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This paper studies the pricing of Asian options when the volatility of the underlying asset is uncertain. We use the nonlinear
Feynman-Kac formula in the G-expectation theory to get the two-dimensional nonlinear PDEs. For the arithmetic average fixed
strike Asian options, the nonlinear PDEs can be transferred to linear PDEs. For the arithmetic average floating strike Asian options,
we use a dimension reduction technique to transfer the two-dimensional nonlinear PDEs to one-dimensional nonlinear PDEs.
Then we introduce the applicable numerical computation methods for these two classes of PDEs and analyze the performance of
the numerical algorithms.

1. Introduction

Model uncertainty aversion has shown to have important
consequences in price behavior in capital markets [1–3] and
macroeconomics [4, 5]. Denis and Martini [6] prove, in
the model uncertainty situation the value of any bounded
contingent claim can be expressed as the supremum of its
expectation over some set of martingale measures.

In finance, there is an important case of model uncer-
tainty called volatility uncertainty in which the uncertainty
comes from the volatility coefficient. A major difficulty here
is that the probabilities are mutually singular. This type of
uncertainty is initially studied by Avellaneda et al. [7] and
Lyons [8] for the superhedging of European options with
payoffs depending only on the basic assets’ terminal values.
In this case the values of the derivatives should satisfy the
(Black-Scholes-Barenblatt) BSB equations. The correspond-
ing discrete-time case has been studied in Delbaen [9]. But
for the path-dependent options, the difficulty is dramatically
increased. In this paper, we are going to study the pricing of
Asian options in the uncertain volatility model. As far as we
know, there is little literature on this problem.

In the model without volatility uncertainty, there is a vast
literature on pricing of Asian options.

In the geometric Brownian motion model, Asian options
pricing methods are studied extensively. Geman and Yor
[10] develop a dimensional Laplace transform method to

price Asian options (see also [11]). Kemna and Vorst [12] use
Monte Carlo simulation with a specific variance reduction
method to compute the prices of fixed strike average-rate
options. Ingersoll [13], and Wilmott et al. [14] prove that
the two-dimensional PDE for a floating strike Asian option
can be reduced to a one-dimensional PDE. Rogers and Shi
[15] formulate a one-dimensional PDE that can model the
prices of both floating and fixed strike Asian options and
propose a numerical technique to compute tight lower bound
on European average-rate options’ prices. Barraquand and
Pudet [16] describe a forward shooting grid algorithm and
prove that it is unconditionally convergent. In Zvan et al.
[17] and Zvan et al. [18], a flux limiter is used to retain
accuracy while preventing oscillations. Simon et al. [19]
propose an easy computable upper bound for the prices of
arithmetic Asian options. Kaas et al. [20] and Dhaene et
al. [21] compute the sharp lower and upper bounds for the
prices of arithmetic Asian options by using the method of
“comonotonic approximations.” Večeř [22], and Zhang [23,
24] propose various PDE methods. In Marcozzi [25], the
first-order hyperbolic term is discretized by using a first-
order upwind type method, resulting in at most first-order
accuracy. A related approach based on a combination of the
(weighted essentially nonoscillatory) WENO discretization
and the grid stretching is used for Asian options in Oosterlee
et al. [26]. Linetsky [27] investigates a spectral expansion
approach.
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In the jump diffusion models, methods for pricing Asian
options are still under development. Fusai [28] obtains a
simple expression for the double transform of the prices of
continuously monitored Asian options by means of Fourier
and Laplace transform. D’Halluin et al. [29] propose a semi-
Lagrangian method to price the continuously observed fixed
strike Asian options. Cai and Kou [30] consider the pricing
of Asian options for the double exponential jump diffusion
model. Bayraktar and Xing [31] obtain a fast numerical
approximation scheme and analyze the performance of the
numerical algorithm.

In this paper, we use the stochastic processes driven by
𝐺-Brownian motion to describe the stocks’ price processes.
𝐺-Brownian motion is introduced in Peng [32–34], and it
has the properties that its increments are zero-mean, inde-
pendent, and stationary and can be proved to be 𝐺-normally
distributed. The 𝐺-normal distribution random variables
have no mean uncertainty but can have variance uncertainty.
The variance uncertainty of the 𝐺-normal distribution is
the source of the volatility uncertainty of the stocks’ price
processes.

The paper is organized as follows. In Section 2, we use
the nonlinear Feynman-Kac formula in the 𝐺-expectation
theory to get the two-dimensional nonlinear PDEs satisfied
by the values of the Asian options. For the arithmetic
average fixed strike Asian options, we prove the convexity
of the options’ values with respect to the stock prices and
transfer the nonlinear PDEs to linear PDEswith the uncertain
volatilities being replaced by the maximum volatilities. For
the arithmetic average floating strike Asian options, we
use a dimension reduction technique to transfer the two-
dimensional nonlinear PDEs to one-dimensional nonlinear
PDEs. In Section 3, we introduce the applicable numerical
computation methods for these two classes of PDEs and give
the numerical results.

2. The Pricing of Asian Options in Uncertain
Volatility Model

2.1. 𝐺-Brownian Motion and 𝐺-Expectation. In this subsec-
tion, we will introduce the 𝐺-Brownian motion and 𝐺-
expectation defined in Peng [33–36].

Let Ω be a given set and let H be a linear space of real
valued functions defined on Ω. We suppose that H satisfies
𝑐 ∈ H for each constant 𝑐 and |𝑋| ∈ H if 𝑋 ∈ H. The space
H can be considered as the space of random variables.

A sublinear expectation E onH is a functional E : H →

R satisfying the following properties: for all 𝑋,𝑌 ∈ H, we
have

(a) Monotonicity: If 𝑋 ≥ 𝑌 then E[𝑋] ≥ E[𝑌].

(b) Constant preserving: E[𝑐] = 𝑐, for 𝑐 ∈ R.

(c) Sub-additivity: E[𝑋 + 𝑌] ≤ E[𝑋] + E[𝑌].

(d) Positive homogeneity: E[𝜆𝑋] = 𝜆E[𝑋], ∀𝜆 ≥ 0.

The triple (Ω,H,E) is called a sublinear expectation
space.

Definition 1. A 𝑑-dimensional process (𝐵
𝑡
)
𝑡≥0

on a sublinear
expectation space (Ω,H,E) is called a𝐺-Brownianmotion if
the following properties are satisfied:

(i) 𝐵
0
(𝜔) = 0;

(ii) For each 𝑡, 𝑠 ≥ 0, the increment 𝐵
𝑡+𝑠

− 𝐵
𝑡
is

𝑁({0} × Σ)-distributed and is independent from
(𝐵

𝑡
1

, 𝐵
𝑡
2

, . . . , 𝐵
𝑡
𝑛

), for each 𝑛 ∈ 𝑁 and 0 ≤ 𝑡
1
≤ ⋅ ⋅ ⋅ ≤

𝑡
𝑛
≤ 𝑡.

Remark 2. Just as in the classical situation, the increments of
𝐺-Brownian motion (𝐵

𝑡+𝑠
− 𝐵

𝑡
)
𝑠≥0

are independent fromΩ
𝑡
.

Let 𝜋𝑁

𝑡
= {𝑡

𝑁

0
, 𝑡

𝑁

1
, . . . , 𝑡

𝑁

𝑁
} such that 0 = 𝑡

𝑁

0
< 𝑡

𝑁

1
< ⋅ ⋅ ⋅ <

𝑡
𝑁

𝑁
= 𝑡 for 𝑁 = 1, 2, . . ., be a sequence of partitions of [0, 𝑡]

with

𝜇 (𝜋
𝑁

𝑡
) := max {󵄨󵄨󵄨󵄨𝑡𝑖+1 − 𝑡

𝑖

󵄨󵄨󵄨󵄨 : 𝑖 = 0, 1, . . . , 𝑁 − 1} . (1)

Thequadratic variation process of 1-dimensional𝐺-Brownian
motion (𝐵

𝑡
)
𝑡≥0

with 𝐵
1

𝑑

== 𝑁({0} × [𝜎
2
, 𝜎

2
]) is defined as

⟨𝐵⟩
𝑡
:= lim

𝜇(𝜋
𝑁

𝑡
)→0

𝑁−1

∑

𝑗=0

(𝐵
𝑡
𝑁

𝑗+1

− 𝐵
𝑡
𝑁

𝑗

)
2

= 𝐵
2

𝑡
− 2∫

𝑡

0

𝐵
𝑠
𝑑𝐵

𝑠
. (2)

(⟨𝐵⟩
𝑡
)
𝑡≥0

is an increasing process with ⟨𝐵⟩
0
= 0.

