℎ]

= (𝜙 + 𝜂𝑢2) 𝜌𝑖 − [
Λ ℎ

𝑁ℎ

+ 𝜓 + 𝜃 − 𝛿ℎ𝑖] 𝑟,

𝑑𝑥

𝑑𝑡
=

1

𝑁V
[
𝑑𝑆V

𝑑𝑡
− 𝑥

𝑑𝑁V

𝑑𝑡
]

=
1

𝑁V
[Λ V − 𝛽ℎV𝜗𝑖𝑥𝑁V − (𝜇V + 𝜏𝑢3) 𝑥𝑁V]

−
𝑥

𝑁V
[Λ V − 𝜇V𝑁V]

= [
Λ V

𝑁V
− 𝑥

Λ V

𝑁V
] − 𝛽ℎV𝜗𝑖𝑥 − 𝜏𝑢3𝑥,

𝑑𝑦

𝑑𝑡
=

1

𝑁V
[
𝑑𝐸V

𝑑𝑡
− 𝑦

𝑑𝑁V

𝑑𝑡
]

=
1

𝑁V
[𝛽ℎV𝜗𝑖𝑥𝑁V − 𝛼V𝑦𝑁V − (𝜇V + 𝜏𝑢3) 𝑦𝑁V]

−
𝑦

𝑁V
[Λ V − 𝜇V𝑁V]

= 𝛽ℎV𝜗𝑖𝑥 − [
Λ V

𝑁V
+ 𝛼V + 𝜏𝑢3]𝑦,

𝑑𝑧

𝑑𝑡
=

1

𝑁V
[
𝑑𝐼V

𝑑𝑡
− 𝑍

𝑑𝑁V

𝑑𝑡
]

=
1

𝑁V
[𝛼V𝑦𝑁V − (𝜇V + 𝜏𝑢3) 𝑧𝑁V]

−
𝑧

𝑁V
[Λ V − 𝜇V𝑁V]

= 𝛼V𝑦 − [
Λ V

𝑁V
+ 𝜏𝑢3] 𝑧,

𝑑𝑁ℎ

𝑑𝑡
= [

Λ ℎ

𝑁ℎ

− 𝜇ℎ − 𝛿ℎ𝑖]𝑁ℎ,

𝑑𝑁V

𝑑𝑡
= [

Λ V

𝑁V
− 𝜇V]𝑁V.

(21)

The system can now be reduced to a nine-dimensional system
by eliminating 𝑠 and 𝑥 since 𝑠 = 1− 𝑒− 𝑖− 𝑟 and 𝑥 = 1−𝑦−𝑧.
The following feasible region

Φ1 = {𝑒, 𝑖 , 𝑟,𝑁ℎ, 𝑦, 𝑧,𝑁V ∈ R
7

+
| 𝑒 ≥ 0, 𝑖 ≥ 0, 𝑟 ≥ 0,

𝑒 + 𝑖 + 𝑟 ≤ 1, 𝑁ℎ ≤
Λ ℎ

𝜇ℎ

,

𝑦 ≥ 0, 𝑧 ≥ 0, 𝑦 + 𝑧 ≤ 1,

𝑁V ≤
Λ V

𝜇V
}

(22)

can be shown to be positively invariant. R7
+
denotes the

nonnegative cone ofR7 including its lower dimensional faces.
Thus we have the following system of equations:

𝑑𝑒

𝑑𝑡
= (1 − 𝑢1) (1 − 𝑒 − 𝑖 − 𝑟) 𝛽Vℎ𝜗𝑧 + 𝜅1𝜃

− [
Λ ℎ

𝑁ℎ

− 𝛿ℎ𝑖 + 𝛼ℎ + 𝜃] 𝑒,

𝑑𝑖

𝑑𝑡
= 𝛼ℎ𝑒 − [

Λ ℎ

𝑁ℎ

+ 𝜙 + 𝜂𝑢2 + 𝛿ℎ + 𝜃 − 𝛿ℎ𝑖] 𝑖,

𝑑𝑟

𝑑𝑡
= (𝜙 + 𝜂𝑢2) 𝜌𝑖 − [

Λ ℎ

𝑁ℎ

+ 𝜓 + 𝜃 + −𝛿ℎ𝑖] 𝑟,

𝑑𝑁ℎ

𝑑𝑡
= Λ ℎ − 𝛿ℎ𝑖𝑁ℎ − 𝜇ℎ𝑁ℎ,

𝑑𝑦

𝑑𝑡
= (1 − 𝑦 − 𝑧) 𝛽ℎV𝜗𝑖 − [

Λ V

𝑁V
+ 𝛼V + 𝜏𝑢3] 𝑦,

𝑑𝑧

𝑑𝑡
= 𝛼V − [

Λ V

𝑁V
+ 𝜏𝑢3] 𝑧,

𝑑𝑁V

𝑑𝑡
= Λ V − 𝜇V𝑁V.

(23)

We seek to establish whether a unique endemic equilibrium
exists. This is done by making more realistic assumptions,
namely, that the protective control measures may not be
totally effective.

Existence and Uniqueness of Endemic Equilibrium, 𝐸1. To
compute the steady states of the system (23), we set the
derivative with respect to time in (23) equal to zero, and
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after simplification the following algebraic equations are
obtained:

(1 − 𝑢1) (1 − 𝑒 − 𝑖 − 𝑟) 𝛽Vℎ𝜗𝑧 + 𝜅1𝜃 = [
Λ ℎ

𝑁ℎ

− 𝛿ℎ𝑖 + 𝛼ℎ + 𝜃] 𝑒,

𝛼ℎ𝑒 = [
Λ ℎ

𝑁ℎ

+ 𝜙 + 𝜂𝑢2 + 𝛿ℎ + 𝜃 − 𝛿ℎ𝑖] 𝑖,

(𝜙 + 𝜂𝑢2) 𝜌𝑖 = [
Λ ℎ

𝑁ℎ

+ 𝜓 + 𝜃 − 𝛿ℎ𝑖] 𝑟,

Λ ℎ

𝑁ℎ

= 𝛿ℎ𝑖 + 𝜇ℎ,

(1 − 𝑦 − 𝑧) 𝛽ℎV𝜗𝑖 = [
Λ V

𝑁V
+ 𝛼V + 𝜏𝑢3]𝑦,

𝛼V𝑦 = [
Λ V

𝑁V
+ 𝜂𝑢3] 𝑧,

Λ V

𝑁V
= 𝜇V.

(24)

To calculate the dimensionless proportions in terms of 𝑖,
consider the first equation in the system (24):

(1 − 𝑖 − 𝑟) 𝑝𝑧 − 𝑝𝑧𝑒 + 𝜅1𝜃 = [𝜇ℎ + 𝛼ℎ] 𝑒,

(𝜇ℎ + 𝛼ℎ) 𝑒 + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧𝑒

= (1 − 𝑢1) (1 − 𝑖 − 𝑟) 𝛽Vℎ𝜗𝑧 + 𝜅1𝜃,

(𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝑧) 𝑒

= (1 − 𝑢1) (1 − 𝑖 − 𝑟) 𝛽Vℎ𝜗𝑧 + 𝜅1𝜃,

𝑒 =
(1 − 𝑢1) (1 − 𝑖 − 𝑟) 𝛽Vℎ𝜗𝑧 + 𝜅1𝜃

𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧
,

(25)

where 𝑝 = (1 − 𝑢1)𝛽Vℎ𝜗.
From the second equation we have

𝛼ℎ𝑒 = (𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ) 𝑖,

𝛼ℎ𝑒 = (𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ) 𝑖,

𝑒 =
(𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ) 𝑖

𝛼ℎ

.

(26)

Equating these two equations for 𝑒 we obtain

(1 − 𝑢1) (1 − 𝑖 − 𝑟) 𝛽Vℎ𝜗𝑧 + 𝜅1𝜃
𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧

=
(𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ) 𝑖

𝛼ℎ

,

(1 − 𝑢1) 𝛽Vℎ𝜗𝛼ℎ𝑧𝑖

+ [𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧 (𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ)] 𝑖

= (1 − 𝑢1) (1 − 𝑟) 𝛽Vℎ𝜗𝛼ℎ𝑧 + 𝜅1𝜃𝛼ℎ

+ 𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧.

