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A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with
linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the
truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method.
Then, the numerical results are compared with other methods.

1. Introduction

Many phenomena in applied branches that fail to bemodeled
by the ordinary differential equations can be described by the
delay differential equations. Many researchers have studied
different applications of those equations in variety of applied
sciences such as biology, physics, economy, and electrody-
namics (see [1–4]). Pantograph equations with proportional
delays play an important role in this context. The existence
and uniqueness of the analytic solutions of the multipanto-
graph equation are investigated in [5]. A numerical approach
to multipantograph equations with variable coefficients is
also studied in [6]. An extension of the multipantograph
equation is known to be the generalized pantograph equation
with functional arguments defined as

𝑦
(𝑚)

(𝑥) =

𝐽

∑

𝑗=0

𝑚−1

∑

𝑘=0

𝑝𝑗𝑘 (𝑥) 𝑦
(𝑘)
(𝛼𝑗𝑘𝑥 + 𝛽𝑗𝑘) + 𝑔 (𝑥) ,

𝑥 ∈ 𝐼 = [𝑎, 𝑏]

(1)

under the mixed conditions
𝑚−1

∑

𝑘=0

𝑐𝑟𝑘𝑦
(𝑘)
(𝜇𝑟𝑘) = 𝜆𝑟, 𝑟 = 0 (1) (𝑚 − 1) ,

𝑎 ≤ 𝜇𝑟𝑘 ≤ 𝑏,

(2)

where proportional delay-𝛼𝑗𝑘, constant delay-𝛽𝑗𝑘, 𝑐𝑟𝑘,𝜇𝑟𝑘, and
𝜆𝑟 are real and/or complex coefficients, and the coefficients
of 𝑘th order unknown function-𝑝𝑗𝑘 and known 𝑔(𝑥) are the
analytical functions defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏.

In recent years, many researchers have developed dif-
ferent numerical approaches to the generalized pantograph
equations as variational iteration method [7], differential
transform approach [8], Taylor method [9], collocation
method based on Bernoulli matrix [10], and Bessel colloca-
tion method [11]. In this study, we investigate a collocation
method based on the Fibonacci polynomial operational
matrix for the numerical solution of the generalized panto-
graph equation (1). Even the Fibonacci numbers have been
known for a long time; the Fibonacci polynomials are very
recently defined to be an important agent in the world
of polynomials [12, 13]. Compared to the methods of the
orthogonal polynomials, the Fibonacci approach has proved
to give more precise and reliable results in the solution of
differential equations [14].

This study is organized as follows. In the second part, a
short review of the Fibonacci polynomials is presented. A
Fibonacci operational matrix for the solution of the panto-
graph equation is developed in Section 3. Some numerical
examples are given in Section 4 to illustrate efficiency and
effectiveness of the method.
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2. Operational Matrices of
the Fibonacci Polynomials

TheFibonacci polynomials𝐹𝑟(𝑥) are determined by following
general formula [12, 13]:

𝐹𝑟+1 (𝑥) = 𝑥𝐹𝑟 (𝑥) + 𝐹𝑟−1 (𝑥) , for 𝑟 > 1, (3)

with 𝐹1(𝑥) = 1 and 𝐹2(𝑥) = 𝑥. Now, we will mention some
matrix relations in terms of Fibonacci polynomials.

2.1. Fibonacci Series Expansions. To obtain an expansion
form of the analytic solution of the pantograph equation, we
use the Fibonacci collocation method as follows.

Suppose that (1) has a continuous function solution that
can be expressed in the Fibonacci polynomials

𝑦 (𝑥) =

∞

∑

𝑟=1

𝑎𝑟𝐹𝑟 (𝑥) . (4)

Then, a truncated expansion of𝑁-Fibonacci polynomials can
be written in the vector form

𝑦𝑁 (𝑥) =

𝑁

∑

𝑟=1

𝑎𝑟𝐹𝑟 (𝑥) = F (𝑥)A, (5)

where the Fibonacci row vector F(𝑥) and the unknown
Fibonacci coefficients column vector A are given, respec-
tively, by

F (𝑥) = [𝐹1 (𝑥) 𝐹2 (𝑥) ⋅ ⋅ ⋅ 𝐹𝑁 (𝑥)]1×𝑁,

A = [𝑎1 𝑎2 ⋅ ⋅ ⋅ 𝑎𝑁]
𝑇

𝑁×1
.

