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A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is
based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli
polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce
the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included

to demonstrate the validity and applicability of the technique.

1. Introduction

There is considerable literature that discusses approximating
the solution of linear and nonlinear Hammerstein integral
equations [1-6]. For Fredholm-Hammerstein integral equa-
tions, the classical method of successive approximations was
introduced in [1]. A variation of the Nystrom method was
presented in [2], and a collocation-type method was devel-
oped in [3]. In [4], Brunner applied a collocation-type
method to nonlinear Volterra-Hammerstein integral equa-
tions and integrodifferential equations and discussed its con-
nection with the iterated collocation method. Han [5] intro-
duced and discussed the asymptotic error expansion of a
collocation-type method for Volterra-Hammerstein integral
equations. The existence of solutions to nonlinear Ham-
merstein integral equations was discussed in [6]. Further,
Reihani and Abadi [7] and Hsiao [8] applied rationalized
Haar functions and hybrid of block-pulse functions and
Legendre polynomials, respectively, for solving Fredholm
and Volterra integral equations of the second kind. Several
authors consider the nonlinear mixed Volterra-Fredholm

integral equations of the form

¢
y@®) = f()+A L x, (£,5) g, (s, ¥ (s))ds
1)

1
+A2J % (£8) g, (s, y(s)ds, 0<t,s<1,

0
where A, and A, are constants and f(¢) and the kernels
,(t,s) and «, (¢, s) are given functions assumed to have nth
derivatives on the interval 0 < x, ¢t < 1. For the case g,
(s, ¥(5)) = yP(s) and g,(s, y(s)) = »(s), where p and g
are nonnegative integers, Yal¢inbas [9], Bildik and Inc [10],
and Hashemizadeh et al. [11] used Taylor series, modified
decomposition method, and hybrid of block-pulse functions
and Legendre polynomials, respectively, to find the solution.
For the case g, (s, y(s)) = Fi(y(s)) and g, (s, y(s)) = F,(y(s)),
where F, (y(s)) and F,(y(s)) are given continuous functions
which are nonlinear with respect to y(s), Yousefi and Raz-
zaghi [12] applied Legendre wavelets to obtain the solution,
and for the general case, where g, (s, y(s)) and g, (s, y(s)) are
given continuous functions which are nonlinear with respect
to s and y(s), Ordokhani [13] and Marzban et al. [14] applied
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the rationalized Haar functions and hybrid of block-pulse
functions and Lagrange polynomials, respectively, to get the
solution.

The available sets of orthogonal functions can be divided
into three classes. The first class includes sets of piecewise
constant basis functions (PCBF’s) (e.g., block-pulse, Haar,
and Walsh). The second class consists of sets of orthogonal
polynomials (e.g., Chebyshev, Laguerre, and Legendre). The
third class is the set of sine-cosine functions in the Fourier
series.

Orthogonal functions have been used when dealing with
various problems of the dynamical systems. The approach is
based on converting the underlying differential equation into
an integral equation through integration, approximating var-
ious signals involved in the equation by truncated orthogonal
functions, and using the operational matrix of integration
P to eliminate the integral operations. The matrix P can
be uniquely determined based on the particular orthogonal
functions (see [15] and references therein). Among orthogo-
nal polynomials, the shifted Legendre polynomial is compu-
tationally more effective [16]. The Bernoulli polynomials and
Taylor series are not based on orthogonal functions; never-
theless, they possess the operational matrices of integration.
However, since the integration of the cross product of two
Taylor series vectors is given in terms of a Hilbert matrix
[17], which is known to be ill-conditioned, the applications
of Taylor series are limited.

Recently, different types of hybrid functions have been
used for solving integral equations and proved to be a math-
ematical power tool [8, 11, 14].

