
Research Article
Dynamic Crack Analysis in Isotropic/Orthotropic Media via
Extended Isogeometric Analysis

Tiantang Yu, Yongling Lai, and Shuohui Yin

Department of Engineering Mechanics, Hohai University, 1 Xikang Road, Nanjing 210098, China

Correspondence should be addressed to Tiantang Yu; tiantangyu@hhu.edu.cn

Received 8 February 2014; Revised 13 March 2014; Accepted 13 March 2014; Published 8 April 2014

Academic Editor: Hung Nguyen-Xuan

Copyright © 2014 Tiantang Yu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The extended isogeometric analysis (X-IGA) is the combination of the extended finite element method (X-FEM) and the
isogeometric analysis (IGA), so the X-IGA possesses the advantages of both methods. In this paper, the X-IGA is extended to
investigate the dynamic stress intensity factors of cracked isotropic/orthotropic media under impact loading. For this purpose, a
corresponding dynamic X-IGA model is developed, the Newmark time integration scheme is used to achieve a dynamic response,
and the dynamic stress intensity factors are evaluated through the contour interaction integral technique. Numerical simulations
show that the X-IGA results agree with other available reference solutions, and accurate results can be obtained by using the X-IGA
with a relatively coarse mesh.

1. Introduction

Among existing numerical methods, the extended finite
element method (X-FEM), which was developed in 1999 by
Belytschko and his coworkers [1, 2], is the most effective
method for solving discontinuity problems. In the X-FEM,
the geometry of the discontinuity is independent of the
computationalmesh; therefore, the computationalmesh does
not need to be updated in the simulation of the propagation
of discontinuities. In the past decades, the extensive literature
on improving and applying the original X-FEM in modeling
discontinuities has been published [3–15]. The X-FEM aims
to enrich standard finite element approximation by using
discontinuous basis functions in the framework of partition
of unity.

The standard finite element approximation is element-
based polynomial approximation, and it yields discretization
errors in complex geometry. In order to overcome the
drawback, the isogeometric analysis (IGA) was proposed by
Hughes et al. [16] in 2005. The principle of the IGA is that
nonuniform rational B-splines (NURBS) basis functions are
employed as shape functions for geometric description and
field approximation. The IGA has some unique advantages
[16], so it has been developed and applied in many fields

including structuralmechanics [17–24], solidmechanics [25–
27], fluid mechanics [28], and contact mechanics [29].

Recently, the IGA has been improved with enrichment
functions to solve linear elastic fracture mechanics problems
[30–32] and curved interface problems [33]. The extended
isogeometric analysis (X-IGA) was proposed in [31] and
contains the inherent advantages of both IGA and X-FEM.
Currently, the X-IGA is further developed to analyze cracked
orthotropic media [34]. In this study, the X-IGA is extended
to investigate the dynamic fracture behavior of station-
ary cracks in isotropic/orthotropic media. A corresponding
dynamic X-IGA model is developed, and the Newmark time
integration scheme is used to achieve a dynamic response.
The dynamic stress intensity factors (DSIFs) are evaluated by
using the contour interaction integral technique.

The paper is organized as follows. Section 2 briefly
reviews the fundamentals of NURBS-based IGA.The X-IGA
for dynamic cracked isotropic/orthotropicmedia is described
in Section 3. The DSIFs are derived by using the contour
interaction integral technique in Section 4. Section 5 presents
the numerical results obtained via X-IGA and compares
the results with other solutions. Finally, conclusions and
prospects are drawn in Section 6.
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2. NURBS-Based Isogeometric Analysis

In the CAD, a two-dimensional NURBS surface can be
constructed as [35]

S (𝜉, 𝜂) =
𝑛

∑
𝑖=1

𝑚

∑
𝑗=1

𝑅𝑝,𝑞
𝑖,𝑗

(𝜉, 𝜂)B
𝑖,𝑗
, (1)

where 𝑅𝑝,𝑞
𝑖,𝑗
(𝜉, 𝜂) is the NURBS basis function; 𝑝 and 𝑞 are,

respectively, the orders of basis functions in the 𝜉 direction
and the 𝜂 direction; B

𝑖,𝑗
represents the coordinate of control

point; and 𝑛 and𝑚 are the numbers of basis functions in the
𝜉 direction and the 𝜂 direction, respectively.

In NURBS-based isogeometric analysis [16], the displace-
ment field u is approximated similarly to the isoparametric
finite element method as follows:

u =
𝑛

∑
𝐼=1

𝑅
𝐼
(𝜉) u
𝐼
, (2)

where 𝑛 is the number of the control points; 𝜉 is the para-
metric coordinate; 𝑅

𝐼
(𝜉) denotes the NURBS basis function

at control point 𝐼; and u
𝐼
is the displacements of control point

𝐼.