LetΩ = 𝐶
𝑑

0
(R+

) be the space of allR𝑑-valued continuous
paths (𝜔

𝑡
)
𝑡∈R+ , with 𝜔

0
= 0, equipped with the distance

𝜌 (𝜔
1
, 𝜔

2
) :=

∞

∑

𝑖=1

2
−𝑖

[(max
𝑡∈[0,𝑖]

󵄨󵄨󵄨󵄨󵄨
𝜔

1

𝑡
− 𝜔

2

𝑡

󵄨󵄨󵄨󵄨󵄨
) ∧ 1] . (3)

For each fixed 𝑇 ∈ [0,∞), we setΩ
𝑇
:= {𝜔

⋅∧𝑇
: 𝜔 ∈ Ω}.

From Peng [36], the distribution of the quadratic vari-
ation process of the 𝐺-Brownian motion has the following
properties.

Lemma 3. For each fixed 𝑠, 𝑡 ≥ 0, ⟨𝐵⟩
𝑠+𝑡

− ⟨𝐵⟩
𝑠
is identically

distributed with ⟨𝐵⟩
𝑡
and independent from Ω

𝑠
.

Theorem 4. ⟨𝐵⟩
𝑡
is𝑁([𝜎

2
𝑡, 𝜎

2
𝑡] × {0})-distributed; that is, for

each 𝜑 ∈ 𝐶
𝑙,𝐿𝑖𝑝

(R),

Ê [𝜑 (⟨𝐵⟩
𝑡
)] = sup

𝜎
2
≤V≤𝜎2

𝜑 (V𝑡) . (4)

The sublinear expectation Ê in the above theorem is called
𝐺-expectation defined on 𝐿

𝑖𝑝
(Ω) via the following procedure.

Let

𝐿
𝑖𝑝
(Ω

𝑇
) := {𝜙 (𝐵

𝑡
1
∧𝑇

, . . . , 𝐵
𝑡
𝑛
∧𝑇

) : 𝑛 ∈ N,

𝑡
1
, . . . , 𝑡

𝑛
∈ [0,∞) , 𝜙 ∈ 𝐶

𝑙,𝐿𝑖𝑝
(R

𝑑×𝑛
)}

(5)

with 𝐵
𝑡
= 𝜔

𝑡
, 𝑡 ∈ [0,∞) for 𝜔 ∈ Ω, and

𝐿
𝑖𝑝
(Ω) :=

∞

⋃

𝑛=1

𝐿
𝑖𝑝
(Ω

𝑛
) . (6)
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Firstly, construct a sequence of 𝑑-dimensional random
vectors (𝜉)∞

𝑖=1
on a sublinear expectation space (Ω̃, H̃, Ẽ) such

that 𝜉
𝑖
is 𝐺-normal distributed and 𝜉

𝑖+1
is independent from

(𝜉
1
, . . . , 𝜉

𝑖
) for each 𝑖 = 1, 2, . . .. For each𝑋 ∈ 𝐿

𝑖𝑝
(Ω) with

𝑋 = 𝜙 (𝐵
𝑡
1

− 𝐵
𝑡
0

, 𝐵
𝑡
2

− 𝐵
𝑡
1

, . . . , 𝐵
𝑡
𝑛

− 𝐵
𝑡
𝑛−1

) , (7)

some 𝜙 ∈ 𝐶
𝑙,𝐿𝑖𝑝

(𝑅
𝑑×𝑛

) and 0 = 𝑡
0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< ∞, set

Ê [𝜙 (𝐵
𝑡
1

− 𝐵
𝑡
0

, 𝐵
𝑡
2

− 𝐵
𝑡
1

, . . . , 𝐵
𝑡
𝑛

− 𝐵
𝑡
𝑛−1

)]

:= Ẽ [𝜙 (√𝑡
1
− 𝑡

0
𝜉
1
, . . . , √𝑡

𝑛
− 𝑡

𝑛−1
𝜉
𝑛
)] .

(8)

And the related conditional expectation of

𝑋 = 𝜙 (𝐵
𝑡
1

, 𝐵
𝑡
2

− 𝐵
𝑡
1

, . . . , 𝐵
𝑡
𝑛

− 𝐵
𝑡
𝑛−1

) (9)

underΩ
𝑡
𝑗

is defined by

Ê [𝑋 | Ω
𝑡
𝑗

] := 𝜓 (𝐵
𝑡
1

, . . . , 𝐵
𝑡
𝑗

− 𝐵
𝑡
𝑗−1

) , (10)

where

𝜓 (𝑥
1
, . . . , 𝑥

𝑗
)

= Ẽ [𝜙 (𝑥
1
, . . . , 𝑥

𝑗
, √𝑡

𝑗+1
− 𝑡

𝑗
𝜉
𝑗+1

, . . . , √𝑡
𝑛
− 𝑡

𝑛−1
𝜉
𝑛
)] .

(11)

Ê[⋅] consistently defines a sublinear expectation on 𝐿
𝑖𝑝
(Ω)

and (𝐵
𝑡
)
𝑡≥0

is a 𝐺-Brownian motion.
We let 𝐿𝑝

𝐺
(Ω

𝑡
𝑘

), 𝑝 ≥ 1, denote the completion of

𝐿
𝑖𝑝
(Ω

𝑡
𝑘

) := {𝜑 (𝐵
𝑡
1
∧𝑇

, . . . , 𝐵
𝑡
𝑛
∧𝑇

) : 𝑛 ∈ N,

𝑡
1
, . . . , 𝑡

𝑛
∈ [0,∞) , 𝜑 ∈ 𝐶

𝑙,𝐿𝑖𝑝
(R

𝑑×𝑛
)}

(12)

under the norm ‖𝑋‖
𝑝
:= (Ê[|𝑋|

𝑝
])

1/𝑝.

2.2. The PDEs. We assume the security market is defined
on a sublinear expectation space (Ω,H, Ê) which opens
continuously and offers a constant riskless interest rate 𝑟 to
all borrowers and lenders. And we also assume there are no
transaction costs and/or taxes. Suppose that the price process
(𝑆

𝑡
)
𝑡≥0

of some risky asset is given by

𝑑𝑆] = 𝜇𝑆]𝑑] + 𝜎̃𝑆]𝑑𝐵], 𝑆
0
= 𝑆, (13)

where 𝐵 is the 𝐺-Brownian motion with 𝜎
2
= −Ê[−𝐵2

1
] and

𝜎
2

= Ê[𝐵2

1
], and 𝜇 and 𝜎̃ are constants. Hence (𝑆])]≥0 is a

geometric 𝐺-Brownian motion:

𝑆] = 𝑆
𝑡
exp (𝜇 (] − 𝑡)

−
1

2
𝜎̃
2
(⟨𝐵⟩] − ⟨𝐵⟩

𝑡
) + 𝜎̃ (𝐵] − 𝐵

𝑡
)) .

(14)

Define

𝐼] = ∫

]

0

𝑆
𝜏
𝑑𝜏. (15)

Then 𝐼] satisfies the following stochastic differential equation:

𝑑𝐼] = 𝑆]𝑑], 𝐼
0
= 0. (16)

Let𝑋] = (𝑆], 𝐼])
𝑇, so

𝑑𝑋] = 𝜇
𝑋
𝑋]𝑑] + 𝜎̃

𝑋
𝑋]𝑑𝐵], 𝑋

0
= 𝑥 = (𝑆, 0) , (17)

where 𝜇
𝑋 and 𝜎̃

𝑋 are 2 × 2matrixes:

𝜇
𝑋

= (
𝜇 0

1 0
) , 𝜎̃

𝑋
= (

𝜎̃ 0

0 0
) . (18)

The typical Asian options in this security market are the
following four types:

the arithmetic average fixed strike call option with
final payoff,

max (𝐼
𝑇

𝑇
− 𝐾, 0) ; (19)

the corresponding arithmetic average fixed strike put
option with payoff,

max (𝐾 −
𝐼
𝑇

𝑇
, 0) ; (20)

the arithmetic average floating strike call option with
final payoff,

max(𝑆
𝑇
−

𝐼
𝑇

𝑇
, 0) ; (21)

and the corresponding arithmetic average floating
strike put option with payoff,

max(𝐼
𝑇

𝑇
− 𝑆

𝑇
, 0) . (22)

Let 𝑉(𝑡, 𝑆
𝑡
, 𝐼

𝑡
) denote the price of one of the options at

time 𝑡. Take the arithmetic average fixed strike call option for
example, we know 𝑉(𝑇, 𝑆

𝑇
, 𝐼

𝑇
) = max(𝐼

𝑇
/𝑇 − 𝐾, 0).