(27)

Therefore, 𝑖 with 𝑟 and 𝑧 becomes

𝑖 = ((1 − 𝑢1) (1 − 𝑟) 𝛽Vℎ𝜗𝛼ℎ𝑧 + 𝜅1𝜃𝛼ℎ

+𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧)

× ((1 − 𝑢1) 𝛽Vℎ𝜗𝛼ℎ𝑧𝑖

+ [𝜇ℎ + 𝛼ℎ + (1 − 𝑢1) 𝛽Vℎ𝜗𝑧 (𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ)] )
−1
.

(28)

Now solve for 𝑟 from the third equation

(𝜙 + 𝜂𝑢2) 𝜌𝑖 = (𝜇ℎ + 𝜓) 𝑟,

𝑟 =
(𝜙 + 𝜂𝑢2) 𝑖

𝜇ℎ + 𝜓
.

(29)

Let 𝑎1 = (𝜙+𝜂𝑢2)/(𝜇ℎ+𝜓), 𝑏1 = 1−𝑢1, 𝑐 = 𝛽Vℎ𝜗𝛼ℎ, 𝑑 = 𝜅1𝜃𝛼ℎ,
𝑔 = 𝜇ℎ + 𝛼ℎ, ℎ = 𝛽Vℎ𝜗, and 𝑘 = 𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ. Then
substituting 𝑟 in the 𝑖 equation we obtain

𝑖 =
𝑏1 (1 − 𝑎1𝑖) 𝑐𝑧 + 𝑑 + 𝑔 + 𝑏ℎ𝑧

𝑏1𝑐𝑧 + 𝑔 + 𝑏1ℎ𝑘𝑧
,

(
𝑏1𝑐𝑧 + 𝑔 + 𝑏1ℎ𝑘𝑧 + 𝑏1𝑐𝑎1𝑧

𝑏1𝑐𝑧 + 𝑔 + 𝑏1ℎ𝑘𝑧
) 𝑖 =

𝑏1𝑐𝑧 + 𝑑 + 𝑔 + 𝑏1ℎ𝑧

𝑏1𝑐𝑧 + 𝑔 + 𝑏1ℎ𝑘𝑧
,

𝑖 =
𝑏1𝑐𝑧 + 𝑑 + 𝑔 + 𝑏1ℎ𝑧

𝑏1𝑐𝑧 + 𝑔 + 𝑏1ℎ𝑘𝑧 + 𝑏1𝑐𝑎1𝑧
.

(30)

Using equation five of the system (24), we obtain

(𝜇V + 𝛼V + 𝜏𝑢3) 𝑦 + 𝛽ℎV𝑖𝑦 = 𝛽ℎV𝜗 (1 − 𝑧) 𝑖,

𝑦 =
(1 − 𝑧) 𝛽ℎV𝜗𝑖

𝜇V + 𝛼V + 𝜏𝑢3 + 𝛽ℎV𝜗𝑖
.

(31)

Solving for 𝑧 gives

𝛼V𝑦 = (𝜇V + 𝜏𝑢3) 𝑧,

𝑧 =
𝛼V𝑦

𝜇V + 𝜏𝑢3
.

(32)

Let 𝑚2 = 𝛼V𝛽ℎV𝜗, 𝑛2 = 𝜇V + 𝜏𝑢3, 𝑝1 = 𝜇V + 𝛼V + 𝜏𝑢3, and
𝑞1 = 𝛽ℎV𝜗. Substituting 𝑦 in the 𝑧 equation gives

𝑧 =
(1 − 𝑧) 𝛼V𝛽ℎV𝜗𝑖

(𝜇V + 𝜏𝑢3) (𝜇V + 𝛼V + 𝜏𝑢3 + 𝛽ℎV𝜗𝑖)

=
𝑚2𝑖

𝑛2 (𝑝1 + 𝑞1𝑖)
−

𝑚2𝑖𝑧

𝑛2 (𝑝1 + 𝑞1𝑖)

=
𝑚2𝑖

𝑛2𝑝1 + 𝑛2𝑞1𝑖 + 𝑚2𝑖
.

(33)

Substituting 𝑧 in the 𝑖 equation gives

𝑖 =
𝑑 + 𝑔 + (𝑏1𝑐 + 𝑏1ℎ) (𝑚2𝑖/ (𝑛2𝑝1 + 𝑛2𝑞1𝑖 + 𝑚2𝑖))

𝑔 + (𝑏1𝑐 + 𝑏1ℎ𝑘 + 𝑏1𝑐𝑎1) (𝑚2𝑖/ (𝑛2𝑝1 + 𝑛2𝑞1𝑖 + 𝑚2𝑖))
.

(34)
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The existence of the endemic equilibrium in Φ, can be
determined when 𝑖 ̸= 0. After some algebraic manipulations
we obtain

𝐴𝑖
2
+ 𝐵𝑖 + 𝐶 = 0, (35)

where
𝐴 = 𝑔𝑛2𝑞1 + 𝑔𝑚2 + 𝑏1𝑐𝑚2 + 𝑏1ℎ𝑘𝑚2 + 𝑏1𝑐𝑎1𝑚2

= (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3) 𝛽ℎV𝜗 + (𝜇ℎ + 𝛼ℎ) 𝛼V𝛽ℎV𝜗

+ (1 − 𝑢1) 𝛽Vℎ𝛽ℎV𝛼ℎ𝛼V𝜗
2

+ (1 − 𝑢1) (𝜇ℎ + 𝜙 + 𝜂𝑢2 + 𝛿ℎ) 𝛽Vℎ𝛽ℎV𝛼V𝜗
2

+ (1 − 𝑢1) (
𝜙 + 𝜂𝑢2

𝜇ℎ + 𝜓
)𝛽Vℎ𝛽ℎV𝛼ℎ𝛼V𝜗

2

> 0,

𝐶 = −𝑑𝑛2𝑝1 − 𝑛2𝑝1

= − (𝜇V + 𝜏𝑢3) (𝜇V + 𝛼V + 𝜏𝑢3) [(1 − 𝑢1)]

< 0,

𝐵 = 𝑑𝑛2𝑞1 + 𝑑𝑚2 + 𝑔𝑛2𝑞1 + 𝑔𝑚2 + 𝑏1ℎ𝑚2 + 𝑔𝑛2𝑝1 − 𝑏1𝑐𝑚2

= (𝜇V + 𝜏𝑢3) 𝜅1𝜃𝛼ℎ𝛽ℎV𝜗 + 𝜅1𝜃𝛼ℎ𝛼V𝛽ℎV𝜗

+ (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3) 𝛽ℎV𝜗 + (𝜇ℎ + 𝛼ℎ) 𝛼V𝛽ℎV𝜗

+ (1 − 𝑢1) 𝛽Vℎ𝛽ℎV𝛼V𝜗
2

+ (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3) (𝜇V + 𝛼V + 𝜏𝑢3)

− 𝛽ℎV𝛽Vℎ𝜗
2
𝛼ℎ𝛼V (1 − 𝑢1)

= (𝜇V + 𝜏𝑢3) 𝜅1𝜃𝛼ℎ𝛽ℎV𝜗 + 𝜅1𝜃𝛼ℎ𝛼V𝛽ℎV𝜗

+ (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3) 𝛽ℎV𝜗

+ (𝜇ℎ + 𝛼ℎ) 𝛼V𝛽ℎV𝜗 + (1 − 𝑢1) 𝛽Vℎ𝛽ℎV𝛼V𝜗
2

+ (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3) (𝜇V + 𝛼V + 𝜏𝑢3) (1 −R
2

𝑒
) .