In the present paper we introduce a new direct compu-
tational method to solve nonlinear mixed Volterra-Fredholm
integral equations in (1). We approximate the solution not to
the equation in its original form but rather to an equivalent
equation z, (t) = g,(t, y(t)) and z,(t) = g,(t, y(t)), t € [0, 1].
The functions z,(t) and z,(¢) are approximated by hybrid
functions with unknown coefficients. These hybrid functions,
which consist of block-pulse functions and Bernoulli polyno-
mials together with their operational matrices of integration
and product, are given. These matrices are then used to
evaluate the coeflicients of the hybrid functions for solution
of nonlinear mixed Volterra-Fredholm integral equations.

The outline of this paper is as follows. In Section 2, we
introduce properties of Bernoulli polynomials and hybrid
functions. In Section 3, the numerical method is used to
approximate the nonlinear mixed Volterra-Fredholm integral
equations, and in Section 4, we report our numerical findings
and demonstrate the accuracy of the proposed numerical
scheme by considering five numerical examples.

2. Hybrid Functions

2.1. Properties of Bernoulli Polynomials. The Bernoulli poly-
nomials of order m are defined in [18] by

B, (1) = i <’Z) o™, @)

k=0
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where o, k = 0, 1,...,m are Bernoulli numbers. These num-
bers are a sequence of signed rational numbers, which arise in
the series expansion of trigonometric functions [19] and can
be defined by the identity

n

t et
e r;)anm- (3)

The first few Bernoulli numbers are

1 1 1
oy =1, o =—=, o= -, oy =—-—, 4
0 ) 76 = @
with oy, = 0,k =1,2,3,....
The first few Bernoulli polynomials are

1
Bo () =1, /31(1?)=t—§,

(5)

2 1 3 32 1
t)=t"-t+ -, t)=1t"—-t"+ —tL.
B 0 o B2

According to [20], Bernoulli polynomials form a complete
basis over the interval [0, 1].

3. Hybrid of Block-Pulse Functions
and Bernoulli Polynomials

Hybrid functions b,,,(t),n = 1,2,...,N,m =0,1,..., M are
defined on the interval [0, rlas[21]

B N e te[gt ﬁt]
"\ ty ’ N NI (6

0, otherwise,

bnm (t) =

where n and m are the order of block-pulse functions and
Bernoulli polynomials, respectively.

3.1 Function Approximation. Let H = L*[0,1], and assume
that {b,,(£), byy(t), ..., by ()} € H is the set of hybrid of
block-pulse functions and Bernoulli polynomials, and

Y = span {by, (£),byy (t),.... by (1), by (1),
by (8)5. by ()5 byps (1) @)
by ()5 by (D}

with f being an arbitrary element in H. Since Y is a finite
dimensional vector space, f has the unique best approxima-
tion out of Y such as f;, € Y, that s,

If = foll < If =l (8)

Since f, € Y, there exist unique coefficients ¢y, ¢;g5 . . -
such that

Vy ey,

> CNM

M N
f = fO = Z chmbnm () = CTB (t)s 9
m=0 n=1
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where
BT (£) = [byg (1), by (). b () by, (),
by (t)s..sbny (). byp () (10)
bt () 5. b D] 5

c’= [c10: 205 - -

»ENO> G111 Q15 -+ >
(11)
CNT> -+ CLMD O - - > N -
Further, by using (9), we can obtain
1
D= J B(t)B" (1) dt, (12)
0

where D is a sparse invertible matrix [21].

3.2. Function of Two Variables Approximation. Let g(t,s) bea
function of two independent variables defined for t € [0, 1]
and s € [0, 1]. Then g can be expanded as

M N
g(t,s)=B ()GB(s) =) Yr; (1)b;(s).  (13)
j=0i=1

Let the matrix G be given by

r 10 10 10 1

Pro P - Pnm

20 20 20
G- q’}o (/"20 gDI\‘,M (14)
Lol 920" - P

From (13), we get

[KIO ), K20 ®)s.nes KNnMm (t)] D

1
= Ho g (t,s) by (s)ds,

1 1
JO gt,s)by(s)ds,..., L g (t,s) by (s) ds] .
(15)

Also, x;;(t) can be expanded as
M N
Kij (t) = Z Z(qubpq (t) > (16)
q=0 p=1

where ‘qu can be obtained similar to (15).