Here we still assume the market operates in a risk neutral
world [7].

Peng [35] introduces the axiomatic conditions satisfied by
the valuation mechanism. In the sublinear expectation space
(Ω,H, Ê), Ê

𝑡
[⋅] is a filtration consistent valuation operator.

By this valuation mechanism, we have

𝑉 (𝑡, 𝑆
𝑡
, 𝐼

𝑡
) = Ê [𝑒

−𝑟(𝑇−𝑡)
𝑉 (𝑇, 𝑆

𝑇
, 𝐼

𝑇
) | Ω

𝑡
] . (23)

Here we assume the riskless interest rate is 𝑟.
Since we assume the market is risk neutral, we have 𝜇 =

𝑟. It is easy to verify that the discounted prices of the stock
satisfy the valuation mechanism {Ê

𝑡
[⋅]}

𝑡≥0
; that is,

𝑆
𝑡
= Ê

𝑡
[𝑒

−𝑟(]−𝑡)
𝑆]] , 0 ≤ 𝑡 ≤ ] ≤ 𝑇. (24)
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Let us assume

𝑑𝑋
𝑡,𝑥

] = 𝜇
𝑋
𝑋

𝑡,𝑥

] 𝑑] + 𝜎̃
𝑋
𝑋

𝑡,𝑥

] 𝑑𝐵], 𝑋
𝑡
= 𝑥 = (𝑆, 𝐼) , (25)

with

𝜇
𝑋

= (
𝑟 0

1 0
) , 𝜎̃

𝑋
= (

𝜎̃ 0

0 0
) . (26)

The following result is a corollary of the nonlinear
Feynman-Kac formula of Peng [36].

Corollary 5. Let

𝑌
𝑡,𝑥

𝑠
= Ê [𝑒

−𝑟(𝑇−𝑠)
Φ(𝑋

𝑡,𝑥

𝑇
)

+ ∫

𝑇

𝑠

𝑒
−𝑟(]−𝑠)

𝑓 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑]

+∫

𝑇

𝑠

𝑒
−𝑟(]−𝑠)

𝑔 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑⟨𝐵⟩] | Ω
𝑠
] ,

(27)

where Φ : R2
→ R is a given Lipschitz function and 𝑓, 𝑔 :

R2
× R → R are given Lipschitz functions; that is, |𝜙(𝑥, 𝑦) −

𝜙(𝑥
󸀠
, 𝑦

󸀠
)| ≤ 𝐾(|𝑥 − 𝑥

󸀠
| + |𝑦 − 𝑦

󸀠
|), for each 𝑥, 𝑥

󸀠
∈ R2, 𝑦, 𝑦󸀠

∈

R, 𝜙 = 𝑓 and 𝑔. And denote

𝑢 (𝑡, 𝑥) = 𝑌
𝑡,𝑥

𝑡
. (28)

Then

𝑢 (𝑡, 𝑥) = Ê[𝑒
−𝑟𝛿

𝑢 (𝑡 + 𝛿,𝑋
𝑡,𝑥

𝑡+𝛿
)

+ ∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑓 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑]

+∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑔 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑⟨𝐵⟩]]

(29)

is a viscosity solution of the following PDE:

𝜕
𝑡
𝑢 + sup

𝜎
2
≤𝜎
2
≤𝜎
2

(
1

2
⟨𝐷

2
𝑢 (𝑡, 𝑥) 𝜎̃

𝑋
𝑥, 𝜎̃

𝑋
𝑥⟩ + 𝑔 (𝑥, 𝑢)) 𝜎

2

+ ⟨𝐷𝑢 (𝑡, 𝑥) , 𝜇
𝑋
𝑥⟩ − 𝑟𝑢 + 𝑓 (𝑥, 𝑢) = 0,

𝑢 (𝑇, 𝑥) = Φ (𝑥) .

(30)

Proof. The proof of expression (29) is the same as that of
Peng [36]. By the proof of Peng’s theorem of the nonlinear
Feynman-Kac formula and the boundedness of 𝑒−𝑟(𝑇−𝑡), we
can easily prove that 𝑢 is a Lipschitz function; that is,

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑥

󸀠
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠󵄨󵄨󵄨󵄨󵄨
, (31)

Ê [
󵄨󵄨󵄨󵄨󵄨
𝑌

𝑡,𝑥

𝑠

󵄨󵄨󵄨󵄨󵄨
] ≤ 𝐶 (1 + |𝑥|) . (32)

Let us see the continuity of 𝑢with respect to 𝑡. Firstly, we have

|𝑢 (𝑡, 𝑥) − 𝑢 (𝑡 + 𝛿, 𝑥)|

≤ Ê [
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑟𝛿

𝑢 (𝑡 + 𝛿,𝑋
𝑡,𝑥

𝑡+𝛿
) − 𝑢 (𝑡 + 𝛿, 𝑥)

󵄨󵄨󵄨󵄨󵄨
]

+ Ê[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑓 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑]

+ ∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑔 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑⟨𝐵⟩]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

] .

(33)

Replace 𝑒
−𝑟𝛿 with its Taylor’s expansion in the first term on

the right side of (33), we have

Ê [
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑟𝛿

𝑢 (𝑡 + 𝛿,𝑋
𝑡,𝑥

𝑡+𝛿
) − 𝑢 (𝑡 + 𝛿, 𝑥)

󵄨󵄨󵄨󵄨󵄨
]

= Ê [
󵄨󵄨󵄨󵄨󵄨
(1 − 𝑟𝛿 + (𝑟𝛿)

2
+ ⋅ ⋅ ⋅ ) 𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥

𝑡+𝛿
)

− 𝑢 (𝑡 + 𝛿, 𝑥)
󵄨󵄨󵄨󵄨󵄨
]

= Ê [
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥

𝑡+𝛿
) − 𝑢 (𝑡 + 𝛿, 𝑥)

+ (−𝑟𝛿 + (𝑟𝛿)
2
+ ⋅ ⋅ ⋅ ) 𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥

𝑡+𝛿
)
󵄨󵄨󵄨󵄨󵄨
]

≤ Ê [
󵄨󵄨󵄨󵄨󵄨
𝑋

𝑡,𝑥

𝑡+𝛿
− 𝑥

󵄨󵄨󵄨󵄨󵄨
]

+ Ê [
󵄨󵄨󵄨󵄨󵄨
(−𝑟𝛿 + (𝑟𝛿)

2
+ ⋅ ⋅ ⋅ ) 𝑢 (𝑡 + 𝛿,𝑋

𝑡,𝑥

𝑡+𝛿
)
󵄨󵄨󵄨󵄨󵄨
] .

(34)

By the following formulas [36]

Ê [
󵄨󵄨󵄨󵄨󵄨
𝑋

𝑡,𝑥

𝑡+𝛿
− 𝑥

󵄨󵄨󵄨󵄨󵄨

2

] ≤ 𝐶 (1 + 𝑥
2
) 𝛿,

Ê [
󵄨󵄨󵄨󵄨󵄨
𝑋

𝑡,𝑥

𝑡+𝛿

󵄨󵄨󵄨󵄨󵄨

2

] ≤ 𝐶 (1 + 𝑥
2
) ,

(35)

and (32), we have

Ê [
󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑟𝛿

𝑢 (𝑡 + 𝛿,𝑋
𝑡,𝑥

𝑡+𝛿
) − 𝑢 (𝑡 + 𝛿, 𝑥)

󵄨󵄨󵄨󵄨󵄨
]

≤ 𝐶
󸀠
(1 + |𝑥|

2
)
1/2

(𝛿
1/2

+ 𝛿 +
𝛿
2

2
⋅ ⋅ ⋅ ) .