3. X-IGA for Dynamic Cracked Media

3.1. Displacement Approximation. Similar to the X-FEM, the
X-IGA aims to enrich the standard IGA approximation by

using additional functions on the basis of the partition
of unity to model discontinuities. For crack problems, the
enriched displacement approximation can be expressed as

uℎ (x) = ∑
𝑖∈𝑁
𝑠

𝑅
𝑖
(x) u
𝑖
+ ∑
𝑗∈𝑁

cut

𝑅
𝑗
(x) [𝐻 (x) − 𝐻 (x

𝑗
)] a
𝑗

+ ∑
𝑘∈𝑁

tip

𝑅
𝑘
(x)
4

∑
𝛼=1

[𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑘
)] b
𝑘𝛼
,

(3)

where 𝑅
𝑖
(x), 𝑅

𝑗
(x), and 𝑅

𝑘
(x) are the shape functions of

standard IGA (NURBS basis functions); u
𝑖
, a
𝑗
, and b

𝑘𝛼

are, respectively, the displacement and enrichment variable
vectors at control point; 𝑁𝑠, 𝑁cut, and 𝑁tip are, respec-
tively, the set of all control points in the computational
domain, the set of control points enriched with a modified
Heaviside step function 𝐻(x), and the set of control points
enriched with the crack-tip branch enrichment functions
𝐹
𝛼
(x); (𝛼 = 1, . . . , 4) ; and the basis function support of the

control point in𝑁cut is completely split by the crack, whereas
that of the control point in𝑁tip is partly split by the crack.

The modified Heaviside step function𝐻(x) is given by

𝐻(x) = {
+1 x > 0,

−1 x < 0.
(4)

The crack-tip branch enrichment functions 𝐹
𝛼
(x) for

orthotropic materials are defined as [36]

{𝐹
𝛼
(x)}4
𝛼=1

= {√𝑟 cos 𝜃1
2
√𝑔
1
(𝜃) √𝑟 cos 𝜃2

2
√𝑔
2
(𝜃) √𝑟 sin 𝜃

1

2
√𝑔
1
(𝜃) √𝑟 sin 𝜃

2

2
√𝑔
2
(𝜃)} , (5)

where 𝑟 and 𝜃 are the crack-tip local polar coordinates, and

𝑔
𝑘
(𝜃) = √(cos 𝜃 + 𝜇

𝑘𝑥
sin 𝜃)2 + (𝜇

𝑘𝑦
sin 𝜃)

2

,

𝜃
𝑘
= arctg(

𝜇
𝑘𝑦
sin 𝜃

cos 𝜃 + 𝜇
𝑘𝑥
sin 𝜃

) ,

(6)

where 𝜇
𝑘𝑥

and 𝜇
𝑘𝑦

(𝑘 = 1, 2) are crack-tip material parame-
ters and 𝜇

𝑘
= 𝜇
𝑘𝑥
+ 𝑖𝜇
𝑘𝑦

(𝑘 = 1, 2) are the roots of

𝑎
11
𝜇4 − 2𝑎

16
𝜇3 + (2𝑎

12
+ 𝑎
66
) 𝜇2 − 2𝑎

26
𝜇 + 𝑎
22
= 0, (7)

where 𝑎
𝑖𝑗
is the compliance coefficients.

Equation (5) cannot be directly used for isotropic materi-
als because of the presence of 0/0 in the equation. The crack-
tip branch enrichment functions𝐹

𝛼
(x) for isotropicmaterials

are defined as [1]

{𝐹
𝛼
(x)}4
𝛼=1

= {√𝑟 sin 𝜃

2
√𝑟 cos 𝜃

2
√𝑟 sin 𝜃

2
sin 𝜃 √𝑟 cos 𝜃

2
sin 𝜃} .

(8)

3.2. Discrete Equilibrium Equations. Considering a body Ω
with an initial traction-free crack in the state of dynamic
equilibrium, the weak form of the momentum equation is

∫
Ω

𝜌ü ⋅ 𝛿u𝑑Ω + ∫
Ω

𝜎 ⋅ 𝛿𝜀𝑑Ω = ∫
Ω

f ⋅ 𝛿u𝑑Ω + ∫
Γ

f ⋅ 𝛿u𝑑Γ,
(9)

where u is the displacement vector; 𝜎 and 𝜀 are the stress
and strain tensors, respectively; f and f are the body force
and external traction vectors, respectively; and 𝜌 is the mass
density.

The discretized form of (9) using the X-IGA approxima-
tion (3) can be written as

M�̈� + K𝛿 = F, (10)

where 𝛿 = [u a b]𝑇 is the vector of the unknown variable at
control points and M, K, and F are, respectively, the global
mass matrix, stiffness matrix, and external force vector at
control points.