3.3. Operational Matrices of Integration and Product. The in-
tegration of the hybrid functions B(t) defined in (10) is given

by

Jt B (t’) dt' = PB(1), 17)

0

where P is the N(M + 1) x N(M + 1) operational matrix of
integration. The product of two hybrid functions with the
vector C is given by

BH)BTt)C=CB(t), (18)

where C is the N(M + 1) x N(M + 1) product operational
matrix. The matrices P and C are given in [22].

3.4. Approximation Errors. In this section we obtain bounds
for the error of best approximation in terms of Sobolev
norms. This norm is defined in the interval (a,b) for y > 0

by

) . \?
ZJ |f(k) (x)| dx>

k=02
SPCIE v
= <1§)"f L2(a,b)> )

where f® denotes the kth derivative of f. The symbol
| f g (o,1) which is introduced in [23] is defined by

1/2
L 2
|f|Hﬂ;M(o,1) = < Z L2(0,1)> . (20)

k=min(u,M+1
Theorem 1. Suppose that f € H*(0,1) with yu > 0. If Py, f =
ZAm/I:O B is the best approximation of f then

mmwf(

(19)

f(k)
|

”f - PMf||L2(o,1) < CM—”|f|HWM(0,1) (21)
and, for1 <r <y,
If = Prfllerony < cMzr_(l/z)_#|f|HWM(o,1)’ (22)

where ¢ depends on p.

Proof. Let f € H*(0,1) with > 0 and let ¥" ¢/ p,, be
the best approximation of f, which is constructed by using

shifted Legendre polynomials p,,, m = 0, ..., M in the inter-
val [0, 1]. Then [23]

< CM_HllewM(o,l)’ (23)
1%(0,1)

& '
f_ Zcmpm
m=0
and, for1 <r <y,

& !
'f_ Zcmpm
m=0

Since the best approximation is unique [20], we have

M
’f - Z Cy,npm
m=0

2r-(1/2)-
<eM Uiy @4
H(0,1)

= “f - PMf"LZ(o,l)’

L*(0,1)

i !
f - Z CnPm
m=0

(25)

= “f_PMf

H'(0,1)

H"(0,1)°

and by using (23)-(25) we can obtain (21) and (22). O
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4. The Numerical Method
We approximate (1) as follows.
Define
M) =g ty®), z ) =g, (ty®), telo1].
(26)

By using (1) and (26), we have
t
z, (t) =g, (t,f(t) + A, L Kk, (t,8) z; (s)ds

1
+A, J K, (t,5) 2, () ds) ,
' (27)

t
z,(t) =9, (t,f(t) + A L K, (t,5) 2, (s)ds

1
+A, J K, (t,5) z, (s) ds> .

0
By using (9) and (13) we get
z,(t)=C[B(t), 2z () =CiB(t),

K, (t,s) = B" (t) K,B(s).
(28)

x, (t,s) = BT (t) K,B(s),

By substituting (28) in (27) we have

CIB(t) = g, (t, f(t)+, JO B” () K,B(s) B" (s) C,ds
1
+1, L B” (t) K,B(s) B" (s) Czds> )
t
CIB(t) = g (t, f(6)+, L B" (t)K,B(s) B" (s) C,ds

+A, Ll B” (1) K,B (s) B" (s) C2d5> .

(29)
By using (12), (17), and (18) we get
CIB(t) = g, (t f () + A, B (t) K,C,PB (t)
+M1,B" (1) K,DC,),
(30)

CyB(t) =g, (t f (1) + ;B (t) K,C, PB(t)
+1,B" (t) K,DG,).
We collocate (30) at Newton-cotes nodes ¢;

i+1

tp=———, i=0,1,...,2NM+1)-2. 31
TN+ M+1) (31)
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So we have

C1TB (t) =g (ti’ ft)+ A B (t;) K,C,PB(t;)

+1,B" (;) K,DC,),
(32)
CZB (t) =g (ti’ f(t)+A,B" (t;) K,C,PB(t;)

+1,B" (;) K,DC,),

fori=0,1,...,2N(M + 1) - 2.