(36)
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For the second term on the right side of (33), we have

Ê[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑓 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑]

+∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑔 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑⟨𝐵⟩]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

= Ê[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

× (𝑓 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) − 𝑓 (𝑥, 𝑌
𝑡,𝑥

𝑡
)) 𝑑]

+ ∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

× (𝑔 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) − 𝑔 (𝑥, 𝑌
𝑡,𝑥

𝑡
)) 𝑑⟨𝐵⟩]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

+ Ê[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑓 (𝑥, 𝑌
𝑡,𝑥

𝑡
) 𝑑]

+ ∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑔 (𝑥, 𝑌
𝑡,𝑥

𝑡
) 𝑑⟨𝐵⟩]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]

≤ 𝐶 (1 + |𝑥|) 𝛿.

(37)

Therefore 𝑢 is continuous in 𝑡.
Now we are going to prove that 𝑢(𝑡, 𝑥) is a viscosity

solution of PDE (30). For fixed (𝑡, 𝑥) ∈ (0, 𝑇) × R2, let 𝜓 ∈

𝐶
2,3

𝑏
((0, 𝑇) × R2

) such that 𝜓 ≥ 𝑢 and 𝜓(𝑡, 𝑥) = 𝑢(𝑡, 𝑥). By
(29) and Taylor’s expansion, for 𝛿 ∈ (0, 𝑇 − 𝑡),

0 ≤ Ê[𝑒
−𝑟𝛿

𝜓 (𝑡 + 𝛿,𝑋
𝑡,𝑥

𝑡+𝛿
) − 𝜓 (𝑡, 𝑥)

+ ∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑓 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑]

+∫

𝑡+𝛿

𝑡

𝑒
−𝑟(]−𝑡)

𝑔 (𝑋
𝑡,𝑥

] , 𝑌
𝑡,𝑥

] ) 𝑑⟨𝐵⟩]]

≤ Ê [ − 𝑟𝜓 (𝑡, 𝑥) 𝛿 + 𝜕
𝑡
𝜓 (𝑡, 𝑥) 𝛿

+ ⟨𝐷𝜓 (𝑡, 𝑥) , 𝜇
𝑋
𝑥⟩ 𝛿

+ ⟨
1

2
𝐷

2
𝜓 (𝑡, 𝑥) 𝜎̃

𝑋
𝑥, 𝜎̃

𝑋
𝑥⟩ (⟨𝐵⟩

𝑡+𝛿
− ⟨𝐵⟩

𝑡
)

+ 𝑓 (𝑥, 𝜓) 𝛿 + 𝑔 (𝑥, 𝜓) (⟨𝐵⟩
𝑡+𝛿

− ⟨𝐵⟩
𝑡
)]

+ 𝐶 (1 + |𝑥| + |𝑥|
2
+ |𝑥|

3
) 𝛿

3/2

≤ (𝜕
𝑡
𝜓 + sup

𝜎
2
≤𝜎
2
≤𝜎
2

(
1

2
⟨𝐷

2
𝜓 (𝑡, 𝑥) 𝜎̃

𝑋
𝑥, 𝜎̃

𝑋
𝑥⟩

+𝑔 (𝑥, 𝜓) ) 𝜎
2
+ ⟨𝐷𝜓 (𝑡, 𝑥) , 𝜇

𝑋
𝑥⟩

−𝑟𝜓 (𝑡, 𝑥) + 𝑓 (𝑥, 𝜓))𝛿

+ 𝐶 (1 + |𝑥| + |𝑥|
2
+ |𝑥|

3
) 𝛿

3/2
.

(38)

It is easy to check that

𝜕
𝑡
𝜓 + sup

𝜎
2
≤𝜎
2
≤𝜎
2

(
1

2
⟨𝐷

2
𝜓 (𝑡, 𝑥) 𝜎̃

𝑋
𝑥, 𝜎̃

𝑋
𝑥⟩ + 𝑔 (𝑥, 𝜓)) 𝜎

2

+ ⟨𝐷𝜓 (𝑡, 𝑥) , 𝜇
𝑋
𝑥⟩ − 𝑟𝜓 (𝑡, 𝑥) + 𝑓 (𝑥, 𝜓) ≥ 0.

(39)

Thus 𝑢 is a viscosity subsolution of (30). Similarly we can
prove that 𝑢 is a viscosity supersolution of (30).

For the arithmetic average Asian options, we have

𝑉 (𝑡, 𝑥) = 𝑉 (𝑡, 𝑆, 𝐼) = Ê [𝑒
−𝑟(𝑇−𝑡)

𝑉 (𝑇, 𝑆
𝑇
, 𝐼

𝑇
)] . (40)

Then by Corollary 5, 𝑉(𝑡, 𝑥) satisfies the following PDE:

𝜕
𝑡
𝑉 (𝑡, 𝑥) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
⟨𝐷

2
𝑉 (𝑡, 𝑥) 𝜎̃

𝑋
𝑥, 𝜎̃

𝑋
𝑥⟩𝜎

2

+ ⟨𝐷𝑉 (𝑡, 𝑥) , 𝜇
𝑋
𝑥⟩ − 𝑟𝑉 (𝑡, 𝑥) = 0,

𝑉 (𝑇, 𝑥) = 𝜑 (𝑇, 𝑥) .

(41)

By (18), the above PDE is

𝜕
𝑡
𝑉 (𝑡, 𝑆, 𝐼) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑆
2
𝜎
2
𝑉
𝑆𝑆

(𝑡, 𝑆, 𝐼)

+ 𝑟𝑆𝑉
𝑆
(𝑡, 𝑆, 𝐼) + 𝑆𝑉

𝐼
(𝑡, 𝑆, 𝐼) − 𝑟𝑉 (𝑡, 𝑆, 𝐼) = 0,

𝑉 (𝑇, 𝑆, 𝐼) = 𝜑 (𝑇, 𝑆, 𝐼) ,

(42)

where
𝜑 (𝑇, 𝑆, 𝐼)

=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

max ( 𝐼

𝑇
− 𝐾, 0) , for the arithmetic average

fixed strike call option,

max (𝐾 −
𝐼

𝑇
, 0) , for the arithmetic average

fixed strike put option,

max (𝑆 −
𝐼

𝑇
, 0) , for the arithmetic average

floating strike call option,

max ( 𝐼

𝑇
− 𝑆, 0) , for the arithmetic average

floating strike put option.
(43)
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2.3. The Arithmetic Average Fixed Strike Asian Call Option.
Let us see the arithmetic average fixed strikeAsian call option.
From (14), we have

𝑆
𝑡,𝑆

] = 𝑆 exp {𝜇 (] − 𝑡) −
1

2
𝜎̃
2
(⟨𝐵⟩] − ⟨𝐵⟩

𝑡
) + 𝜎̃ (𝐵] − 𝐵

𝑡
)} .

(44)

Then by the definition of 𝐼], we have

𝐼
𝑡,𝐼

] = 𝐼 + 𝑆∫

]

𝑡

exp {𝜇 (𝜏 − 𝑡) −
1

2
𝜎̃
2
(⟨𝐵⟩

𝜏
− ⟨𝐵⟩

𝑡
)

+ 𝜎̃ (𝐵
𝜏
− 𝐵

𝑡
) } 𝑑𝜏.

(45)

Since

𝑉 (𝑡, 𝑥) = 𝑉 (𝑡, 𝑆, 𝐼) = Ê [𝑒
−𝑟(𝑇−𝑡)

𝑉 (𝑇, 𝑆
𝑇
, 𝐼

𝑇
)]

= Ê [𝑒
−𝑟(𝑇−𝑡)

(
𝐼
𝑇

𝑇
− 𝐾)

+

] ,

𝑉 (𝑡, 𝑆, 𝐼) = Ê[𝑒
−𝑟(𝑇−𝑡)

× (((𝐼 + 𝑆∫

]

𝑡

exp {𝜇 (𝜏 − 𝑡)

−
1

2
𝜎̃
2
(⟨𝐵⟩

𝜏
− ⟨𝐵⟩

𝑡
)

+ 𝜎̃ (𝐵
𝜏
− 𝐵

𝑡
)} 𝑑𝜏)

×𝑇
−1
) − 𝐾)

+

] .