Mathematical Problems in Engineering 3

The element contribution toM is

m
𝑖𝑗
=
[
[
[

[

m𝑢𝑢
𝑖𝑗

m𝑢𝑎
𝑖𝑗

m𝑢𝑏
𝑖𝑗

m𝑎𝑢
𝑖𝑗

m𝑎𝑎
𝑖𝑗

m𝑎𝑏
𝑖𝑗

m𝑏𝑢
𝑖𝑗

m𝑏𝑎
𝑖𝑗

m𝑏𝑏
𝑖𝑗

]
]
]

]

, (11)

where

m𝑢𝑢
𝑖𝑗

= ∫
Ω

𝜌(𝑅
𝑖
)
𝑇

𝑅
𝑗
𝑑Ω,

m𝑎𝑎
𝑖𝑗
= ∫
Ω

𝜌 (𝐻 (x) − 𝐻 (x
𝑖
)) (𝐻 (x) − 𝐻 (x

𝑗
)) (𝑅
𝑖
)
𝑇

𝑅
𝑗
𝑑Ω,

m𝑏𝑏
𝑖𝑗
= ∫
Ω

𝜌 (𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)) (𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑗
)) (𝑅
𝑖
)
𝑇

𝑅
𝑗
𝑑Ω,

(𝛼 = 1 ∼ 4) ,

m𝑢𝑎
𝑖𝑗
= ∫
Ω

𝜌 (𝐻 (x) − 𝐻 (x
𝑗
)) (𝑅
𝑖
)
𝑇

𝑅
𝑗
𝑑Ω,

m𝑢𝑏
𝑖𝑗
= ∫
Ω

𝜌 (𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑗
)) (𝑅
𝑖
)
𝑇

𝑅
𝑗
𝑑Ω (𝛼 = 1 ∼ 4) ,

m𝑎𝑏
𝑖𝑗
= ∫
Ω

𝜌 (𝐻 (x) − 𝐻 (x
𝑖
)) (𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑗
)) (𝑅
𝑖
)
𝑇

𝑅
𝑗
𝑑Ω

(𝛼 = 1 ∼ 4) ,

(12)

and the element contribution to K is

k
𝑖𝑗
=
[
[
[

[

k𝑢𝑢
𝑖𝑗

k𝑢𝑎
𝑖𝑗

k𝑢𝑏
𝑖𝑗

k𝑎𝑢
𝑖𝑗

k𝑎𝑎
𝑖𝑗

k𝑎𝑏
𝑖𝑗

k𝑏𝑢
𝑖𝑗

k𝑏𝑎
𝑖𝑗

k𝑏𝑏
𝑖𝑗

]
]
]

]

, (13)

where

k𝑟𝑠
𝑖𝑗
= ∫
Ω
𝑒

(B𝑟
𝑖
)
𝑇DB𝑠
𝑗
𝑑Ω (𝑟, 𝑠 = 𝑢, 𝑎, 𝑏) (14)

with

B𝑢
𝑖
= [
[

[

𝑅
𝑖,𝑥

0

0 𝑅
𝑖,𝑦

𝑅
𝑖,𝑦

𝑅
𝑖,𝑥

]
]

]

,

B𝑎
𝑖
= (𝐻 (x) − 𝐻 (x

𝑖
)) [[

[

𝑅
𝑖,𝑥

0

0 𝑅
𝑖,𝑦

𝑅
𝑖,𝑦

𝑅
𝑖,𝑥

]
]

]

,

B𝑏
𝑖
= [B𝑏1
𝑖

B𝑏2
𝑖

B𝑏3
𝑖

B𝑏4
𝑖
] ,

B𝑏𝛼
𝑖
= [
[

[

(𝑅
𝑖
(𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)))
,𝑥

0

0 (𝑅
𝑖
(𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)))
,𝑦

(𝑅
𝑖
(𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)))
,𝑦

(𝑅
𝑖
(𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)))
,𝑥

]
]

]

(𝛼 = 1 ∼ 4) .
(15)

Additionally, the element contribution to F is

f
𝑖
= [f𝑢
𝑖

f𝑎
𝑖

f𝑏
𝑖
] (16)

with

f𝑢
𝑖
= ∫
𝜕Ω
𝑒

𝑅
𝑖
t𝑑Γ + ∫

Ω
𝑒

𝑅
𝑖
t𝑑Ω,

f𝑎
𝑖
= ∫
𝜕Ω
𝑒

𝑅
𝑖
(𝐻 (x) − 𝐻 (x

𝑖
)) t𝑑Γ

+ ∫
Ω
𝑒

𝑅
𝑖
(𝐻 (x) − 𝐻 (x

𝑖
)) t𝑑Ω,

f𝑏𝛼
𝑖

= ∫
𝜕Ω
𝑒

𝑅
𝑖
(𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)) t𝑑Γ

+ ∫
Ω
𝑒

𝑅
𝑖
(𝐹
𝛼
(x) − 𝐹

𝛼
(x
𝑖
)) t𝑑Ω (𝛼 = 1 ∼ 4) ,

(17)

where t and t are the external traction and body force vectors,
respectively.