(6)

2.2. Matrix Relations of the Derivatives. The 𝑘th order deriva-
tive of (5) can be written as

𝑦𝑁
(𝑘)
(𝑥) =

𝑁

∑

𝑟=1

𝑎𝑟
(𝑘)
𝐹𝑟 (𝑥) = F (𝑥)A(𝑘),

𝑘 = 0, 1, ..., 𝑛,

(7)

where 𝑎(0)𝑟 = 𝑎𝑟, 𝑦
(0)
(𝑥) = 𝑦(𝑥), and

A(𝑘) = [𝑎
(𝑘)
1 𝑎
(𝑘)
2 ⋅ ⋅ ⋅ 𝑎

(𝑘)

𝑁
]
𝑇 (8)

is the coefficient vector of the polynomial approximation of
𝑘th order derivative.Then, there exists a relation between the
Fibonacci coefficients as

A(𝑘+1) = D𝑘A, 𝑘 = 0, 1, . . . , 𝑛, (9)

whereD is𝑁×𝑁 operationalmatrix for the derivative defined
by [14]

D = [𝑑𝑖,𝑗] =
{

{

{

𝑖 ⋅ sin
(𝑗 − 𝑖) 𝜋

2
, 𝑗 > 𝑖

0, 𝑗 ≤ 𝑖.

(10)

Making use of (7) and (9) yields

𝑦𝑁
(𝑘)
(𝑥) = F (𝑥)D𝑘A, 𝑘 = 0, 1, . . . , 𝑛. (11)

3. Solution Procedure for the Pantograph
Differential Equations

Let us recall the 𝑚th order linear pantograph differential
equation,

𝑦
(𝑚)

(𝑥) =

𝐽

∑

𝑗=0

𝑚−1

∑

𝑘=0

𝑝𝑗𝑘 (𝑥) 𝑦
(𝑘)
(𝛼𝑗𝑘𝑥 + 𝛽𝑗𝑘) + 𝑔 (𝑥) ,

𝑥 ∈ 𝐼 = [𝑎, 𝑏] .

(12)

The first step in the solution procedure is to define the
collocation points in the domain, so that

𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁 − 1
(𝑖 − 1) , 𝑖 = 1, 2, . . . , 𝑁, 𝑎 ≤ 𝑥𝑖 ≤ 𝑏. (13)

Then, collocating problem (12) at the points in (13) yields

𝑦
(𝑚)

(𝑥𝑖) =

𝐽

∑

𝑗=0

𝑚−1

∑

𝑘=0

𝑝𝑗𝑘 (𝑥𝑖) 𝑦
(𝑘)
(𝛼𝑗𝑘𝑥𝑖 + 𝛽𝑗𝑘) + 𝑔 (𝑥𝑖) ,

𝑖 = 1 (1)𝑁, 𝑚 + 1 ≤ 𝑁.

(14)

The system (14) can, alternatively, be rewritten in the matrix
form

Y(𝑚) −
𝐽

∑

𝑗=0

𝑚−1

∑

𝑘=0

P𝑗𝑘Y
(𝑘)

𝑗𝑘 = G, (15)

where

P𝑗𝑘 =
[
[
[
[

[

𝑃𝑗𝑘 (𝑥1) 0 ⋅ ⋅ ⋅ 0

0 𝑃𝑗𝑘 (𝑥2) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝑃𝑗𝑘 (𝑥𝑁)

]
]
]
]

]

,

G = [𝑔 (𝑥1) 𝑔 (𝑥2) ⋅ ⋅ ⋅ 𝑔 (𝑥𝑁)]
𝑇
.

(16)

Therefore, the 𝑘th order derivative of the unknown function
at the collocation points can be written in the matrix form as

[𝑦𝑁
(𝑘)
(𝑥𝑖)] = F (𝑥𝑖)D

𝑘A, 𝑖 = 1 (1)𝑁, (17)

or, equivalently,

𝑌
(𝑘)

=

[
[
[
[
[

[

𝑦𝑁
(𝑘)
(𝑥1)

𝑦𝑁
(𝑘)
(𝑥2)

...
𝑦𝑁
(𝑘)
(𝑥𝑁)

]
]
]
]
]

]

= FD𝑘A. (18)

To express the functional terms of (1) as in the form (5), let
we put 𝛼𝑗𝑘𝑥𝑖 + 𝛽𝑗𝑘 instead of 𝑥 in the relation (18) and then
obtain

[𝑦𝑁
(𝑘)
(𝛼𝑗𝑘𝑥𝑖 + 𝛽𝑗𝑘)] = F (𝛼𝑗𝑘𝑥𝑖 + 𝛽𝑗𝑘)D

𝑘A, 𝑖 = 1 (1)𝑁,

(19)
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or

Y(𝑘)𝑗𝑘 =
[
[
[
[
[

[

𝑦𝑁
(𝑘)
(𝛼𝑗𝑘𝑥1 + 𝛽𝑗𝑘)

𝑦𝑁
(𝑘)
(𝛼𝑗𝑘𝑥2 + 𝛽𝑗𝑘)