(46)

By the convexities of function 𝑓(𝑥) = (𝑥 − 𝑘)
+ and the

sublinear expectation, we can say

𝑉(𝑡, 𝜆𝑆
1
+ (1 − 𝜆) 𝑆

2
, 𝐼) ≤ 𝜆𝑉 (𝑡, 𝑆

1
, 𝐼) + (1 − 𝜆)𝑉 (𝑡, 𝑆

2
, 𝐼) ;

(47)

that is, 𝑉(𝑡, 𝑆, 𝐼) is convex about 𝑆. So in the numerical
computation, the second order difference of 𝑉 is positive.
Then the numerical solutions of (43) are equivalent to those
of PDE:

𝜕
𝑡
𝑉 (𝑡, 𝑆, 𝐼) +

1

2
𝜎̃
2
𝑆
2
𝜎
2
𝑉
𝑆𝑆

(𝑡, 𝑆, 𝐼) + 𝑟𝑆𝑉
𝑆
(𝑡, 𝑆, 𝐼)

+ 𝑆𝑉
𝐼
(𝑡, 𝑆, 𝐼) − 𝑟𝑉 (𝑡, 𝑆, 𝐼) = 0,

𝑉 (𝑇, 𝑆, 𝐼) = (
𝐼

𝑇
− 𝐾)

+

.

(48)

Theoretically, the above PDE is defined on domain 𝐷 =

{(𝑡, 𝑆, 𝐼) ∈ [0, 𝑇] × [0,∞) × [0,∞)}. But generally, closed
form solutions cannot be found; we have to find numerical
solutions. We have no interest in finding the solution in the

entire infinite domain. Therefore we consider the domain
𝐷

∗
= {(𝑡, 𝑆, 𝐼) ∈ [0, 𝑇] × [0, 𝑆

∗
) × [0, 𝐼

∗
)}.

Now we determine the boundary conditions of (48). If
𝐼 ≥ 𝐾𝑇, that is, 𝐼/𝑇 ≥ 𝐾, for the positiveness of 𝑆], we have
𝐼
𝑇
/𝑇 ≥ 𝐾. Therefore the final payoff on the option is certain

to be positive. At time 𝑇, this payoff can be expressed as

𝐼
𝑇

𝑇
− 𝐾 =

𝐼

𝑇
− 𝐾 +

1

𝑇
∫

𝑇

𝑡

𝑆]𝑑]. (49)

This payoff can also be obtained by using the following
self-financing duplicating portfolio strategy. Assume that an
investor commits (𝐼/𝑇−𝐾)𝑒

−𝑟(𝑇−𝑡) into riskless bonds in order
to secure the return promised by the first part of the right
of (49), that is, (𝐼/𝑇 − 𝐾) at time 𝑇. If the investor is to be
certain of accruing the return promised by the second part of
the right of (49), he is obliged to transfer a certain portion
of stock (equal to (1/𝑇)𝑒

−𝑟(𝑇−])
Δ]) to a riskless bond in every

time interval (], ] + Δ]). Overall this strategy requires a sum
equal to (𝐼/𝑇 − 𝐾)𝑒

−𝑟(𝑇−𝑡) plus the portion of a stock which
can be expressed as follows:

∫

𝑇

𝑡

1

𝑇
𝑒
−𝑟(𝑇−])

𝑑] =
1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) . (50)

Then the price of the option when 𝐼
𝑡
≥ 𝐾𝑇must be equal to

𝑉 (𝑡, 𝑆, 𝐼) = (
𝐼

𝑇
− 𝐾) 𝑒

−𝑟(𝑇−𝑡)
+

1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) 𝑆. (51)

The above discussion is similar to that in the model with-
out volatility uncertainty. Equation (51) obviously satisfies
(48). So we only need to find the solution of (48) in the
domain𝐷

∗
= {(𝑡, 𝑆, 𝐼) ∈ [0, 𝑇] × [0, 𝑆

∗
) × [0, 𝐾𝑇)}.

On the boundary 𝐼 = 𝐾𝑇, the boundary condition from
(51) can be written as

𝑉 (𝑡, 𝑆, 𝐾𝑇) =
1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) 𝑆. (52)

We note that if 𝑆
𝑡
= 0, (13) tells us that 𝑆(]) is also equal

to zero for ] ∈ [𝑡, 𝑇] and 𝐼(𝑇) is thus equal to 𝐼(𝑡). By (46),
we can write the following boundary condition:

𝑉 (𝑡, 0, 𝐼) = 𝑒
−𝑟(𝑇−𝑡)

(
𝐼

𝑇
− 𝐾)

+

. (53)

We need another boundary condition at 𝑆 = 𝑆max =

S∗. Hugger [37] gives the boundary condition at 𝑆 = 𝑆max
in the model without volatility uncertainty. By the same
discussion, we can get the same boundary condition in
uncertain volatility model:

𝑉 (𝑡, 𝑆max, 𝐼)

= max {( 𝐼

𝑇
− 𝐾) 𝑒

−𝑟(𝑇−𝑡)
+
Smax
𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡)

) , 0} .

(54)
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So, the values of the arithmetic average fixed strike Asian
call option satisfy

𝜕
𝑡
𝑉 (𝑡, 𝑆, 𝐼) +

1

2
𝜎̃
2
𝑆
2
𝜎
2
𝑉
𝑆𝑆

(𝑡, 𝑆, 𝐼) + 𝑟𝑆𝑉
𝑆
(𝑡, 𝑆, 𝐼)

+ 𝑆𝑉
𝐼
(𝑡, 𝑆, 𝐼) − 𝑟𝑉 (𝑡, 𝑆, 𝐼) = 0,

V (𝑇, 𝑆, 𝐼) = (
𝐼

𝑇
− 𝐾)

+

,

𝑉 (𝑡, 0, 𝐼) = 𝑒
−𝑟(𝑇−𝑡)

(
𝐼

𝑇
− 𝐾)

+

,

𝑉 (𝑡, 𝑆max, 𝐼)

= max {( 𝐼

𝑇
− 𝐾) 𝑒

−𝑟(𝑇−𝑡)
+

𝑆max
𝑟𝑇

(1 − 𝑒
−𝑟(𝑇−𝑡)

) , 0} ,

𝑉 (𝑡, 𝑆, 𝐾𝑇) =
1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) 𝑆.

(55)

For the arithmetic average fixed strike Asian put option
with terminal payoff 𝑝(𝑇, 𝑆

𝑇
, 𝐼

𝑇
) = max(𝐾 − 𝐼

𝑇
/𝑇, 0), we will

value this option by the following put-call parity.
It is easily to see that we have

max(𝐼
𝑇

𝑇
− 𝐾, 0) = max (𝐾 −

𝐼
𝑇

𝑇
, 0) +

1

𝑇
∫

𝑇

0

𝑆]𝑑] − 𝐾.

(56)

So

𝑐 (𝑡, 𝑆
𝑡
, 𝐼

𝑡
)

= 𝑒
−𝑟(𝑇−𝑡)

Ê
𝑡
[max (𝐼

𝑇

𝑇
− 𝐾, 0)]

= 𝑒
−𝑟(𝑇−𝑡)

Ê
𝑡
[max (𝐾 −

𝐼
𝑇

𝑇
, 0) +

1

𝑇
∫

𝑇

0

𝑆]𝑑]]

− 𝑒
−𝑟(𝑇−𝑡)

𝐾

= 𝑝 (𝑡, 𝑆
𝑡
, 𝐼

𝑡
) − 𝑒

−𝑟(𝑇−𝑡)
𝐾 +

1

𝑇
𝑒
−𝑟(𝑇−𝑡)

∫

𝑡

0

𝑆]𝑑]

+ 𝑒
−𝑟(𝑇−𝑡)

𝐸
𝜎

𝑡
[
1

𝑇
∫

𝑇

𝑡

𝑆]𝑑]] .