Equation (32) can be solved for the unknown C, and C,.
The required approximations to the solution y(¢) in (1) are
given by

y)=f)+A, L K, (t,5)z, (s)ds
(33)

1
+AZJ K (6)2, (s)ds, 0<t<l.

0

5. Illustrative Example

In this section, five examples are given to demonstrate the
applicability and accuracy of our method. Examplel is a
nonlinear mixed Volterra-Fredholm-Hammerstein integral
equation which was considered in [13] by using rationalized
Haar functions (RHF) and also solved in [24] by applying
Chebyshev approximation. Examples 2 and 3 are the integral
equations reformulation of the nonlinear two-point bound-
ary value problems considered in [13, 25] by using RHF and
Adomian method, respectively. Although the reformulated
integral equations in Examples 2 and 3 are Fredholm-
Hammerstein integral equations, the method described here
can be used. Examples 1-3 were also solved in [14] by using
hybrid of block-pulse functions and Lagrange polynomials.
For Examples 1-3, we compare our findings with the numeri-
cal results in [14] which have been shown to be superior to
those of [13, 24, 25]. Examples 4 and 5 are Fredholm and
Volterra integral equations of the second kind, respectively,
which were considered in [7] by using RHF which were also
solved in [8] by using hybrid of block-pulse functions and
Legendre polynomials. For Examples 4 and 5, we compare
our findings with the numerical results in [8] which have been
shown to be superior to those of [7].

For approximating an arbitrary time function, the advan-
tages of Bernoulli polynomials 8,,(t), m = 0,1,2,...,M
where 0 < t < 1, over shifted Legendre polynomials p,,(t),
m =0,1,2,...,M, where 0 < t < 1, are given in [21] and
over Lagrange polynomials t,,(t), m = 0,1,2,..., M, where
0 <t < 1, are given below.

Advantages of Bernoulli Polynomials over Lagrange Polynomi-
als. (a) The operational matrix of integration P in Bernoulli
polynomials has less error than P for Lagrange polynomials.
This is because, for P in (t), 3, (), ..., Ba(t), we ignore the
term from the integration of f3,,(¢), while for P in Lagrange
polynomials in Ly(t),L,(t),...,L(t) we ignore the terms
from the integration of each of L ,(t),m =0,1,..., M.



The Scientific World Journal

TABLE 1

Present method
withN=1and M =4

Method in [14]
with N =2and M, =4

5
TABLE 3
Adomian Method in [14] Present method
method  with N =4and M, =7 withN=4and M =4
0.0 0.006048 0.0060483739 0.0060483739
0.2 0.018192 0.0181929364 0.0181929364
0.4 0.030424 0.0304246702 0.0304246702
0.6 0.042669 0.0426691183 0.0426691183
0.8 0.054371 0.0543716533 0.0543716533
1.0 0.061458 0.0614587374 0.0614587374

0.0 3.1021e - 5 1.3322¢ - 15
0.2 3.234le - 6 1.3322¢ - 15
0.4 1.9092¢ — 5 1.1102e — 15
0.6 1.5029 — 5 9.9920e — 16
0.8 3.6499 - 6 7.7715¢ - 16
1.0 2.4290e - 5 2.2204e — 16
TABLE 2
Methods ly - )’e||L00(o,1)
Method of [14]
N=2,M, =5, <1077
N=3M =5 <107
N =4, M, =5, <107’
Present method
N=2,M=5, <107
N=3M=5, <107
N=4M=5, <10™

(b) Bernoulli polynomials have less terms than Lagrange
polynomials. For example, B(t), B;(t), B,(t), B5(t), B4(t),
Bs(t), and B4(t) have 1,2,3,3,4,4, and 5 terms, respectively,
while Ly(t),L,(t),...,L¢(t) all have 7 terms, and this
difference will increase by increasing m. Hence, for
approximating an arbitrary function, we use less CPU time
by applying Bernoulli polynomials as compared to Lagrange
polynomials.