(36)

ForR𝑒 > 1, the existence of endemic equilibria is determined
by the presence of positive real solutions of the quadratic
expression (35). Consider

𝐵 = (𝜇V + 𝜏𝑢3) 𝜅1𝜃𝛼ℎ𝛽ℎV𝜗 + 𝜅1𝜃𝛼ℎ𝛼V𝛽ℎV𝜗

+ (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3) 𝛽ℎV𝜗 + (𝜇ℎ + 𝛼ℎ) 𝜅2𝜃𝛼V𝛽ℎV𝜗

+ (1 − 𝑢1) 𝛽Vℎ𝛽ℎV𝛼V𝜗
2
+ (𝜇ℎ + 𝛼ℎ) (𝜇V + 𝜏𝑢3)

× (𝜇V + 𝛼V + 𝜏𝑢3) (1 −R
2

𝑒
)

< 0.

(37)

Since 𝐶 < 0 and 𝐴 > 0, then 𝐶/𝐴 < 0. Thus, there exists
exactly one positive endemic equilibrium for 𝑖 ∈ (0, 1] when-
ever R𝑒 > 1. This gives the threshold for the endemic

persistence. Therefore, we have proved the existence and
uniqueness of the endemic equilibrium,𝐸1, for the system (1).
This result is summarized in the following theorem.

Theorem 3. If R𝑒 > 1, then the model system (23) has a
unique endemic equilibrium 𝐸1.

The result in Theorem 3 indicates the impossibility of
backward bifurcation in the malaria model, since it has no
endemic equilibrium when R𝑒 < 1. Thus, the model (1)
has a globally asymptotically stable disease-free equilibrium
wheneverR𝑒 ≤ 1.

Next we need to investigate the global stability property of
the endemic equilibrium for the case when the disease does
not induce death.

2.1.3. Global Stability of the Endemic Equilibrium for 𝛿ℎ = 0.
The model system (1), when 𝛿ℎ = 0, has a unique endemic
equilibrium. By letting

Φ2 = {(𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, 𝐸V, 𝐼V) ∈ R7
+
: 𝐸ℎ = 𝐼ℎ

= 𝐸V = 𝐼V = 0} , with R𝑒0 = R𝑒 | 𝛿ℎ = 0,

(38)

then the following can be claimed.

Theorem 4. The endemic equilibrium point of the malaria
model (1)with𝛿ℎ = 0 is globally asymptotically stablewhenever
R𝑒0 > 1 in Φ and Φ2.

Proof. As for the case of Theorem 3, it can be shown that the
unique endemic equilibrium for this special case exists only
if 𝑅𝑒0 > 1. Additionally, 𝑁ℎ = Λ ℎ/𝜇ℎ as 𝑡 → ∞. Letting
𝑆ℎ = Λ ℎ/𝜇ℎ − 𝐸ℎ − 𝐼ℎ − 𝑅ℎ and 𝑆V = Λ V/𝜇V − 𝐸V − 𝐼V and
substituting into (1) give the limiting system

𝑑𝐸ℎ

𝑑𝑡
= (1 − 𝑢1) 𝜆ℎ (

Λ ℎ

𝜇ℎ

− 𝐸ℎ − 𝐼ℎ − 𝑅ℎ) +
𝜅1𝜃Λ ℎ

𝜇ℎ

− (𝛼ℎ + 𝜇ℎ) 𝐸ℎ,

𝑑𝐼ℎ

𝑑𝑡
= 𝛼ℎ𝐸ℎ − (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) 𝐼ℎ,

𝑑𝐸V

𝑑𝑡
= 𝜆V (

Λ V

𝜇V
− 𝐸V − 𝐼V) − (𝛼V + 𝜇V + 𝜏𝑢3) 𝐸V,

𝑑𝐼V

𝑑𝑡
= 𝛼V𝐸V − (𝜇V + 𝜏𝑢3) 𝐼V.

(39)

Dulac’s multiplier 1/𝐸ℎ𝐼ℎ𝐸V𝐼V (see [19]) gives

𝜕

𝜕𝐸ℎ

[
(1 − 𝑢1) 𝛽Vℎ𝜗

𝐸ℎ𝐼ℎ𝐸VΛ ℎ/𝜇ℎ
(
Λ ℎ

𝜇ℎ

− 𝐸ℎ − 𝐼ℎ − 𝑅ℎ)

+
𝜅1𝜃Λ ℎ

𝐸ℎ𝐼ℎ𝐸V𝐼V𝜇ℎ
−
(𝛼ℎ + 𝜇ℎ)

𝐼ℎ𝐸V𝐼V
]

+
𝜕

𝜕𝐼ℎ

[
𝛼ℎ

𝐼ℎ𝐸V𝐼V
−
(𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ)

𝐸ℎ𝐸V𝐼V
]
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+
𝜕

𝜕𝐸V
[

𝛽ℎV𝜗

𝐸ℎ𝐸V𝐼VΛ ℎ/𝜇ℎ
(
Λ V

𝜇V
− 𝐸V − 𝐼V)

−
(𝛼V + 𝜇V + 𝜏𝑢3)

𝐸ℎ𝐼ℎ𝐸V
]

+
𝜕

𝜕𝐼V
[

𝛼V

𝐸ℎ𝐼ℎ𝐼V
−
(𝜇V + 𝜏𝑢3)

𝐸ℎ𝐼ℎ𝐸V
]

= −
𝛽Vℎ𝜗

𝐸
2

ℎ
𝐼ℎ𝐸V

−
𝛽Vℎ𝜗𝜇ℎ

𝐸
2

ℎ
𝐸V

(1 −
𝑅ℎ

Λ ℎ/𝜇ℎ

) −
𝜅1𝜃Λ ℎ

𝐸
2

ℎ
𝐼ℎ𝐸V𝐼V𝜇ℎ

−
𝛼ℎ

𝐼
2

ℎ
𝐸V𝐼V

−
𝛽ℎV𝜗

𝐸ℎ𝐸
2
V𝐼V

[1 −
𝜇ℎ

Λ ℎ

] −
𝛼V

𝐸ℎ𝐼ℎ𝐼
2
V

< 0,

(40)

since 𝐸ℎ + 𝐼ℎ + 𝑅ℎ < Λ ℎ/𝜇ℎ and 𝐸V + 𝐼V < Λ V/𝜇V in Φ2.
Thus, by Dulac’s criterion, there are no periodic orbits

in Φ and Φ2. Since Φ2 is positively invariant and the
endemic equilibrium exists whenever R𝑒0 > 1, then from
the Poincare-Bendixson Theorem [20], it follows that all
solutions of the limiting system originating in Φ remain in
Φ for all 𝑡. Furthermore, the absence of periodic orbits in Φ
implies that the unique endemic equilibrium of the special
case of the malaria model is globally asymptotically stable
wheneverR𝑒0 > 1.

The malaria model has a locally asymptotically stable
disease-free equilibrium whenever R𝑒 < 1 and a unique
endemic equilibrium whenever R𝑒 > 1. In addition, the
unique endemic equilibrium is globally asymptotically stable
for the case 𝛿ℎ = 0 ifR𝑒0 > 1.

In the next section, we apply the optimal control method
using Pontryagin’s Maximum Principle to determine the
necessary conditions for the combined optimal control of
ITNs, IRS, and treatment effort which are being practised in
Karonga District, Malawi.

3. Analysis of Optimal Control of
the Malaria Model

The force of infection in the human population is reduced by
a factor of (1 − 𝑢1(𝑡)) where 𝑢1(𝑡) represents the use of ITNs
as a means of minimizing or eliminating mosquito-human
contact. 𝑢2(𝑡) ∈ [0, 1] represents the control effort on treat-
ment of infectious individuals. This indeed represents the
situation when individuals in the community seek treatment
after visiting the hospitals or dispensary in their areas. For the
mosquito population, we have a third control variable, 𝑢3(𝑡).
IRS affects the whole mosquito population by increasing its
mortality rate by 𝑢3(𝑡). We will use an approach similar to
that in Lashari and Zaman [21] which consists of applying
Pontryagin’sMaximumPrincipal to determine the conditions
under which eradication of the disease can be achieved in
finite time. Following the dynamics of the model system (1)

with appropriate initial conditions, the bounded Lebesgue
measurable control is used with the objective functional
defined as

Γ (𝑢1, 𝑢2, 𝑢3) = ∫

𝑇
𝑓

0

(𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁V

+
1

2
(𝐴1𝑢
2

1
+ 𝐴2𝑢

2

2
+ 𝐴3𝑢

2

3
)) 𝑑𝑡

(41)

subject to the differential equations in (1), where 𝐶1, 𝐶2, 𝐶3,
𝐴1, 𝐴2, 𝐴3 are positive weights. We choose a quadratic cost
on the controls in line with what is known in the literature on
epidemic controls [21–23].