3.3. Numerical Integration Scheme. The Gauss quadrature
scheme is employed in the X-IGA. To obtain an accurate
integration for crack tip elements and elements cut by crack,
the triangular subdomain technique is used in the same way
as that of the X-FEM [1]. For additional details, refer to [31].

3.4. Time Integration Scheme. The Newmark method is
adopted for the time integration of (10). At time step 𝑛, the
discrete simultaneous equations are described as

(M + 𝛽Δ𝑡2K) �̈�
𝑛
= F
𝑛
− K[𝛿

𝑛−1
+ Δ𝑡�̇�

𝑛−1

+ (1 − 2𝛽)
Δ𝑡2

2
�̈�
𝑛−1

] ,

�̇�
𝑛
= �̇�
𝑛−1

+ [(1 − 𝛼) �̈�
𝑛−1

+ 𝛼�̈�
𝑛
] Δ𝑡,

𝛿
𝑛
= 𝛿
𝑛−1

+ �̇�
𝑛−1

Δ𝑡

+ [(
1

2
− 𝛽) �̈�

𝑛−1
+ 𝛽�̈�
𝑛
]Δ𝑡2,

(18)

where Δ𝑡 is the time step and the unconditionally stable
conditions are 𝛼 ≥ 0.5 and 𝛽 ≥ 0.25(𝛼 + 0.5)2. In this study,
𝛼 = 0.5 and 𝛽 = 0.25 are chosen.

The implementation procedure of the Newmark time
integration scheme applying into the X-IGA is outlined as
follows.

(1) The initial velocities and initial displacements are set
to be zero; then the initial accelerations are obtained
with (10).

(2) Compute the constants 𝑎
0
= 1/𝛽Δ𝑡2, 𝑎

1
= 𝛼/𝛽Δ𝑡,

𝑎
2
= 1/𝛽Δ𝑡, 𝑎

3
= (1/2𝛽) − 1, 𝑎

4
= (𝛼/𝛽) − 1,

𝑎
5
= (Δ𝑡/2)((𝛼/𝛽) − 2), 𝑎

6
= Δ𝑡(1 − 𝛼), and 𝑎

7
= 𝛼Δ𝑡.

(3) Compute K = 𝑎
0
M + K.
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(4) Loop over the time steps as follows:

(a) compute F
𝑛
= F
𝑛
+M(𝑎

0
𝛿
𝑛−1

+𝑎
2
�̇�
𝑛−1

+𝑎
3
�̈�
𝑛−1

);
(b) compute the displacements 𝛿

𝑛
by solvingK𝛿

𝑛
=

F
𝑛
;

(c) solve �̈�
𝑛
= 𝑎
0
(𝛿
𝑛
−𝛿
𝑛−1

)−𝑎
2
�̇�
𝑛−1

−𝑎
3
�̈�
𝑛−1

for the
value �̈�

𝑛
, and the velocities �̇�

𝑛
are calculated by

using �̇�
𝑛
= �̇�
𝑛−1

+ 𝑎
6
�̈�
𝑛−1

+ 𝑎
7
�̈�
𝑛
.

(5) Repeat the loop for the next time step until the
maximum time step is reached.

4. DSIF Calculations

The DSIFs are evaluated by using the domain form of the
contour interaction integral technique. The following states
are considered: state 1 (𝜎(1)

𝑖𝑗
, 𝜀(1)
𝑖𝑗
, 𝑢(1)
𝑖
), which corresponds to

the actual state; state 2 (𝜎(2)
𝑖𝑗
, 𝜀(2)
𝑖𝑗
, 𝑢(2)
𝑖
), which is an auxiliary

state that will be selected as the asymptotic field for model I
or II. The interaction integral may be written as [37]

𝐼(1,2) = ∫
𝐴

[−𝑊(1,2)𝛿
1𝑗
+ 𝜎(1)
𝑖𝑗

𝜕𝑢(2)
𝑖

𝜕𝑥
1

+ 𝜎(2)
𝑖𝑗

𝜕𝑢(1)
𝑖

𝜕𝑥
1

]
𝜕𝑞

𝜕𝑥
𝑗

𝑑𝐴

+ ∫
𝐴

𝜌�̈�(1)
𝜕𝑢(2)
𝑖

𝜕𝑥
1

𝑑𝐴,

(19)

where 𝑊(1,2) = 𝜎(1)
𝑖𝑗
𝜀(2)
𝑖𝑗

= 𝜎(2)
𝑖𝑗
𝜀(1)
𝑖𝑗

is the interaction strain
energy and 𝑞 is a weighing function. The second term of
the right-hand side of the equation is the contribution of the
inertia forces.