...
𝑦𝑁
(𝑘)
(𝛼𝑗𝑘𝑥𝑁 + 𝛽𝑗𝑘)

]
]
]
]
]

]

= F𝑗𝑘 D
𝑘A, (20)

where F𝑗𝑘 are Fibonacci operational matrices corresponding
to the coefficients 𝛼𝑗𝑘. Therefore, replacing (18) and (20) in
(15) gives the fundamental matrix equation for the problem
(12) as

{

{

{

FD𝑚 −
𝐽

∑

𝑗=0

𝑚−1

∑

𝑘=0

P𝑗𝑘F𝑗𝑘D
𝑘
}

}

}

A = G, (21)

which corresponds to a system of 𝑁 algebraic equations for
the unknown Fibonacci coefficients 𝑎𝑟, 𝑟 = 1, 2, ..., 𝑁. In
other words, when we denote the expression in the sum by
W = [𝑤𝑠,𝑡], for 𝑠 = 1, 2, ..., 𝑁 and 𝑡 = 1, 2, ..., 𝑁, we get

WA = G. (22)

Thus, the augmented matrix of (22) becomes

[W;G] . (23)

On the other hand, in view of (11), the conditions (2)
can be taken into account by forming the following matrix
equation:

U𝑗 = [

𝑚−1

∑

𝑘=0

𝑐𝑟𝑘𝑦
(𝑘)
(𝜇𝑟𝑘)] = [𝜆𝑟] , (24)

where

U𝑗 = [𝑢𝜌,𝜎] =

𝑚−1

∑

𝑘=0

𝑐𝑟𝑘F𝜇
𝑟𝑘

D𝑘A,

F𝜇
𝑟𝑘

= [𝐹1 (𝜇𝑟𝑘) 𝐹2 (𝜇𝑟𝑘) ⋅ ⋅ ⋅ 𝐹𝑁 (𝜇𝑟𝑘)] .

(25)

Therefore, the augmented matrix of the specified conditions
is

[U𝑗 ; 𝜆𝑗] = [ 𝑢𝑗
1

𝑢𝑗
2

⋅ ⋅ ⋅ 𝑢𝑗
𝑁

: 𝛾𝑗 ] . (26)

Consequently, (23) together with (26) can be written in the
new augmented matrix form

[W∗ : G∗] . (27)

This form can also be achieved by replacing some rows of
the matrix (23) by the rows of (26) or adding those rows
to the matrix (23) provided that det(W∗) ̸= 0. Finally, the
vector 𝐴 (thereby vector of the coefficients 𝑎𝑟) is determined
by applying some numerical methods designed especially to
solve the system of linear equations. On the other hand, when
the singular case det(W∗) = 0 appears, the least square
methods are inevitably available to reach the best possible
approximation. Therefore, the approximated solution can be
obtained.This would be the Fibonacci series expansion of the
solution to the problem (12) with the specified conditions.

3.1. Accuracy of the Results. Wecan, now, proceedwith a short
accuracy analysis of the problem in a similar way to [18]. As
the truncated Fibonacci series expansion is an approximate
solution of (1) with (2), it must satisfy the following equality
for 𝑥 = 𝑥𝑟 ∈ [𝑎, 𝑏], 𝑟 = 1(1)𝑁:

𝐸 (𝑥𝑟) =



𝑦
(𝑚)

(𝑥𝑟) −

𝐽

∑

𝑗=0

𝑚−1

∑

𝑘=0

𝑝𝑗𝑘 (𝑥𝑟) 𝑦
(𝑘)
(𝛼𝑗𝑘𝑥𝑟 + 𝛽𝑗𝑘)

−𝑔 (𝑥𝑟)



≅ 0,

(28)

or

𝐸 (𝑥𝑟) ≤ 10
−𝑘
𝑟 (𝑘𝑟 is any positive integer) . (29)

When max(10−𝑘𝑟) = 10
−𝑘 (𝑘 is any integer) is prescribed,

the truncation limit𝑁 is increased until the difference 𝐸(𝑥𝑟)
at each of the collocation points becomes smaller than the
desired value 10−𝑘.

4. Numerical Results

In this part, three illustrative examples are given in order to
clarify the findings of the previous section. The errors of the
proposed method are compared with those of the errors that
occurred in the solutions by some other methods in Tables 1–
3 for two sample examples. It is noted here that the number of
collocation points in the examples is indicated by the capital
letter𝑁.

Example 1 (see [10, 11]). Consider the following linear panto-
graph type problem equation:

𝑦

(𝑥) =

3

4
𝑦 (𝑥) + 𝑦 (

𝑥

2
) − 𝑥
2
+ 2, 0 ≤ 𝑥 ≤ 1, (30)

with the initial conditions

𝑦 (0) = 𝑦

(0) = 0. (31)

The exact solution of this problem is known to be 𝑦(𝑥) =
𝑥
2. When the solution procedure in Section 3 is applied to

the problem, the solution of the linear algebraic system gives
the numerical approximation of the solution to the problem.
It is noteworthy that the method reaches the exact solution
𝑦(𝑥) = 𝑥

2 even for𝑁 = 3.