The purpose of this section is to minimize the cost
functional (41). This functional includes the exposed and
infectious human population and the total mosquito pop-
ulation. In addition, it has the cost of implementing per-
sonal protection using ITNs, 𝐴1𝑢

2

1
, treatment of infected

individuals, 𝐴2𝑢
2

2
, and spraying of houses, 𝐴3𝑢

2

3
. A lin-

ear function has been chosen for the cost incurred by
exposed individuals,𝐶1𝐸ℎ, infected individuals,𝐶2𝐼ℎ, and the
mosquito population, 𝐶3𝑁V. A quadratic form is used for the
cost on the controls 𝐴1𝑢

2

1
, 𝐴2𝑢

2

2
, and 𝐴3𝑢

2

3
, such that the

terms (1/2)𝐴1𝑢
2

1
, (1/2)𝐴2𝑢

2

2
, and (1/2)𝐴3𝑢

2

3
describe the cost

associated with the ITNs, treatment and IRS, respectively.We
select to model the control efforts via a linear combination
of quadratic terms 𝑢2

𝑖
(𝑡), (𝑖 = 1, 2, 3) and the constants

𝐶𝑖 and 𝐴 𝑖, (𝑖 = 1, 2, 3) representing a measure of the
relative cost of the interventions over the time horizon (0, 𝑇𝑓).
We seek an optimal control 𝑢∗

1
(𝑡), 𝑢∗

2
(𝑡), and 𝑢

∗

3
(𝑡) such

that

Γ (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
) = min
(𝑢
1
,𝑢
2
,𝑢
3
)∈Φ
2

Γ (𝑢1, 𝑢2, 𝑢3) , (42)

where

Φ2 = {𝑢 = (𝑢1, 𝑢2, 𝑢3) | 𝑢𝑖 (𝑡) is Lebesguemeasurable,

0 ≤ 𝑢 (𝑡) ≤ 1 for 𝑡 ∈ [0, 𝑇𝑓] 󳨀→ [0, 1] , 𝑖 = 1, 2, 3}

(43)

is the control set, subject to the system (1) and appropriate ini-
tial conditions. We develop the optimal system for which the
necessary conditions it must satisfy come from Pontryagin’s
Maximum Principle [24].

3.1. Existence of an Optimal Control Problem. Pontryagin’s
Maximum Principal converts (1) and (41) into a problem of
minimizing pointwise the Lagrangian, 𝐿, and Hamiltonian,
𝐻, with respect to 𝑢1, 𝑢2, and 𝑢3. The Lagrangian of the
control problem is given by

𝐿 = 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁V +
1

2
(𝐴1𝑢
2

1
+ 𝐴2𝑢

2

2
+ 𝐴3𝑢

2

3
) .

(44)
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We search for the minimal value of the Lagrangian. This
can be done by defining the Hamiltonian, 𝐻, for the control
problem as

𝐻 = 𝐿 + 𝜆1

𝑑𝑆ℎ

𝑑𝑡
+ 𝜆2

𝑑𝐸ℎ

𝑑𝑡
+ 𝜆3

𝑑𝐼ℎ

𝑑𝑡
+ 𝜆4

𝑑𝑅ℎ

𝑑𝑡

+ 𝜆5

𝑑𝑆V

𝑑𝑡
+ 𝜆6

𝑑𝐸V

𝑑𝑡
+ 𝜆7

𝑑𝐼V

𝑑𝑡

= 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁V +
1

2
(𝐴1𝑢
2

1
+ 𝐴2𝑢

2

2
+ 𝐴3𝑢

2

3
)

+ 𝜆1 [Λ ℎ + (1 − 𝜅1) 𝜃𝑁ℎ + (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝐼ℎ

− (1 − 𝑢1) 𝛽Vℎ𝜗𝐼V𝑆ℎ − 𝜇ℎ𝑆ℎ + 𝜓𝑅ℎ]

+ 𝜆2 [(1 − 𝑢1) 𝛽Vℎ𝜗𝐼V𝑆ℎ + 𝜅1𝜃𝑁ℎ − (𝛼ℎ + 𝜇ℎ) 𝐸ℎ]

+ 𝜆3 [𝛼ℎ𝐸ℎ − (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) 𝐼ℎ]

+ 𝜆4 [(𝜙 + 𝜂𝑢2) 𝜌𝐼ℎ − (𝜇ℎ + 𝜓)𝑅ℎ]

+ 𝜆5 [Λ V − 𝛽ℎV𝜗𝐼ℎ𝑆V − (𝜇V + 𝜏𝑢3) 𝑆V]

+ 𝜆6 [𝛽ℎV𝜗𝐼ℎ𝑆V − (𝛼V + 𝜇V + 𝜏𝑢3) 𝐸V]

+ 𝜆7 [𝛼V𝐸V − (𝜇V + 𝜏𝑢3) 𝐼V] .

(45)

Next, we prove the existence of an optimal control for the
model system (1).

Theorem 5. Themodel system (1)with the initial conditions at
𝑡 = 0 has control strategies and there exists an optimal control
𝑢⃗
∗
= (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
) ∈ Φ2 such that

min
(𝑢
1
,𝑢
2
,𝑢
3
)∈Φ
2

Γ (𝑢1, 𝑢2, 𝑢3) = Γ (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
) . (46)

Proof. The state and the control variables of the system (1) are
nonnegative values. The control set Φ2 is closed and convex.
The integrand of the objective cost function Γ expressed by (1)
is a convex function of (𝑢1, 𝑢2, 𝑢3) on the control set Φ2. The
Lipschitz property of the state systemwith respect to the state
variables is satisfied since the state solutions are bounded. It
can easily be shown that there exist positive numbers 𝜉1, 𝜉2
and a constant 𝜖 > 1 such that

Γ (𝑢1, 𝑢2, 𝑢3) ≥ 𝜉1(
󵄨󵄨󵄨󵄨𝑢1
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨𝑢2
󵄨󵄨󵄨󵄨

2
,
󵄨󵄨󵄨󵄨𝑢3
󵄨󵄨󵄨󵄨

2
)
𝜖/2

− 𝜉2.
(47)

This concludes the existence of an optimal control because
the state variables are bounded.

3.2. Classification of the Optimal Control Problem. We use
Pontryagin’s Maximum Principle to develop the necessary
conditions for this optimal control since there exists an
optimal control for minimizing the functional (41) subject
to the system of equations in (1). From Lashari and Zaman
[21], if (𝜒, 𝑢) is an optimal solution of an optimal control

problem, then there exists a nontrivial vector function 𝜆 =

(𝜆1, 𝜆2, 𝜆3, . . . , 𝜆𝑛) satisfying the following equations:

0 =
𝜕𝐻 (𝑡, 𝜒, 𝑢, 𝜆)

𝜕𝑢

𝜆
󸀠
=
𝜕𝐻 (𝑡, 𝜒, 𝑢, 𝜆)

𝜕𝜒

𝑑𝜒

𝑑𝑡
= −

𝜕𝐻 (𝑡, 𝜒, 𝑢, 𝜆)

𝜕𝜆
.

(48)

Hence the necessary conditions of the Hamiltonian, 𝐻, can
be applied in (45).