For isotropic materials, the relation between the interac-
tion integral 𝐼(1,2) and the stress intensity factors is expressed
as [37]

𝐼(1,2) =
2 (𝐾(1)
𝐼
𝐾(2)
𝐼

+ 𝐾(1)
𝐼𝐼
𝐾(2)
𝐼𝐼
)

𝐸∗
, (20)

where 𝐸∗ = 𝐸 is for plane stress and 𝐸∗ = 𝐸/(1 − ]2) is for
plane strain.

The relation between the interaction integral 𝐼(1,2) and the
stress intensity factors for orthotropic materials is expressed
as [36]

𝐼(1,2) = 2𝑐
11
𝐾(1)
𝐼
𝐾(2)
𝐼

+ 𝑐
12
(𝐾(1)
𝐼
𝐾(2)
𝐼𝐼

+ 𝐾(2)
𝐼
𝐾(1)
𝐼𝐼
)

+ 2𝑐
22
𝐾(1)
𝐼𝐼
𝐾(2)
𝐼𝐼

(21)

with

𝑐
11
= −

𝑎
22

2
Im(

𝜇
1
+ 𝜇
2

𝜇
1
𝜇
2

) ,

𝑐
12
= −

𝑎
22

2
Im(

1

𝜇
1
𝜇
2

) +
𝑎
11

2
Im (𝜇
1
𝜇
2
) ,

𝑐
22
=
𝑎
11

2
Im (𝜇
1
+ 𝜇
2
) .

(22)

𝜎0

a = 5m

L = 10m

2H
=
4

m

Figure 1: Geometry and loading of a semi-infinite crack.

Choosing state 2 as mode I or mode II leads to mode-I or
mode-II DSIF in terms of the interaction integral.

For isotropic materials,

{
𝐾(1)
𝐼

𝐾(1)
𝐼𝐼

} =
𝐸∗

2
{
𝐼(1,𝐼)

𝐼(1,𝐼𝐼)
} . (23)

For orthotropic materials,

{
𝐾(1)
𝐼

𝐾(1)
𝐼𝐼

} = [
2𝑐
11

𝑐
12

𝑐
12

2𝑐
22

]
−1

{
𝐼(1,𝐼)

𝐼(1,𝐼𝐼)
} . (24)

5. Numerical Simulations

In this section, several examples of stationary cracks in
isotropic/orthotropic media with available reference solu-
tions are investigated to assess the accuracy of the proposed
approach. The first two examples demonstrate the efficiency
of the X-IGA for isotropic material problems, and the next
two illustrate the application of the X-IGA to orthotropic
material problems, whereas the last example demonstrates
the capability and versatility of the X-IGA in modeling the
complicated geometries. In all examples, the Heaviside step
loading is considered and degree 3 X-IGA is adopted; that is,
𝑝 = 𝑞 = 3. Meshes are generatedwith linear parameterization
method. In the case of investigating the effects of different
meshes on the results, different uniformmeshes are adopted;
in other cases, the fine meshes are used around the crack,
while the coarse meshes are used in other domains; thus
excellent accuracy can be achieved at a low cost.

5.1. Semi-Infinite Crack in an Infinite Isotropic Plate. For
the first example, we consider an infinite isotropic plate
with a semi-infinite crack subjected to a tensile stress wave
perpendicular to the crack face, as shown in Figure 1. The
material properties of the media are as follows: Young’s
modulus 𝐸 = 210GPa, Poisson’s ratio ] = 0.3, and mass
density 𝜌 = 8000 kg/m3. The tensile stress 𝜎

0
= 500MPa.
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Figure 2: Control points and elements for degree 3 X-IGA with 27
× 9 elements (the blue cross represents the control points enriched
by Heaviside function; the blue square represents the control points
enriched by crack tip enrichment functions; the red line represents
the crack).

The theoretical solution of mode-I DSIF for the stationary
crack is expressed as [38]

𝐾dyn
𝐼

(𝑡) =

{{{
{{{
{

0, 𝑡 < 𝑡
𝑐

2𝜎
0

1 − V
√𝑐
𝑑
(𝑡 − 𝑡
𝑐
) (1 − 2V)
𝜋

, 𝑡
𝑐
≤ 𝑡 ≤ 3𝑡

𝑐
,

(25)

where 𝑡
𝑐
= (𝐻/𝑐

𝑑
) (𝑐
𝑑
: the dilatational wave speed).

5.1.1. Convergence Study of the DSIF versus Meshes. In this
study, fivemeshes with 27× 9, 47× 17, 67× 25, 87× 33, and 107
× 41 elements are considered. Figure 2 illustrates the typical
regular mesh of 27 × 9 elements.