(c) The coefficients of individual terms in Bernoulli poly-
nomials f3,,(¢) are smaller than the coefficient of individual
terms in the Lagrange polynomials L ,(¢). Since the compu-
tational errors in the product are related to the coeflicients of
individual terms, the computational errors are less by using
Bernoulli polynomials.

Example 1. Consider the integral equation given in [13] by

t
y(t) :Zcost—2+3j sin (¢ — s) cos’sds
0

1
+ ﬁ L (1 - s) cos’t (s+ y(s))ds, (34)

0<t<l.
The exact solution is y(t) = cost.

For this integral equation we choose N = 1 and M = 4.
Let

z(t)=y(®) =W'B(), (35)
sin (t — s) cos’s = BT (t)Q,B(s),
(36)
(1-y9) cos’ts = BT (1) Q,B(s),
(1-s)cos’t = BT (£) QB (s), (37)

where Q,, Q,, and Q; are obtained similar to (13). By substi-
tuting (35)-(37) in (34) we have

WTB(t) = 2cos (t) - 2 + 3B” (t) Q,PB(t)

B" () QPB(1) + B" (1) Q;D,W),
(38)

+7—6cosl(

where D, can be calculated similar to (12). We collocate (38)
at

i=0,1,...,8. (39)
We get

WTB (ti) = 2cos (ti) -2+ 3BT (ti) Q,PB (ti) + m

x (B" (t,) QPB(1) + B' (t,) QD,W),
i=0,1,...,8.
(40)

Solving (40) we obtain WT in (35). Table 1 shows the absolute
errors of exact and approximate solutions in some points of
the interval [0, 1] obtained by the present method for N = 1
and M = 4 together with the method of [14]. In this Table M,
is order of Lagrange polynomials.

Example 2. Consider
y” (t) - ey(t) = O:

y(0)=y(1)=0,

which is of great interest in hydrodynamics [26]. This prob-
lem has the unique solution [3]

0<t<l,
(41)

2. () = ~In (@) +In (L (1), )
where
C
A0 = <cos (/20 (t = (1/2)) ) (43)

Here, c is the root of the equation

(m)z 2. (44)
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Method in [8]

with N =2 and M; = 11

Present method

with N=2and M =4

Exact solution

0.0 1.00000000000
0.0625 1.13314845282
0.1250 1.28402541665
0.1875 1.45499141433
0.2500 164872127062
0.3125 1.86824595710
0.3750 2.11700001648
0.4375 2.39887529357
0.5000 2.71828182826
0.5625 3.08021684845
0.6250 3.49034295717
0.6875 3.95507672235
0.7500 4.48168906993
0.8125 5.07841903648
0.8750 5.75460267546
0.9375 6.52081911946
1.0000 7.38905609819

1.00000000000 1.00000000000
1.13314845305 1.13314845306
1.28402541667 1.28402541668
1.45499141461 1.45499141461
164872127078 1.64872127070
1.86824595741 1.86824595743
2.11700001668 2.11700001661
2.39887529393 2.39887529396
2.71828182842 2.71828182845
3.08021684898 3.08021684891
3.49034295742 3.49034295746
3.95507672297 3.95507672292
4.48168907038 4.48168907033
5.07841903712 5.07841903718

5.75460267603 5.75460267600
6.52081912035 6.52081912033

7.38905609894 7.38905609893

Equation (41) can be reformulated as the integral equation

1
y(t) = J k(t,s)e’ds, 0<t<l, (45)
0
where
-s(1-t), s<t,
bl = 4
k(©9) {—t(l—s), t<s. (46)

Table 2 represents the computational results of the errors
IV = Yell oo o,y for different values of N and M obtained by
the present method together with different values of N and
M, in [14]. In Table 2, y and y, denote the approximate and
exact solutions, respectively.