Theorem 6. For the optimal control triple (𝑢∗
1
, 𝑢
∗

2
, 𝑢
∗

3
) with

their optimal state solutions (𝑆∗
ℎ
, 𝐸
∗

ℎ
, 𝐼
∗

ℎ
, 𝑅
∗

ℎ
, 𝑆
∗

V , 𝐸
∗

V , 𝐼
∗

V ) that
minimizes Γ(𝑢1, 𝑢2, 𝑢3) over Φ2, then there exist adjoint
variables (𝜆1, 𝜆2, 𝜆3, 𝜆4, 𝜆5, 𝜆6, 𝜆7) satisfying

−𝜆
󸀠

1
= (1 − 𝜅1) 𝜃𝜆1 + (1 − 𝑢1) 𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝐼V

− 𝜇ℎ𝜆1 + 𝜃𝜅1𝜆2,

−𝜆
󸀠

2
= (1 − 𝜅1) 𝜃𝜆1 + 𝜃𝜅1𝜆2 + 𝛼ℎ (𝜆3 − 𝜆2) − 𝜇ℎ𝜆2 + 𝐶1,

−𝜆
󸀠

3
= (1 − 𝜅1) 𝜃𝜆1 + (𝜙 + 𝜂𝑢2) [(1 − 𝜌) 𝜆1 + 𝜌𝜆4]

+ 𝜃𝜅1𝜆2 − (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) 𝜆3

+ 𝛽ℎV𝜗 (𝜆6 − 𝜆5) 𝑆V + 𝐶2,

−𝜆
󸀠

4
= (1 − 𝜅1) 𝜃𝜆1 + 𝜓𝜆1 + 𝜃𝜅1𝜆2 − (𝜇ℎ + 𝜓) 𝜆4,

−𝜆
󸀠

5
= 𝛽ℎV𝜗 (𝜆6 − 𝜆5) 𝐼ℎ − (𝜇V + 𝜏𝑢3) 𝜆5 + 𝐶3,

−𝜆
󸀠

6
= 𝛼V (𝜆7 − 𝜆6) − (𝜇V + 𝜏𝑢3) 𝜆6 + 𝐶3,

−𝜆
󸀠

7
= (1 − 𝑢1) 𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝑆ℎ − (𝜇V + 𝜏𝑢3) 𝜆7 + 𝐶3

(49)

with transversality conditions

𝜆1 (𝑇𝑓) = 𝜆2 (𝑇𝑓) = 𝜆3 (𝑇𝑓) = 𝜆4 (𝑇𝑓)

= 𝜆5 (𝑇𝑓) = 𝜆6 (𝑇𝑓) = 𝜆7 (𝑇𝑓) = 0.

(50)

Additionally, the optimal control triple (𝑢∗
1
, 𝑢
∗

2
, 𝑢
∗

3
) that mini-

mizes Γ over Φ2 satisfies the optimality condition

𝑢
∗

1
= max{0,min(1,

𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝐼
∗

V 𝑆
∗

ℎ

𝐴1

)} ,

𝑢
∗

2
= max{0,min(1,

𝜂 (𝜆3 + 𝜌 (𝜆1 − 𝜆4) − 𝜆1) 𝐼
∗

ℎ

𝐴2

)} ,

𝑢
∗

3
= max{0,min(1,

𝜏 (𝜆5𝑆
∗

V + 𝜆6𝐸
∗

V + 𝜆7𝐼
∗

V )

𝐴3

)} .

(51)

Proof. The adjoint equations can be determined by using
the differential equations governing the adjoint variables.
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The Hamiltonian function, 𝐻, is differentiated with respect
to 𝑆ℎ, 𝐸ℎ, 𝐼ℎ, 𝑅ℎ, 𝑆V, 𝐸V, and 𝐼V. The adjoint equation is given
by

−
𝑑𝜆1

𝑑𝑡
=
𝜕𝐻

𝜕𝑆ℎ

= (1 − 𝜅1) 𝜃𝜆1 + (1 − 𝑢1) 𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝐼V

− 𝜇ℎ𝜆1 + 𝜃𝜅1𝜆2,

−
𝑑𝜆2

𝑑𝑡
=
𝜕𝐻

𝜕𝐸ℎ

= (1 − 𝜅1) 𝜃𝜆1 + 𝜃𝜅1𝜆2

+ 𝛼ℎ (𝜆3 − 𝜆2) − 𝜇ℎ𝜆2 + 𝐶1,

−
𝑑𝜆3

𝑑𝑡
=
𝜕𝐻

𝜕𝐼ℎ

= (1 − 𝜅1) 𝜃𝜆1

+ (𝜙 + 𝜂𝑢2) [(1 − 𝜌) 𝜆1 + 𝜌𝜆4] + 𝜃𝜅1𝜆2

− (𝜙 + 𝜂𝑢2 + 𝜇ℎ + 𝛿ℎ) 𝜆3 + 𝛽ℎV𝜗 (𝜆6 − 𝜆5) 𝑆V + 𝐶2,

−
𝑑𝜆4

𝑑𝑡
=
𝜕𝐻

𝜕𝑅ℎ

= (1 − 𝜅1) 𝜃𝜆1 + 𝜓𝜆1 + 𝜃𝜅1𝜆2 − (𝜇ℎ + 𝜓) 𝜆4,

−
𝑑𝜆5

𝑑𝑡
=
𝜕𝐻

𝜕𝑆V
= 𝛽ℎV𝜗 (𝜆6 − 𝜆5) 𝐼ℎ − (𝜇V + 𝜏𝑢3) 𝜆5 + 𝐶3,

−
𝑑𝜆6

𝑑𝑡
=
𝜕𝐻

𝜕𝐸V
= 𝛼V (𝜆7 − 𝜆6) − (𝜇V + 𝜏𝑢3) 𝜆6 + 𝐶3,

−
𝑑𝜆7

𝑑𝑡
=
𝜕𝐻

𝜕𝐼V
= (1 − 𝑢1) 𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝑆ℎ

− (𝜇V + 𝜏𝑢3) 𝜆7 + 𝐶3,

(52)

with the transversality conditions

𝜆1 (𝑇𝑓) = 𝜆2 (𝑇𝑓) = 𝜆3 (𝑇𝑓) = 𝜆4 (𝑇𝑓)

= 𝜆5 (𝑇𝑓) = 𝜆6 (𝑇𝑓) = 𝜆7 (𝑇𝑓) = 0.

(53)

Solving 𝜕𝐻/𝜕𝑢1 = 0, 𝜕𝐻/𝜕𝑢2 = 0, and 𝜕𝐻/𝜕𝑢3 = 0,
evaluating at the optimal control on the interior of the control
set, where 0 < 𝑢𝑖 < 1, for 𝑖 = 1, 2, 3, and letting 𝑆ℎ = 𝑆

∗

ℎ
,

𝐸ℎ = 𝐸
∗

ℎ
, 𝐼ℎ = 𝐼

∗

ℎ
, 𝑅ℎ = 𝑅

∗

ℎ
, 𝑆V = 𝑆

∗

V , 𝐸V = 𝐸
∗

V , and 𝐼V = 𝐼
∗

V
yields

𝜕𝐻

𝜕𝑢1

= 𝐴𝑢
∗

1
+ 𝛽Vℎ𝜗𝜆1𝐼

∗

V 𝑆
∗

ℎ
− 𝛽Vℎ𝜗𝜆2𝐼

∗

V 𝑆
∗

ℎ
= 0,

𝜕𝐻

𝜕𝑢2

= 𝐴2𝑢2 + (1 − 𝜌) 𝜂𝜆1𝐼
∗

ℎ
− 𝜂𝜆3𝐼

∗

ℎ
+ 𝜂𝜌𝜆4𝐼

∗

ℎ
= 0,

𝜕𝐻

𝜕𝑢3

= 𝐴3𝑢
∗

3
− 𝜏𝜆5𝑆

∗

V − 𝜏𝜆6𝐸
∗

V − 𝜏𝜆7𝐼
∗

V = 0,

(54)

for which

𝑢
∗

1
=
𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝐼

∗

V 𝑆
∗

ℎ

𝐴1

,

𝑢
∗

2
=
𝜂 (𝜆3 + 𝜌 (𝜆1 − 𝜆4) − 𝜆1) 𝐼

∗

ℎ

𝐴2

,

𝑢3 =
𝜏 (𝜆5𝑆

∗

V + 𝜆6𝐸
∗

V + 𝜆7𝐼
∗

V )

𝐴3

.

(55)

Then

𝑢
∗

1
= max{0,min(1,

𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝐼
∗

V 𝑆
∗

ℎ

𝐴1

)} ,

𝑢
∗

2
= max{0,min(1,

𝜂 (𝜆3 + 𝜌 (𝜆1 − 𝜆4) − 𝜆1) 𝐼
∗

ℎ

𝐴2

)} ,

𝑢
∗

3
= max{0,min(1,

𝜏 (𝜆5𝑆
∗

V + 𝜆6𝐸
∗

V + 𝜆7𝐼
∗

V )

𝐴3

)} .