Example 2 (see [9, 15, 16]). Now, consider the following
equation with variable coefficient given by

𝑦

(𝑥) =

1

2
𝑒
𝑥/2
𝑦(

𝑥

2
) +

1

2
𝑦 (𝑥) , 0 ≤ 𝑥 ≤ 1, (32)

and the condition

𝑦 (0) = 1. (33)

The exact solution is also known to be 𝑦(𝑥) = exp(𝑥). A
comparison of the absolute errors of the proposed approach
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Table 1: Comparison of the absolute errors of different approximation techniques to Example 2.

𝑥
Present method Exponential approach [15] Taylor polynomial approach [16]

𝑁 = 5 𝑁 = 5 𝑁 = 5

0.2 0.2553𝐸 − 05 0.32778𝐸 − 02 0.271𝐸 − 06

0.4 0.1965𝐸 − 05 0.32081𝐸 − 02 0.882𝐸 − 05

0.6 0.3874𝐸 − 05 0.44444𝐸 − 02 0.682𝐸 − 04

0.8 0.4833𝐸 − 05 0.46898𝐸 − 02 0.293𝐸 − 03

1.0 0.2690𝐸 − 04 0.12864𝐸 − 01 0.912𝐸 − 03

Table 2: Comparison of the absolute errors of different approximation techniques to Example 2.

𝑥
Present method Taylor polynomial approach [16] Taylor method [9]

𝑁 = 9 𝑁 = 9 𝑁 = 8

0.2 0 0.271𝐸 − 06 1.44𝐸 − 12

0.4 0 0.882𝐸 − 05 7.524𝐸 − 10

0.6 0 0.682𝐸 − 04 2.953𝐸 − 08

0.8 0.1𝐸 − 08 0.293𝐸 − 03 4.018𝐸 − 07

1.0 0.1𝐸 − 08 0.912𝐸 − 03 3.059𝐸 − 06

Table 3: Comparison of the absolute errors of different approximation techniques to Example 3.

𝑥
Present method Taylor matrix method [6] Boubaker matrix method [17]

𝑁 = 5 𝑁 = 9 𝑁 = 12 𝑁 = 5 𝑁 = 9 𝑁 = 9 𝑁 = 12

0.2 0.18903𝐸 − 5 0.12102𝐸 − 10 0.18730𝐸 − 14 0.69082𝐸 − 6 0.1300𝐸 − 8 0.121𝐸 − 10 0

0.4 0.62395𝐸 − 6 0.96855𝐸 − 11 0.14897𝐸 − 14 0.42924𝐸 − 4 0.1434𝐸 − 6 0.968𝐸 − 11 0.310𝐸 − 14

0.6 0.13542𝐸 − 5 0.71954𝐸 − 11 0.11151𝐸 − 14 0.47443𝐸 − 3 0.2058𝐸 − 5 0.719𝐸 − 11 0.110𝐸 − 14

0.8 0.15097𝐸 − 5 0.68229𝐸 − 11 0.68964𝐸 − 15 0.25855𝐸 − 2 0.1212𝐸 − 4 0.682𝐸 − 11 0.200𝐸 − 14

1.0 0.47735𝐸 − 4 0.75830𝐸 − 9 0.13256𝐸 − 12 0.95631𝐸 − 2 0.4003𝐸 − 4 0.758𝐸 − 9 0.562𝐸 − 12

Taylormethod [16] and the exponential approach [15] is given
in Table 1 for 𝑁 = 5. Another comparison of the present
methodwith themethods of Taylor polynomials [9, 16] is also
given for 𝑁 = 9 and 𝑁 = 8 in Table 2. These results show
that the Fibonacci approach has better accuracy, at least one
decimal place, than the other methods.

Example 3 (see [6, 17]). Finally, let us consider the panto-
graph equation with variable coefficients

𝑦

(𝑥) = − 𝑦 (𝑥) − 𝑒

−0.5𝑥 sin (0.5𝑥) 𝑦 (0.5𝑥)

− 2𝑒
−0.75𝑥 cos (0.5𝑥) sin (0.25𝑥) 𝑦 (0.25𝑥) ,

0 ≤ 𝑥 ≤ 1,

(34)

and the condition

𝑦 (0) = 1, (35)

which has the exact solution 𝑦(𝑥) = 𝑒
−𝑥 cos𝑥. Computed

results are compared with the results of the Taylor [6] and
Boubaker [17] matrix methods in Table 3.
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