Figure 3 presents the normalized mode-I DSIFs as a
function of time for the five considered meshes. In the mesh
refinement process, themode-I DSIFs obtained by the X-IGA
converge well to the theoretical solution.Themaximum error
increases beside 𝑡 = 𝑡

𝑐
for the coarse mesh and decreases

significantly for the fine mesh. Similar observation was noted
in the simulation of the singular edge-based smoothed finite
element method (sES-FEM) [37]. The same simulations were
conducted by other researches by using different methods.
However, the same conclusion is recorded; that is, the error is
lower in later stages than in earlier stages. The relative errors
during 1.5𝑡

𝑐
≤ 𝑡 ≤ 3𝑡

𝑐
are presented in Figure 4, in which the

error is unchanged as the mesh is refined to a certain extent.
In this study, the errors are the same for meshes with 67 × 25,
87 × 33, and 107 × 41 elements.

5.1.2. Comparison with X-FEM Results. The X-IGA results
using 67 × 25 mesh elements are compared with three
available X-FEM solutions, including the X-FEM using mass
lumping (120 × 60 quadrilateral elements) [39], the mesh-
free enriched X-FEM with crack-tip enrichments (78 ×
39 quadrilateral elements) [38], and X-FEM with a new
enrichment function (120 × 59 quadrilateral elements) [40].
Figure 5 shows the comparative study of the normalized
mode-I DSIFs. The results obtained with X-FEM using mass
lumping [39] are unstable, and the accuracy of this method
is the worst recorded among the four approaches. The results
obtained with the X-IGA, the X-FEM using an enrichment
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Figure 3: Convergence of the normalized mode-I DSIFs versus
mesh densities.
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Figure 4: Convergence in percentage errors for the normalized
mode-I DSIFs versus mesh densities during 1.5𝑡

𝑐
≤ 𝑡 ≤ 3𝑡

𝑐
.

function, and the mesh-free enriched X-FEM with crack-
tip enrichments are very accurate during 1.5𝑡

𝑐
≤ 𝑡 ≤ 3𝑡

𝑐
;

however, the results are relatively poor during 𝑡 ≤ 1.5𝑡
𝑐
. The

X-IGA results are more accurate than other numerical results
during 1.5𝑡

𝑐
≤ 𝑡 ≤ 3𝑡

𝑐
.

5.2. Arbitrarily Oriented Central Crack in a Rectangular Iso-
tropic Plate. We consider a rectangular isotropic plate
with an arbitrarily oriented central crack subjected on the
top and bottom of a uniform impact loading, as shown
in Figure 6(a). The length of the crack is 2𝑎 = 4.8mm.
The material properties of the plate are as follows: Young’s
modulus 𝐸 = 200GPa, Poisson’s ratio ] = 0.3, and mass
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Figure 5: Comparison of the normalized mode-I DSIFs among
different methods.
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Figure 6: A rectangular plate with an arbitrarily oriented crack. (a)
Geometry and loading, (b) computational meshes.

density 𝜌 = 5000 kg/m3. Three crack inclination angles are
investigated, and the total time of the simulation is 20𝜇s. In
the X-IGA, the computational mesh is independent of the
crack; therefore, the computation meshes for the three crack
inclination angles are the same, as shown in Figure 6(b).

Figures 7 and 8, respectively, present the normalized
mode-I and mode-II DSIFs for the three considered crack
angles computed by the X-IGA, sES-FEM [37], and X-FEM.
Figure 6(b) is also themesh for the X-FEM,whereas themesh
of 60 × 120 triangular elements is used in the analysis of the
sES-FEM.
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Figure 7: Comparison of the normalizedmode-I DSIFs obtained by
the X-FEM, the sES-FEM, and the X-IGA for three crack inclination
angles.
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Figure 8: Comparison of the normalized mode-II DSIFs obtained
by the X-FEM, the sES-FEM, and the X-IGA for three crack
inclination angles.

A good agreement can be observed for the three con-
sidered crack inclination angles among the three numerical
approaches.

5.3. Edge Crack in a Rectangular Orthotropic Plate. As a third
example, a rectangular orthotropic plate with a 12mm edge
horizontal crack is considered (Figure 9). The plane stress
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Figure 9: Geometry and loads of an edge crack in a rectangular
orthotropic plate.

Figure 10: The X-IGA discretization for an edge crack in a
rectangular orthotropic plate.

condition is considered, and the material properties of the
plate are as follows: 𝐸

1
= 118.3 GPa, 𝐸

2
= 54.8GPa, 𝐺

12
=

8.79GPa, ]
12
= 0.083, and 𝜌 = 1900 kg/m3.The time stepΔ𝑡 =

(𝑎/10𝑐
𝐿
) is selected, where 𝑐

𝐿
is the wave velocity along the 𝐸

2

material-axis.
Figure 10 shows the mesh with 75 × 57 elements used

in the simulation. The normalized mode-I DSIFs achieved
with the X-IGA (Figure 11) were compared with the ref-
erence boundary element method (BEM) (21 elements for
the external boundary and eight elements for the crack)
[41], the X-FEM (78 × 60 quadrilateral elements) [42],
and the conventional finite element method (FEM) results
(via ANSYS) [41]. Good agreement is observed among the
methods. The X-IGA results more closely match the FEM
and the BEM solution compared with the X-FEM results. In
[42], the DSIFs are evaluated by using the domain separation
integral method, which could be the reason that the X-FEM
results are different.
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Figure 11: Comparison of the normalized mode-I DSIFs among
different methods.
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Figure 12: Comparison of the normalized mode-I DSIFs for
different meshes.