(56)

We achieve the uniqueness of the optimal control for small
𝑇𝑓 due to the prior boundedness of the state and adjoint
functions and the resulting Lipschitz structure of the ordinary
differential equations. The uniqueness of the optimal control
triple trails from the uniqueness of the optimal system, which
consists of (1), (49), and (50) with characterization of the
optimal control (51).

The optimality system is comprised of the state system
(1), the adjoint system (49), initial conditions at 𝑡 = 0,
boundary conditions (50), and the characterization of the
optimal control (51). Hence the state and optimal control can
be calculated using the optimality system. Hence using the
fact that the second derivatives of the Lagrangianwith respect
to 𝑢1, 𝑢2, and 𝑢3, respectively, are positive indicates that the
optimal problem is a minimum at controls 𝑢∗

1
, 𝑢∗
2
, and 𝑢∗

3
.

Substituting 𝑢∗
1
, 𝑢∗
2
, and 𝑢∗

3
in the system (1), we obtain

𝑑𝑆
∗

ℎ

𝑑𝑡
= Λ ℎ + (1 − 𝜅1) 𝜃𝑁

∗

ℎ

+ (𝜙 + 𝜂𝑢2) (1 − 𝜌) 𝐼
∗

ℎ
− 𝛽Vℎ𝜗𝐼

∗

V 𝑆
∗

ℎ

× (1−max{0,min(1,
𝛽Vℎ𝜗 (𝜆2−𝜆1) 𝐼

∗

V 𝑆
∗

ℎ

𝐴1

)})

− 𝜇ℎ𝑆
∗

ℎ
+ 𝜓𝑅
∗

ℎ
,

𝑑𝐸
∗

ℎ

𝑑𝑡
= 𝛽Vℎ𝜗𝐼

∗

V 𝑆
∗

ℎ

×(1 −max{0,min(1,
𝛽Vℎ𝜗 (𝜆2−𝜆1) 𝐼

∗

V 𝑆
∗

ℎ

𝐴1

)})

+ 𝜅1𝜃𝑁
∗

ℎ
− 𝛼ℎ𝐸

∗

ℎ
− 𝜇ℎ𝐸

∗

ℎ
,
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𝑑𝐼
∗

ℎ

𝑑𝑡

= 𝛼ℎ𝐸
∗

ℎ

− (𝜙 + 𝜂

×(max{0,min(1,
𝜂 (𝜆3+𝜌 (𝜆1−𝜆4)−𝜆1) 𝐼

∗

ℎ

𝐴2

)})

+𝜇ℎ + 𝛿ℎ) 𝐼
∗

ℎ
,

𝑑𝑅
∗

ℎ

𝑑𝑡
= (𝜙 + 𝜂 (max {0,min (1, 𝜂 (𝜆3 + 𝜌 (𝜆1−𝜆4)−𝜆1)

× 𝐼
∗

ℎ
× (𝐴2)

−1
)})) 𝜌𝐼ℎ

− (𝜇ℎ + 𝜓)𝑅ℎ,

𝑑𝑆
∗

V

𝑑𝑡

= Λ V − (𝜇V + 𝜏

× (max {0,min (1, 𝜏 (𝜆5𝑆
∗

V + 𝜆6𝐸
∗

V + 𝜆7𝐼
∗

V )

×(𝐴3)
−1
)})) 𝑆

∗

V − 𝛽ℎV𝜗𝐼
∗

ℎ
𝑆
∗

V ,

𝑑𝐸
∗

V

𝑑𝑡
= 𝛽ℎV𝜗𝐼

∗

ℎ
𝑆
∗

V

− (𝜇V + 𝜏 (max {0,min (1, 𝜏 (𝜆5𝑆
∗

V + 𝜆6𝐸
∗

V + 𝜆7𝐼
∗

V )

×(𝐴3)
−1
)})) 𝐸

∗

V − 𝛼V𝐸
∗

V ,

𝑑𝐼
∗

V

𝑑𝑡
= 𝛼V𝐸V

− (𝜇V + 𝜏 (max {0,min (1, 𝜏 (𝜆5𝑆
∗

V + 𝜆6𝐸
∗

V +𝜆7𝐼
∗

V )

×(𝐴3)
−1
)})) 𝐼

∗

V

(57)

with𝐻∗ at (𝑡, 𝑆∗
ℎ
, 𝐸
∗

ℎ
, 𝐼
∗

ℎ
, 𝑅
∗

ℎ
, 𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝜆1, 𝜆2, . . . , 𝜆7):

𝐻
∗

= 𝐶1𝐸ℎ + 𝐶2𝐼ℎ + 𝐶3𝑁V

+
1

2
(𝐴1(max{0,min(1,

𝛽Vℎ𝜗 (𝜆2 − 𝜆1) 𝐼
∗

V 𝑆
∗

ℎ

𝐴1

)})

2

+ 𝐴2 (max {0,min (1, 𝜂 (𝜆3 + 𝜌 (𝜆1 − 𝜆4) − 𝜆1) 𝐼
∗

ℎ

×(𝐴2)
−1
)})
2

+𝐴3(max{0,min(1,
𝜏(𝜆5𝑆

∗

V + 𝜆6𝐸
∗

V + 𝜆7𝐼
∗

V )

𝐴3

)})

2

)

+ 𝜆1

𝑑𝑆
∗

ℎ

𝑑𝑡
+ 𝜆2

𝑑𝐸
∗

ℎ

𝑑𝑡
+ 𝜆3

𝑑𝐼
∗

ℎ

𝑑𝑡
+ 𝜆4

𝑑𝑅
∗

ℎ

𝑑𝑡
+ 𝜆5

𝑑𝑆
∗

V

𝑑𝑡

+ 𝜆6

𝑑𝐸
∗

V

𝑑𝑡
+ 𝜆7

𝑑𝐼
∗

V

𝑑𝑡
.

(58)
We solve the systems (57) and (58) numerically to determine
the optimal control and the state.

3.3. Numerical Results on Optimal Control Analysis. In this
section we discuss the method and present the results ob-
tained from solving the optimality system numerically using
the parameter values in Table 11.

Here we consider the optimal control values of the three
intervention strategies, namely, ITNs, IRS, and treatment,
which are common strategies in Karonga District, Malawi. In
Figure 2(a) we see that if the three intervention strategies are
effectively implemented and used, they have a positive impact
compared to having ITNs and IRS (𝑢1 and 𝑢3), respectively,
as the only intervention strategies in the community. The
initial increase in the infected human population in the
graph with interventions of ITNs and IRS may be due to the
fact that some people refused to have their houses sprayed
with insecticide chemicals due to their primitive traditional
beliefs. In addition, as Karonga District is along the shore of
Lake Malawi, some members of the community do not use
ITNs owing to negative beliefs in the chemicals used and also
due to hot weather in the districts. On the other hand, the
district is waterlogged and hence this leads to an increase in
mosquitoes breeding sites.

Similar results appear in Figure 2(b) where the impact of
the intervention strategies are compared with the use of ITNs
(𝑢1) and treatment (𝑢2). The results show that the concurrent
administered intervention strategies lead to a decrease in
the number of infected human population much faster than
when ITNs and treatment are used as the only intervention
strategies in the community. A similar occurrence is observed
when IRS (𝑢3) and treatment (𝑢2) are used as the only means
of intervention strategies in the community (see Figure 2(c)).