Example 3. In this example we consider the mathematical
model for an adiabatic tubular chemical reactor discussed in
[27, 28], which, in the case of steady state solutions, can be
stated as the ordinary differential equation

Y'O-N O+ pB-yn)eY =0, 0<t<1,
(47)
¥ (0)=Ay(0), y (1)=0.

The problem can be converted into a Hammerstein integral
equation of the form [28]

y(t) = Ll k(t,s)G(s,y(s))ds, 0<t<1, (48)

where k(x, t) is defined by

1, s<t,
k(t,s) = {e,x(t—s) F<s (49)

G(sy() =u(B-y(s)e".

The existence and uniqueness of the solution for this Ham-
merstein integral equation with respect to the value of
parameters A, y, and f3 are given in [28]. In [25] the Adomian
method is used to solve the integral equation (48) for the
particular values of the parameters A = 10, y = 0.02, and
B = 3 which guarantee the existence and uniqueness of the
solution for this integral equation [28].

Table 3 gives a comparison between the numerical results
of y(t) in some points of the interval [0, 1] obtained by the
Adomian method given in [25], together with the method in
[14] for N = 4 and M; = 7 and by the present method for
N=4and M = 4.

Example 4. Consider the Fredholm integral equation of the
second kind [7]

1
y(t) = 23 J —%eZt_(SB)sy (s)ds, (50)
0

with the exact solution y(t) = e*. Table 4 gives a comparison
between the numerical results of y(¢) in some points of the
interval [0, 1] obtained by the method given in [8] for N = 2
and M; = 11 and by the present method for N = 2 and M =
4. In this Table Mj; is order of Legendre polynomials.

Example 5. Consider the Volterra linear integral equation of
the second kind [7]

y(t) = cos (t) - Lt (t—s)cos(t—s)y(s)ds, (51

with the exact solution y(t) = (1/3)(2 cos V3t + 1). Table 5
gives a comparison between the numerical results of y(t) in
some points of the interval [0,1] obtained by the method
given in [8] for N = 2 and M; = 11 and by the present
method for N =2 and M = 4.
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TABLE 5
. Method in [8] Present method Exact solution
with N =2 and M; =11 with N =2and M =4

0.0 1.0000000000 1.0000000000 1.0000000000
0.0625 0.9990222526 0.9960975654 0.9960975632
0.1250 0.9844055237 0.9844359392 0.9844359398
0.1875 0.9680159682 0.9651516526 0.9651516562
0.2500 0.9383506092 0.9384704781 0.9384704793
0.3125 0.9074518600 0.9047047767 0.9047047741
0.3750 0.8639866978 0.8642498478 0.8642498461
0.4375 0.8201591812 0.8175793124 0.8175793136
0.5000 0.7647877177 0.7652395632 0.7652395632
0.5625 0.7102158051 0.7078433572 0.7078433525
0.6250 0.6453877501 0.6460626343 0.6460626367
0.6875 0.5827577851 0.5806206938 0.5806207020
0.7500 0.5113646167 0.5122836956 0.5122836972
0.8125 0.4437393774 0.4418516716 0.4418516650
0.8750 0.3689792921 0.3701491788 0.3701491750
0.9375 6.2996549401 0.2980156676 0.2980156705
1.0000 0.2248834557 0.2262956409 0.2262956409

6. Conclusion

In the present work, the hybrid of block-pulse functions with
Bernoulli polynomials is used to solve nonlinear mixed
Volterra-Fredholm integral equations. The problem has been
reduced to a problem of solving a system of algebraic equa-
tions. The matrices P and D in (17) and (12) have large num-
bers of zero elements and are sparse matrices, hence, the
present method is very attractive and reduces the computer
memory. [llustrative examples are given to demonstrate the
validity and applicability of the proposed method.
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