To analyze the effects of different meshes on DSIFs, five
different meshes with 27 × 19, 47 × 39, 75 × 57, 97 × 81,
and 121 × 101 elements are adopted to simulate the problem.
The results are shown in Figure 12. Accurate results can be
obtained by using the X-IGA with a relatively coarse mesh.

5.4. Central Crack with Different Orientations of the Axes
of Orthotropy. A rectangular orthotropic plate with a
single central horizontal crack was subjected to a Heavi-
side step tensile distributed load, as shown in Figure 13(a).
The length of the crack is 2𝑎 = 4.8mm and ℎ = 20mm.
The material properties of the plate are the same as those in
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Figure 13: A single central crack in a rectangular orthotropic plate.
(a) Geometry and loadings, (b) computational meshes.
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Figure 14: Normalized mode-I DSIFs for a single central crack in a
rectangular plate.

the example in Section 5.3. The plane stress state is assumed,
and the time step Δ𝑡 = (ℎ/50𝑐

𝐿
) is selected.

Two different inclination angles between the 𝐸
1
material-

axis and the crack-face are considered. Figures 14 and 15 show
the comparison of the numerical results of BEM (24 elements
for the external boundary and 10 for the crack) [41] and X-
FEM (50 × 100 quadrilateral elements) [42]. General trends
are in good agreement across all methods; the X-IGA results
more closely match the BEM solution compared with the X-
FEM; the reason for this phenomenon is the same as the above
example.
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Figure 15: Normalized mode-II DSIFs for a single central crack in
a rectangular plate.
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Figure 16: Geometry and loads of an edge crack in an annular
isotropic plate.

5.5. Edge Crack in an Annular Isotropic Plate. To illustrate
the capability and versatility of the X-IGA in modeling
the complicated geometries, the last example deals with
an annular isotropic plate under a uniform pressure. The
geometry and loads of the plate are depicted in Figure 16.The
length of the crack is 𝑎 = 2m; the material properties of the
plate are as follows: Young’s modulus 𝐸 = 210GPa, Poisson’s
ratio ] = 0.3, andmass density 𝜌 = 8000 kg/m3.The total time
of the simulation is 0.004s. The plane strain state is assumed,
and the time step Δ𝑡 = 8 × 10−5 s is selected.

The meshes are depicted in Figure 17 for 285 control
points and 221 elements. To perform a comparison, this
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Figure 17: Meshes and control points. (The cross represents the
control points enriched byHeaviside function; the square represents
the control points enriched by crack tip enrichment functions.)

Figure 18: The X-FEMmeshes.

example is solved by the X-FEM, and the X-FEM meshes
are shown in Figure 18 for 1292 nodes and 1221 quadrilateral
elements.

The DSIFs are computed with the X-FEM and the X-
IGA, and the results are shown in Figure 19. It is found that
the results from the X-IGA with a relatively coarse mesh
are in good agreement with those from the X-FEM with a
very fine mesh. The amplitude of the normalized mode-I
DSIF is negative in some time ranges, which may be due to
the contact between two crack-faces which is not taken into
consideration in the present study.
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Figure 19: Comparison of the normalized mode-I DSIFs between
the X-FEM and the X-IGA.

6. Conclusions and Prospects

The NURBS-based extended isogeometric analysis (X-IGA)
was extended to investigate the dynamic fracture behav-
ior of stationary cracks in isotropic/orthotropic media. A
corresponding dynamic X-IGA model was developed, the
Newmark time integration scheme was used to achieve the
dynamic response, and the DSIFs were evaluated with the
contour interaction integral technique. Numerical results
indicate that accurate results can be obtained by using the X-
IGA with a relatively coarse mesh, and the X-IGA is suitable
to model the cracked complicated geometries.

The NURBS-based isogeometric analysis has several
drawbacks including the handling trimmed geometries and
the local refinement. The isogeometric analysis based on T-
splines can effectively overcome these drawbacks [43]. A key
advantage of the extended isogeometric analysis over isoge-
ometric analysis is the ability to model crack propagation.
Therefore, the application of extended isogeometric analysis
based on T-splines to dynamic crack propagation analysis
in isotropic/orthotropic media is an area of considerable
promise. On the other hand, the smoothed finite element
method (SFEM) developed by combining the smoothing
technique with the finite element method is an efficient and
accurate numerical simulation tool for the dynamic fracture
problems [44]; therefore combining the smoothing technique
with the X-IGA for fracture analysis is another area of
considerable promise.
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[15] J. Réthoré, A. Gravouil, and A. Combescure, “An energy-con-
serving scheme for dynamic crack growth using the extended
finite element method,” International Journal for Numerical
Methods in Engineering, vol. 63, no. 5, pp. 631–659, 2005.