In addition, we also looked at the effects of these inter-
vention measures as a stand-alone approach of preventing
or controlling malaria disease in the community. Figure 2(d)
depicts the comparison of the effects of each intervention
strategy and the effect of a multi-intervention strategy. The
figure indicates that if the three combined intervention mea-
sures are effectively practised, the infected human population
is much lower compared to a situation where only one
intervention strategy is used. The graph of treatment (𝑢2)
practised as the only means of intervention measure shows
a high number of infected human population owing to a
number of reasons.One of the reasons is that, in this situation,
the mosquito population is unaffected; hence the infected
mosquitoes will still be available in the community causing
more infections to susceptible humans. Furthermore, most
people in the area do not visit the dispensary or hospital
for medication when they observe signs or symptoms of
malaria disease since they need to cover long distances to
reach the hospital. The interviews conducted revealed that
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Figure 2: Simulations of model (1) showing the effects of intervention measures.

some individuals opt to simply use the medication left by the
previous patient or they buy medicines from the shops and
use it before being diagnosed. Consequently treatment needs
to be consolidatedwith preventivemeasures such as ITNs and
IRS for optimal control.

The epidemiological implication of the above result is
that malaria could be eliminated from the community if
prevention and treatment can lead to a situation where R𝑒
is less than unity. However, other factors need to be consid-
ered.
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Table 4: Major diseases in the community-malaria (malaria transmission-bite from an infected mosquito cross tabulation).

Malaria transmission-bite from an infected mosquito Total
No Yes

Major diseases in the community-malaria
No Count 11 15 26

% of total 2.2% 3.0% 5.3%

Yes Count 73 393 466
% of total 14.8% 79.9% 94%

Total Count 84 408 492
% of total 17.1% 82.9% 100.0%

4. Analysis of Malaria Data from
Karonga District

A structured questionnaire was developed and administered
in KarongaDistrict,Malawi, in order to determine how inter-
vention strategies of malaria disease are being practised and
their effectiveness. The questionnaire was used to conduct
a directed one to one interview, on the respondents who
were randomly sampled, with total size of 502, which means
that 502 questionnaires were administered. The enumerators
received training before they went to the field, where the
questionnaire was discussed with the respondents.

We consider statistical results of how intervention strate-
gies are practised. Different graphs and tables are depicted for
all the prevention and treatment strategies.

Knowledge of malaria transmission is a key to malaria
prevention [25]. Figure 3 shows that 409 respondents (81.5%)
stated that malaria transmission occurs when bitten by an
infected mosquito, contrary to popular belief in developing
countries (UNICEF (2000) [26]) that someonemay be infect-
ed with malaria when soaked in water, where most respon-
dents (96.8%) answered “no.” Table 4 shows the number of
individuals who mentioned that malaria disease and malaria
transmission are through a bite from an infected mosquito.
79.9% responded “yes” to both malaria being a major disease
andmalaria transmission being acquired through a bite from
an infected mosquito.

According to the Center for Disease Control and Pre-
vention [27], prevention is better than cure and there are a
number of methods which people can use to prevent malaria.
Most of the respondents (90.4%) stated that they use ITNs
or long lasting insecticide treated bed nets (LLITNs) as a
method of preventing occurrence of malaria. Only 16.5%
of the respondents mentioned that their houses are sprayed
(IRS) (see Figure 4). From Table 5, there are about 1% cases
of malaria occurrences and about 2.2% respondents had not
experienced any malaria cases after spraying their houses
with IRS. Some of the respondents used nets as well as spray-
ing their houses. Table 6 shows that 35.5% of the respondents
had experienced malaria occurrence after their houses were
sprayed and also used the bed nets. From the respondents
who had been using ITNs or LLITNs, 44.9% did not have
any malaria occurrence. However, about 45.9% had had an
occurrence ofmalaria despite the use of bednets (seeTable 7).
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Figure 4: Methods of preventing malaria.

A chi-square test of independence was conducted with
a chi-square value of 1.454 since the cross tabulation is a
two by two table. The assumption of no cells having an
expected value less than 5 was not violated, hence the use
of chi-square test. Table 8 shows that a calculated value of
1.454 was obtained. The level of significance used for the chi-
square test was 0.05 which was compared to a 𝑃 value of
0.228. Since 0.228 > 0.05, the null hypothesis was rejected;
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Table 5: Malaria occurrence after spraying and without using net.

Frequency Percent
No 11 2.2
Yes 5 1.0
No response 486 96.8
Total 502 100.0

Table 6: Malaria occurrence after spraying and using net.

Frequency Percent
No 195 38.8
Yes 178 35.5
No response 129 25.7
Total 502 100.0

hence, there was an association between malaria occurrence
and preventive methods (use of ITNs or LLITNs) and their
proportions are not significantly different. In Table 10, 𝑎
indicates the number of cells with expected count less than 5
while 𝑏 shows Yates continuity correction which is calculated
for 2 by 2 table. The relationship of indoor residual spraying
(IRS) against the occurrence of malaria after the house was
sprayed and use of bed nets was examined. From Table 9
for the respondents who had not had their houses sprayed,
42.5% did not have an occurrence of malaria, while for those
respondents who had their houses sprayed, 38.4% had an
occurrence ofmalaria. A chi-square test of independence was
conductedwith a chi-square value of 0.019.The assumption of
no cells having an expected value less than 5 was not violated,
hence the use of chi-square test.The level of significance used
for the chi-square test was 0.05 which was compared to a 𝑃
value of 0.889. Table 10 shows a 𝑃 value of 0.889 > 0.05,
which means there was an association between preventive
method (IRS) and malaria occurrence after spraying and
using ITNs but, however, there were no significant differences
in proportions between preventive methods and malaria
occurrence after spraying.

Despite knowledge of malaria transmission and preven-
tion, malaria cases still occur [28]. About 50% of the respon-
dents who used ITNs mentioned that malaria still occurs.
This is probably because bed nets are only used when going
to bed, hence the vulnerability. Furthermore the proportion
of those respondents who used ITNs or LLITNs and suffered
from malaria was not significantly different from those who
did not use ITNs or LLITNs but suffer from malaria (𝜒2 =
1.454, calculated 𝑃 value = 0.228, level of significance of
0.05). Of the respondents who had had their houses sprayed
(about 3.2%), 1% experienced an occurrence of malaria.
Those respondentswhohad their houses sprayed and suffered
from malaria even though they had used ITNs or LLITNs
showed no significant difference with those respondents who
had had their houses sprayed and had not suffered from
malaria even though they had used ITNs or LLITNs (𝜒2 =
0.019, calculated𝑃 value = 0.889, level of significance of 0.05).

5. Numerical Results

The numerical simulations and analysis were carried out
using a fourth order Runge-Kutta scheme in Matlab. Our
aim was to determine and verify the analytic results and the
stability of themodel system (1). Someof the parameter values
were calculated from the data collected in Karonga District,
Malawi, between themonths of January and September, 2013.
The other parameter values were obtained from the National
Statistical Office (NSO) in Zomba, Malawi, some have been
assumed, and very few have been taken from the literature.
The Government of Malawi has organized a number of
intervention strategies in order to fight against malaria in
the country through the National Malaria Control Program
(NMCP) [29].

5.1. Dynamics of Human State Variables for theMalariaModel
without Intervention Strategies. The analysis of the model
without intervention strategies was carried out in order to
determine the dynamics of the disease in the population.
The simulation was generated in a four-year time frame
since the first campaign of malaria intervention strategies
in Karonga District was performed in the year 2010. The
susceptible human population is decreasing exponentially
(see Figure 5(a)) showing that most susceptible humans are
exposed to the disease due to unavailability of intervention
strategies. This has led to an exponential increase in the
exposed human population (Figure 5(b)) and the infected
population (Figure 5(c)) with R0 = 1.8894. The infected
human population increases due to an increase in the expo-
sure of susceptible individuals to Plasmodium falciparum.
This means that the Plasmodium falciparum will continue
to multiply in the human and mosquito populations since
there are no intervention strategies to reduce or eradicate
the disease. Hence, there is a need of having intervention
strategies in order to reduce or eradicate the disease.

5.2. Prevalence in the Malaria Model without Intervention
Strategies. Prevalence is defined as the ratio of the number
of cases of the disease in a population to the total number
of individuals in population at a given time. The disease
prevalence in Figure 6 shows a steady increase during the first
days of infection due to a high number of individuals without
Plasmodium falciparum. The graph drops asymptotically due
to a reduced number of susceptible human population,
showing evidence that communities can be wiped out with
malaria disease if none of the intervention methods are
speedily put into place.