(57)

𝑒
−𝑟(𝑇−𝑡)

𝐸
𝜎

𝑡
[(1/𝑇) ∫

𝑇

𝑡
𝑆]𝑑]] is the time 𝑡 value of time 𝑇

claim (1/𝑇) ∫
𝑇

𝑡
𝑆]𝑑], where the stock has certain volatility

𝜎̃ 𝜎. To get claim (1/𝑇) ∫
𝑇

𝑡
𝑆]𝑑] at 𝑇, let us see the replicating

strategy: in any time interval (], ] + Δ]), transfer a certain
portion (1/𝑇)𝑒

−𝑟(𝑇−])
Δ] of stock 𝑆] to a riskless bond. This

strategy ensures the final payoff of (1/𝑇) ∫
𝑇

𝑡
𝑆]𝑑]. The stocks

that should be transferred are

∫

𝑇

𝑡

1

𝑇
𝑒
−𝑟(𝑇−])

𝑑] =
1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) . (58)

Then the time 𝑡 value of (1/𝑇) ∫
𝑇

𝑡
𝑆]𝑑] equals (1/𝑟𝑇)(1 −

𝑒
−𝑟(𝑇−𝑡)

)𝑆
𝑡
. So the put-call parity can be written as

𝑐 (𝑡, 𝑆, 𝐼) + 𝐾𝑒
−𝑟(𝑇−𝑡)

= 𝑝 (𝑡, 𝑆, 𝐼) +
1

𝑇
𝑒
−𝑟(𝑇−𝑡)

∫

𝑡

0

𝑆]𝑑] +
1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) 𝑆

𝑡
.

(59)

2.4. The Arithmetic Average Floating Strike Asian Call Option.
For the arithmetic average floating strike Asian call (put)
option, the PDE (43) still applies with terminal condition

𝑉 (𝑇, 𝑆, 𝐼) = (𝑆 −
𝐼

𝑇
)

+

(𝑉 (𝑇, 𝑆, 𝐼) = (
𝐼

𝑇
− 𝑆)

+

) . (60)

In Ingersoll [13] where there is no volatility uncertainty,
due to the linear homogeneity of the PDE and its terminal
condition, their PDE can be reduced to a one-dimensional
PDE. In our uncertain volatility model, the PDE (43) is not
linear homogeneous anymore. But we can still reduce PDE
(43) to a one-dimensional PDE by the following argument.

For the arithmetic average floating strike Asian call
option, we know

𝑉 (𝑡, 𝑆
𝑡
, 𝐼

𝑡
) = Ê

𝑡
[𝑒

−𝑟(𝑇−𝑡)
(𝑆

𝑇
−

𝐼
𝑇

𝑇
)

+

]

= Ê
𝑡
[

[

𝑒
−𝑟(𝑇−𝑡)

(𝑆
𝑇
−

𝐼
𝑡
+ ∫

𝑇

𝑡
𝑆]𝑑]

𝑇
)

+

]

]

.

(61)

Denote

𝑀
]
𝑡
= exp(𝜇 (] − 𝑡) −

1

2
𝜎̃
2
(⟨𝐵⟩] − ⟨𝐵⟩

𝑡
) + 𝜎̃ (𝐵] − 𝐵

𝑡
)) .

(62)

Then by (14), we have 𝑆] = 𝑆
𝑡
𝑀

]
𝑡
and 𝑆

𝑡
= 𝑆]𝑀

𝑡

]. So

𝐼
𝑡
= ∫

𝑡

0

𝑆]𝑑] = ∫

𝑡

0

𝑆
𝑡
𝑀

]
𝑡
𝑑] = 𝑆

𝑡
∫

𝑡

0

𝑀
]
𝑡
𝑑],

𝑉 (𝑡, 𝑆
𝑡
, 𝐼

𝑡
)

= Ê
𝑡
[

[

𝑒
−𝑟(𝑇−𝑡)

(𝑆
𝑡
𝑀

𝑇

𝑡
−

𝑆
𝑡
∫
𝑡

0
𝑀

]
𝑡
𝑑] + 𝑆

𝑡
∫
𝑇

𝑡
𝑀

]
𝑡
𝑑]

𝑇
)

+

]

]

= 𝑆
𝑡
Ê

𝑡
[

[

𝑒
−𝑟(𝑇−𝑡)

(𝑀
𝑇

𝑡
−

∫
𝑡

0
𝑀

]
𝑡
𝑑] + ∫

𝑇

𝑡
𝑀

]
𝑡
𝑑]

𝑇
)

+

]

]

:= 𝑆
𝑡
𝐻(𝑡, 𝑅

𝑡
)

(63)
with 𝑅

𝑡
= 𝐼

𝑡
/𝑆

𝑡
.

Then the function𝐻(𝑡, 𝑅) satisfies the following PDE:

𝜕
𝑡
𝐻(𝑡, 𝑅) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑅

2
𝜎
2
𝐻

𝑅𝑅
(𝑡, 𝑅)

+ (1 − 𝑟𝑅)𝐻
𝑅
(𝑡, 𝑅) = 0,

(64)

which is a one-dimensional PDE.
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For the European style Asian option, we must impose
boundary conditions both at 𝑅 = 0 and as 𝑅 → ∞. The
boundary condition as 𝑅 → ∞ is simple. The only way that
𝑅 can tend to infinity is that 𝑆 tends to zero. In this case the
option will not be exercised, and so

lim
𝑅→∞

𝐻(𝑡, 𝑅) = 0. (65)

For computational purpose, we truncate the asset region
(0, +∞) into (0, 𝑅max), where 𝑅max is sufficiently large to
ensure the accuracy of the solution. If 𝑅 = 0, the PDE
degenerates into the first-order hyperbolic PDE

𝜕
𝑡
𝐻(𝑡, 𝑅) + 𝜕

𝑅
𝐻(𝑡, 𝑅) = 0. (66)

So𝐻(𝑡, 𝑅) satisfies

𝜕
𝑡
𝐻(𝑡, 𝑅) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑅

2
𝜎
2
𝐻

𝑅𝑅
(𝑡, 𝑅)

+ (1 − 𝑟𝑅)𝐻
𝑅
(𝑡, 𝑅) = 0,

𝐻 (𝑇, 𝑅) = (1 −
𝑅

𝑇
)

+

,

𝜕
𝑡
𝐻(𝑡, 𝑅) + 𝜕

𝑅
𝐻(𝑡, 𝑅) = 0, 𝑅 = 0,

𝐻 (𝑡, 𝑅max) = 0.

(67)

By the same argument, for the arithmetic average floating
strike Asian put option, its prices could be calculated by

𝑉 (𝑡, 𝑆, 𝐼) = 𝑆𝐻 (𝑡, 𝑅) , (68)

with𝐻(𝑡, 𝑅) satisfying the following PDE:

𝜕
𝑡
𝐻(𝑡, 𝑅) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑅

2
𝜎
2
𝐻

𝑅𝑅
(𝑡, 𝑅)

+ (1 − 𝑟𝑅)𝐻
𝑅
(𝑡, 𝑅) = 0,

𝐻 (𝑇, 𝑅) = (
𝑅

𝑇
− 1)

+

,

𝜕
𝑡
𝐻(𝑡, 𝑅) + 𝜕

𝑅
𝐻(𝑡, 𝑅) = 0, 𝑅 = 0,

𝐻 (𝑡, 𝑅max) = (
𝑅max
𝑇

− exp {−𝑟 (𝑇 − 𝑡)}) .

(69)

Generally, the put-call parity will not hold any more in
the uncertain volatility model. Let us see the following argu-
ment. The mature payoff of a portfolio with one European
arithmetic average floating strike Asian call holding long and
one put holding short is

𝑆
𝑇
max (1 −

𝑅
𝑇

𝑇
, 0) − 𝑆

𝑇
max (𝑅

𝑇

𝑇
− 1, 0)

= 𝑆
𝑇
−

𝑅
𝑇
𝑆
𝑇

𝑇
.

(70)

The value of this portfolio is equal to one consisting of
one stock and a financial product whose payoff is −𝑅

𝑇
𝑆
𝑇
/𝑇.