[16] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement,”Computer Methods in AppliedMechanics and
Engineering, vol. 194, no. 39–41, pp. 4135–4195, 2005.

[17] R. Bouclier, T. Elguedj, and A. Combescure, “Locking free iso-
geometric formulations of curved thick beams,” Computer
Methods inAppliedMechanics and Engineering, vol. 245-246, pp.
144–162, 2012.

[18] D. J. Benson, Y. Bazilevs, M. C. Hsu, and T. J. R. Hughes, “Iso-
geometric shell analysis: the Reissner-Mindlin shell,” Computer
Methods in AppliedMechanics and Engineering, vol. 199, no. 5–8,
pp. 276–289, 2010.

[19] C. H. Thai, H. Nguyen-Xuan, N. Nguyen-Thanh, T.-H. Le,
T. Nguyen-Thoi, and T. Rabczuk, “Static, free vibration, and
buckling analysis of laminated composite Reissner–Mindlin
plates using NURBS-based isogeometric approach,” Interna-
tional Journal for Numerical Methods in Engineering, vol. 91, no.
6, pp. 571–603, 2012.

[20] H. Nguyen-Xuan, C. H. Thai, and T. Nguyen-Thoi, “Isogeo-
metric finite element analysis of composite sandwich plates
using a higher order shear deformation theory,” Composites B:
Engineering, vol. 55, pp. 558–574, 2013.

[21] C. H.Thai, A. J. Ferreira, E. Carrera, andH.Nguyen-Xuan, “Iso-
geometric analysis of laminated composite and sandwich plates
using a layerwise deformation theory,” Composite Structures,
vol. 104, pp. 196–214, 2013.

[22] C. H.Thai, A. J. M. Ferreira, S. P. A. Bordas, T. Rabczuk, and H.
Nguyen-Xuan, “Isogeometric analysis of laminated composite
and sandwich plates using a new inverse trigonometric shear
deformation theory,” European Journal of Mechanics: A/Solids,
vol. 43, pp. 89–108, 2014.

[23] L. V. Tran, C. H. Thai, and H. Nguyen-Xuan, “An isogeometric
finite element formulation for thermal buckling analysis of
functionally graded plates,” Finite Elements in Analysis and
Design, vol. 73, pp. 65–76, 2013.

[24] C. H. Thai, T. Rabczuk, and H. Nguyen-Xuan, “A rotation-
free isogeometric analysis for composite sandwich thin plates,”
International Journal of Composite Materials, vol. 3, no. 6A, pp.
10–18, 2013.

[25] C.V.Verhoosel,M.A. Scott, T. J. R.Hughes, andR. de Borst, “An
isogeometric analysis approach to gradient damage models,”
International Journal for Numerical Methods in Engineering, vol.
86, no. 1, pp. 115–134, 2011.

[26] P. Fischer, M. Klassen, J. Mergheim, P. Steinmann, and R.
Müller, “Isogeometric analysis of 2D gradient elasticity,” Com-
putational Mechanics, vol. 47, no. 3, pp. 325–334, 2011.

[27] W. A. Wall, M. A. Frenzel, and C. Cyron, “Isogeometric struc-
tural shape optimization,” Computer Methods in Applied
Mechanics and Engineering, vol. 197, no. 33–40, pp. 2976–2988,
2008.

[28] P. N. Nielsen, A. R. Gersborg, J. Gravesen, and N. L. Pedersen,
“Discretizations in isogeometric analysis ofNavier–Stokes flow,”
Computer Methods in Applied Mechanics and Engineering, vol.
200, no. 45-46, pp. 3242–3253, 2011.



Mathematical Problems in Engineering 11

[29] T. Temizer, P. Wriggers, and T. J. R. Hughes, “Contact treatment
in isogeometric analysis with NURBS,” Computer Methods in
AppliedMechanics and Engineering, vol. 200, no. 9–12, pp. 1100–
1112, 2011.

[30] E. D. Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M.
C. Hsu, “X-FEM in isogeometric analysis for linear fracture
mechanics,” International Journal for Numerical Methods in
Engineering, vol. 87, no. 6, pp. 541–565, 2011.

[31] S. S. Ghorashi, N. Valizadeh, and S. Mohammadi, “Extended
isogeometric analysis for simulation of stationary and propa-
gating cracks,” International Journal for Numerical Methods in
Engineering, vol. 89, no. 9, pp. 1069–1101, 2012.

[32] D. J. Benson, Y. Bazilevs, E. de Luycker et al., “A generalized
finite element formulation for arbitrary basis functions: from
isogeometric analysis to XFEM,” International Journal for
Numerical Methods in Engineering, vol. 83, no. 6, pp. 765–785,
2010.
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