5.3. Dynamical System of the Individual Population State
Variables in the Model with Intervention Strategies. We now
consider the effects of the three intervention strategies (ITNs,
IRS, and treatment) which are campaigned concurrently
in Karonga District, Malawi. It appears that if the three
intervention strategies are effectively monitored and imple-
mented, then there is a positive impact of combating malaria
in the community. In Figures 7(a) and 7(b), an increase is
observed in the human population recovering comparedwith
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Figure 5:The changes in the four state variables of the malaria model without intervention strategies illustrating the dynamics, with time, of
(a) susceptible individuals, (b) exposed individuals, (c) infected individuals, and (d) recovered human individuals.

the exposed and infected individuals. This steady increase
in the recovery class is due to the readily available effec-
tive prevention strategies and treatment. Figure 7(a), where
human population is plotted against time on a four-year
period, shows a steady increase in the recovery of the human
population. It is evidenced that during this period chemicals
which are available in the mosquito nets and sprayed in the
houses are effective in reducing the mosquito population and

at the same time reducing the contact rate between the human
population and the mosquito population. Treatment strategy
has also played an important role in reducing the number of
infected individuals thus leading to an increase in recovered
individuals.

A slight decrease in the gradient of the recovered human
population is observed in Figure 7(b) as the period of using
prevention and treatment strategies available is increased.



Abstract and Applied Analysis 17

Table 7: Method of preventing malaria use of ITN or LLITN (use of net and malaria occurrence cross tabulation).

Use of net and malaria
TotalOccurrence

No Yes

Method of preventing use of ITN or LLITN
No Count 17 27 44

% of total 3.6% 5.7% 9.2%

Yes Count 214 219 433
% of total 44.9% 45.9% 90.8%

Total Count 231 246 477
% of total 48.4% 51.6% 100.0%
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Figure 6: Exposed humans without any intervention strategies.

Despite being given ITNs and spraying long lasting chemicals
in the houses, the campaign needs to be revisited to confirm
whether the chemicals are still effective. The decrease of the
graph explains that the effectiveness of the treated bed nets
and the residual spraying deteriorates with time. Hence there
is need to assess the right time interval to carry out the
respraying of the houses and the resupply of ITNs.

6. Conclusions

An optimal control model (using a deterministic system
of nonlinear ordinary differential equations) for the trans-
mission dynamics of malaria in Karonga District, Malawi,
was presented. The model considered a varying total human
population that incorporated recruitment of new individuals
into the susceptible class through birth or immigration,
and those immigrant individuals who were exposed to the
disease were recruited into the exposed individual class. The
prevention (IRS and ITNs) and other treatment intervention
strategies were included in the model to assess the potential

Table 8: Chi-square test of use of ITN or LLITN and use of net and
malaria occurrence.

Value df Asymp. sig. (2-sided)
Pearson chi-square 1.861

𝑎 1 0.173
Continuity correctionb 1.454 1 0.228

impact of these strategies on the transmission dynamics of
the disease.

Our model incorporated features that were potentially
effective to control or reduce the transmission of malaria
disease in Malawi. Analysis of the optimal control model
revealed that there exists a domain where the model is
epidemiologically and mathematically well-posed. We also
computed the effective reproduction number, R𝑒, and then
qualitatively analyzed the existence and stability of their
model equilibria. The basic reproduction number, R0, was
obtained from the threshold reproduction number by elimi-
nating all the intervention strategies. Then it was proved that
ifR𝑒 < 1, the disease cannot survive in the district. Hence the
effective reproduction number,R𝑒, is an essential indication
of the effort required to eliminate the disease. It was also
found thatR𝑒 ≤ R0 which implied that increased preventive
and control intervention practices had a positive impact on
the reduction of R𝑒. Thus, malaria can be eradicated in
the district by deployment of a combination of intervention
strategies such as effective mass drug administration and
vector control (LLITNs and IRS) to combat and eventually
eliminate the disease.

Analysis of the model supported that effective control or
eradication of malaria can be achieved by the combination
of protection and treatment measures. We have seen that
when the three intervention strategies are combined, there
is a greater reduction in the number of exposed and infected
individuals. The prevention strategies played a greater role in
reducing the number of infected individuals by lowering the
contact rate between the mosquito and human populations,
for instance, through the use of ITNs. On the other hand both
prevention strategies led to the reduction of the mosquito
population hence lowering the infectedmosquito population.
Effective treatment consolidated the prevention strategies.
This study provides useful tools for assessing the effectiveness
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Table 9: Method of preventing malaria house sprayed IRS (malaria occurrence after spraying and using net cross tabulation).

Malaria occurrence after spraying and using net Total
No Yes

Method of preventing house spread (IRS)
No Count 158 143 301

% of total 42.5% 38.4% 80.9%

Yes Count 36 35 71
% of total 9.7% 9.4% 19.1%

Total Count 194 178 372
% of total 52.2% 47.8% 100.0%
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Figure 7: The dynamics of the exposed and infected individuals in the model with intervention strategies forR𝑒 = 0.6922.

of a combination of the three intervention strategies and
analyzing the potential impact of prevention with treatment.

Demographic findings also showed that the preventive
measures, namely, ITNs and IRS, if effectively practised, can
help to reduce malaria transmission. These primary health
intervention strategies are very important as they reduce the
mosquito population and contact between the human and
mosquito populations.These practiceswill lead to a reduction
in the transfer of Plasmodium between the host and the
vector.However,Dzinjalamala [30] states thatmalaria control
in Malawi is still heavily reliant on chemotherapy. Hence the
approach needs to change and effectively accommodate the
campaign strategy taking place inKarongaDistrict in order to
combat the disease. Therefore, the presumptive treatment for
fever and the primary health intervention practices (LLITNs
and IRS) should both be effectively implemented or practised
in order to reduce or eliminate malaria disease.

Using the optimal values of the three intervention prac-
tices (LLITNs, IRS, and treatment), the results showed that
the combination of the three intervention strategies has a
positive and greater impact in eliminating or reducing the
epidemic of malaria.This can be achieved when themeasures
are effectively implemented by the suppliers and effectively
practised by the beneficiaries (the community members).

To effectively control and potentially eradicate the spread
of malaria, treatment programs must be complemented with
other intervention strategies such as vector reduction and
personal protection. Intervention practices that involve both
prevention and treatment controls yield relatively better
results.The combination of these strategies can play a positive
role in Karonga District in reducing or eradicating malaria
disease. Therefore, control and prevention efforts aimed at
lowering the infectivity of infected individuals to themosqui-
to vector will contribute greatly to the reduction of malaria
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Table 10: House sprayed IRS: malaria occurrence after spraying and
using net.

Value df Asymp. sig. (2-sided)
Pearson chi-square 0.074

𝑎 1 0.786
Continuity correctionb 0.019 1 0.889

Table 11: Table for parameter values of the optimal malaria model.

Symbol Value Source
Λ ℎ 0.02326 Calculated
𝜃 0.3 Calculated
𝜇𝑣 0.1429 [6]
𝛼
ℎ

1/17 [7]
𝛽ℎ𝑣 0.0375 Assumed
𝜌 0.035 Assumed
Ψ 0.0018 Assumed
𝑢1(𝑡) 0.0904 Calculated
𝑢3(𝑡) 0.076 Calculated
𝜂 0.4 Assumed
𝑁ℎ 20,000 [8]
𝜅1 0.003 Calculated
𝜇ℎ 0.04326 [8]
𝛿
ℎ

0.03454 [8]
𝛽𝑣ℎ 0.0833 [9]
𝜗 0.35 Assumed
𝜙 0.3 Assumed
𝛼𝑣 0.1 Assumed
𝑢2(𝑡) 0.165 Calculated
𝜏 0.01 Assumed
Λ 𝑣 1000 day−1 [7]
𝑁𝑣 3,500 Assumed

transmission and this will eventually lower the prevalence of
malaria and the incidence of the disease in the community.

The proposed model has some limitations. We did not
consider infective immigrants. Also, the population was not
stratified by age as it is well-known that malaria dispropor-
tionately affects children under the age of 5 years. Finally,
there are various control measures out there and only three
basic ones were considered herein.
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