The values of the financial product with final payoff −𝑅
𝑇
𝑆
𝑇
/𝑇

satisfy the following PDE:

𝜕
𝑡
𝐻(𝑡, 𝑅) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑅

2
𝜎
2
𝐻

𝑅𝑅
(𝑡, 𝑅)

+ (1 − 𝑟𝑅)𝐻
𝑅
(𝑡, 𝑅) = 0,

(71)

with terminal condition 𝐻(𝑇, 𝑅
𝑇
) = −𝑅

𝑇
𝑆
𝑇
/𝑇. We seek a

solution of (71) of the form

𝐻(𝑡, 𝑅) = 𝑎
𝑡
+ 𝑏

𝑡
𝑅 (72)

with 𝑎
𝑇

= 0 and 𝑏
𝑇

= −1/𝑇. Substituting (72) into (71) and
satisfying the boundary conditions, we find that

𝑎
𝑡
= −

1

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
) , 𝑏

𝑡
= −

1

𝑇
𝑒
−𝑟(𝑇−𝑡)

. (73)

For

𝑆
𝑇
max (1 −

𝑅
𝑇

𝑇
, 0) = 𝑆

𝑇
max (𝑅

𝑇

𝑇
− 1, 0) + 𝑆

𝑇
−

𝑅
𝑇
𝑆
𝑇

𝑇
,

(74)

by the valuation mechanism in space (Ω,H, Ê), we take the
discounted 𝐺-conditional expectation on both sides and get

Ê
𝑡
[𝑒

−𝑟(𝑇−𝑡)
𝑆
𝑇
max(1 −

𝑅
𝑇

𝑇
, 0)]

= 𝑒
−𝑟(𝑇−𝑡)

Ê
𝑡
[𝑆

𝑇
max(𝑅

𝑇

𝑇
− 1, 0) + 𝑆

𝑇
−

𝑅
𝑇
𝑆
𝑇

𝑇
]

≤ 𝑒
−𝑟(𝑇−𝑡)

Ê
𝑡
[𝑆

𝑇
max(𝑅

𝑇

𝑇
− 1, 0)]

+ 𝑒
−𝑟(𝑇−𝑡)

Ê
𝑡
[𝑆

𝑇
−

𝑅
𝑇
𝑆
𝑇

𝑇
] .

(75)

That is

𝑐 (𝑡, 𝑆, 𝐼) ≤ 𝑝 (𝑡, 𝑆, 𝐼) + 𝑆 −
𝑆

𝑟𝑇
(1 − 𝑒

−𝑟(𝑇−𝑡)
)

−
1

𝑇
𝑒
−𝑟(𝑇−𝑡)

∫

𝑡

0

𝑆
𝜏
𝑑𝜏,

(76)

where 𝑐(𝑡, 𝑆, 𝐼) is the time 𝑡 price of the arithmetic average
floating strike Asian call option and 𝑝(𝑡, 𝑆, 𝐼) is the time
𝑡 price of the arithmetic average floating strike Asian put
option.

3. Numerical Computation

In the model without volatility uncertainty, Asian options
are much more difficult to value than regular stock options.
Standard techniques tend to be impractical, inaccurate, or
slow. For example, traditional binomial lattice methods
require such enormous amounts of computermemory for the
necessity of keeping track of every possible path throughout
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the tree that they are effectively unusable. Monte Carlo
simulation works well for European style options (see [12])
but is relatively slow. Sun [38] proposed to use the weighted
upwind method [39] to price Asian options, but he did
not give numerical results. The Asian option pricing in the
uncertain volatility model will be even more difficult than in
the model without volatility uncertainty.

For the arithmetic average fixed strike Asian call options,
due to the convexity of the value 𝑉(𝑡, 𝑆, 𝐼) with respect to
variable 𝑆, (43) can be written as (48) which are the equations
satisfied by the arithmetic average fixed strike Asian call
options with certain volatility 𝜎̃ 𝜎.

Zvan et al. [17] point out that the Crank-Nicolson scheme
in conjunction with the van Leer flux limiter method can
be used to numerically value Asian options with certain
volatilities. The van Leer limiter has the property that it is
total variation diminishing and thus produces oscillation free
second order accurate solutions. But the van Leer limiter is
nonlinear, so the solutions should be obtained by using full
Newton iteration at each time level. In this paper, we will use
the alternating direction implicit (ADI) methods (see Duffy
[40]).

The arithmetic average fixed strike Asian put options can
be valued by the put-call parity.

For the arithmetic average floating strike Asian call (put)
options, we need to solve (67) (see (69)).These PDEs are one-
dimensional in space. And they are not linear equations but
HJB equations in some sense. For such PDEs, we will use the
fully implicit positive coefficient finite different method [41]
to solve them. We will see that this method can ensure the
numerical solutions converge to the viscosity solutions, and
is accurate, efficient, and quick to be implemented.

All the calculations were performed byMatlab 2009, on a
computer with 1.83GHz hard disk and 512MB memory.

3.1. Numerical Computation of Fixed Strike Asian Options.
An equivalent formulation of (48) in terms of the average
𝐴

𝑡
= (1/𝑡) ∫

𝑡

0
𝑆
𝜏
𝑑𝜏 is given in Barraquand and Pudet [16] in

certain volatility model with volatility 𝜎 = 𝜎̃ 𝜎:

𝜕
𝑡
𝑉 (𝑡, 𝑆, 𝐴) +

1

2
𝜎̃
2
𝑆
2
𝜎
2
𝑉
𝑆𝑆

(𝑡, 𝑆, 𝐴) + 𝑟𝑆𝑉
𝑆
(𝑡, 𝑆, 𝐴)

+
𝑆 − 𝐴

𝑡
𝑉
𝐴
(𝑡, 𝑆, 𝐴) − 𝑟𝑉 (𝑡, 𝑆, 𝐴) = 0,

𝑉 (𝑇, 𝑆, 𝐴) = (𝐴 − 𝐾)
+
.

(77)

Equation (77) is convection dominated in the 𝐴 direc-
tion because there is no diffusion effect in this dimension.
Barraquand and Pudet [16] find that an explicit centrally
weighted scheme for (77) is unstable. In particular, the
convective term in the 𝐴 dimension becomes very large as
𝑡 → 0. Barraquand and Pudet also note that implicit cen-
trally weighted schemes will generally produce unsatisfactory
results because of the numerical diffusion introduced by this
first order accurate in time scheme.

Zvan et al. [17] point out that under the condition
of convection dominated, solutions generated by using a

centrally weighted scheme on the convective term for (77)
cannot be ensured to be free of oscillations. And solutions
generated by the first order upstream weighting scheme on
the convective termare no longer oscillatory, but their profiles
are too diffuse. To produce oscillation free solutions without
the excessive diffusion of first order upstream weighting,
Zvan et al. [17] suggest the nonlinear van Leer flux limiter in
conjunction with the Crank-Nicolson scheme. Since the flux
limiter is nonlinear, the solutions should be obtained by using
full Newton iteration at each time level.

The ADI method, pioneered in the United States by Dou-
glas, Rachford, Peaceman, Gunn, and others, has a number
of advantages. First, explicit difference methods are rarely
used to solve initial boundary value problems because of
their poor stability. Implicit methods have superior stability
properties but unfortunately they are difficult to solve in two
and more dimensions. Consequently, ADI methods become
an alternative because they can be programmed by solving
a simple trigonal system of equations. For the convection-
dominated problems, we could use the exponentially fitted
schemes in each leg of the approximate scheme to ensure the
stability of the results [40]. Since Barraquand and Pudet [16]
have used the forward shooting grid method and Zvan et al.
[17] have used the van Leer flux limiter, we will test the ADI
method in this paper by comparing our results with theirs.

For convenience, let us first convert (55) to be the
following forward equation in time by substituting 𝑡 with
𝜏 = 𝑇 − 𝑡:

− 𝜕
𝜏
𝑉 (𝜏, 𝑆, 𝐼) +

1

2
𝜎̃
2
𝑆
2
𝜎
2
𝑉
𝑆𝑆

(𝜏, 𝑆, 𝐼) + 𝑟𝑆𝑉
𝑆
(𝜏, 𝑆, 𝐼)

+ 𝑆𝑉
𝐼
(𝜏, 𝑆, 𝐼) − 𝑟𝑉 (𝜏, 𝑆, 𝐼) = 0,

𝑉 (0, 𝑆, 𝐼) = (
𝐼

𝑇
− 𝐾)

+

,

𝑉 (𝜏, 0, 𝐼) = 𝑒
−𝑟𝜏

(
𝐼

𝑇
− 𝐾)

+

,

𝑉 (𝑡, 𝑆max, 𝐼) = max {( 𝐼

𝑇
− 𝐾) 𝑒

−𝑟𝜏
+

𝑆max
𝑟𝑇

(1 − 𝑒
−𝑟𝜏

) , 0} ,

𝑉 (𝜏, 𝑆, 𝐾𝑇) =
1

𝑟𝑇
(1 − 𝑒

−𝑟𝜏
) 𝑆.

(78)

We let 𝜏
𝑛
, 𝑛 = 0, 1, . . . , 𝑁, be a set of portion points in

[0, 𝑇] satisfying 0 = 𝜏
0
< 𝜏

1
< ⋅ ⋅ ⋅ < 𝜏

𝑁
= 𝑇 and use even

partition of time; that is, 𝜏
𝑛
= 𝑛Δ𝜏, 𝑛 = 0, 1, . . . , 𝑁. Define the

partitions of space variables as 0 = 𝑆
0
< 𝑆

1
< ⋅ ⋅ ⋅ < 𝑆

𝑀
= 𝑆max

and 0 = 𝐼
0
< 𝐼

1
< ⋅ ⋅ ⋅ < 𝐼

𝐽
= 𝐼max.

With ADI, we march from time level 𝑛 to time level
𝑛 + 1/2 and then from time level 𝑛 + 1/2 to time level 𝑛 + 1.
In this case we use exponential fitting in all space variables
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and implicit Euler in time. The first leg is given by the
scheme

−

𝑉
𝑛+1/2

𝑖,𝑗
− 𝑉

𝑛

𝑖,𝑗

(1/2) Δ𝜏
+ 𝜌

𝑖,𝑗
[

1

Δ𝑆
𝑖
Δ𝑆

𝑖+1

𝑉
𝑛+1/2

𝑖−1,𝑗

− (
1

Δ𝑆
2

𝑖+1

+
1

Δ𝑆
𝑖
Δ𝑆

𝑖+1

)𝑉
𝑛+1/2

𝑖,𝑗

+
1

Δ𝑆
2

𝑖+1

𝑉
𝑛+1/2

𝑖+1,𝑗
]

+ 𝑟𝑆
𝑖

𝑉
𝑛+1/2

𝑖+1,𝑗
− 𝑉

𝑛+1/2

𝑖,𝑗

Δ𝑆
𝑖+1

+ 𝑆
𝑖

𝑉
𝑛

𝑖,𝑗+1
− 𝑉

𝑛

𝑖,𝑗−1

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

− 𝑟𝑉
𝑛+1/2

𝑖,𝑗
= 0,

(79)

with

𝜌
𝑖,𝑗

=
𝑟𝑆

𝑖
Δ𝑆

𝑖+1

2
coth(

𝑟𝑆
𝑖
Δ𝑆

𝑖+1

𝜎
2
𝜎̃2𝑆

2

𝑖

) , coth (𝑥) =
𝑒
2𝑥

+ 1

𝑒2𝑥 − 1
.

(80)

Let

𝛼
𝑖
= −

𝜌
𝑖,𝑗

Δ𝑆
𝑖
Δ𝑆

𝑖+1

,

𝛽
𝑖
= −

𝜌
𝑖,𝑗

(Δ𝑆
𝑖+1

)
2
−

𝑟𝑆
𝑖

Δ𝑆
𝑖+1

,

𝛾
𝑖
= − 𝛼

𝑖
− 𝛽

𝑖
+ 𝑟.

(81)

Then the scheme (79) can be written as

𝛼
𝑖
𝑉

𝑛+1/2

𝑖−1,𝑗
+ (𝛾

𝑖
+

2

Δ𝜏
)𝑉

𝑛+1/2

𝑖,𝑗
+ 𝛽

𝑖
𝑉

𝑛+1/2

𝑖+1,𝑗

=
2

Δ𝜏
𝑉

𝑛

𝑖,𝑗
+

𝑆
𝑖

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

𝑉
𝑛

𝑖,𝑗+1
−

𝑆
𝑖

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

𝑉
𝑛

𝑖,𝑗−1
.

(82)

We let

𝑉
𝑛

𝑗
= [𝑉

𝑛

1,𝑗
, 𝑉

𝑛

2,𝑗
, . . . , 𝑉

𝑛

𝑀−1,𝑗
]
𝑇

,

𝑉
𝑛+1/2

𝑗
= [𝑉

𝑛+1/2

1,𝑗
, 𝑉

𝑛+1/2

2,𝑗
, . . . , 𝑉

𝑛+1/2

𝑀−1,𝑗
]
𝑇

,

𝑓
𝑛+1/2

𝑗
= [𝛼

1
𝑉

𝑛+1/2

0,𝑗
, 0, . . . , 0, 𝛽

𝑀−1
𝑉

𝑛+1/2

𝑀,𝑗
]
𝑇

,

𝑟
𝑛

𝑗
= [(

2

Δ𝜏
𝑉

𝑛

1,𝑗
+

𝑆
1

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

𝑉
𝑛

1,𝑗+1

−
𝑆
1

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

𝑉
𝑛

1,𝑗−1
) , . . . ,

(
2

Δ𝜏
𝑉

𝑛

𝑀−1,𝑗
+

𝑆
𝑀−1

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

𝑉
𝑛

𝑀−1,𝑗+1

−
𝑆
𝑀−1

Δ𝐼
𝑗+1

+ Δ𝐼
𝑗

𝑉
𝑛

𝑀−1,𝑗−1
)]

𝑇

,

𝐴
1
=

[
[
[

[

𝛾
1

𝛽
1

𝛼
2

𝛾
2

𝛽
2

d d d
𝛼
𝑀−1

𝛾
𝑀−1

]
]
]

](𝑀−1)×(𝑀−1)

.

(83)

Then we can write (82) as the following equivalent matrix
form

𝐴
1
𝑉

𝑛+1/2

𝑗
+ 𝑓

𝑛+1/2

𝑗
= 𝑟

𝑛

𝑗
. (84)

The second leg of the discretized PDE in (78) is given by
the scheme

−

𝑉
𝑛+1

𝑖,𝑗
− 𝑉

𝑛+1/2

𝑖,𝑗

(1/2) Δ𝜏
+ 𝜌

𝑖,𝑗
[

1

Δ𝑆
𝑖
Δ𝑆

𝑖+1

𝑉
𝑛+1/2

𝑖−1,𝑗

− (
1

Δ𝑆
2

𝑖+1

+
1

Δ𝑆
𝑖
Δ𝑆

𝑖+1

)𝑉
𝑛+1/2

𝑖,𝑗

+
1

Δ𝑆
2

𝑖+1

𝑉
𝑛+1/2

𝑖+1,𝑗
]

+ 𝑟𝑆
𝑖

𝑉
𝑛+1/2

𝑖+1,𝑗
− 𝑉

𝑛+1/2

𝑖,𝑗

Δ𝑆
𝑖+1

+ 𝑆
𝑖

𝑉
𝑛+1

𝑖,𝑗+1
− 𝑉

𝑛+1

𝑖,𝑗

Δ𝐼
𝑗+1

− 𝑟𝑉
𝑛+1/2

𝑖,𝑗
= 0.

(85)

Let

𝛿
𝑗
=

2

Δ𝜏
+

𝑆
𝑖

Δ𝐼
𝑗+1

,

𝜖
𝑗
= −

𝑆
𝑖

Δ𝐼
𝑗+1

.

(86)

Then the scheme (85) can be written as

𝛿
𝑗
𝑉

𝑛+1

𝑖,𝑗
− 𝜖

𝑗
𝑉

𝑛+1

𝑖,𝑗+1
= − 𝛼

𝑖
𝑉

𝑛+1/2

𝑖−1,𝑗
− (𝛾

𝑖
−

2

Δ𝜏
)𝑉

𝑛+1/2

𝑖,𝑗

− 𝛽
𝑖
𝑉

𝑛+1/2

𝑖+1,𝑗
.

(87)
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Figure 1: Fixed strike Asian call value when 𝜎̃ = 0.8, 𝜎 = 0.5, 𝑟 =

0.10, 𝑇 = 1, and 𝐾 = 100.

We let

𝑉
𝑛+1

𝑖
= [𝑉

𝑛+1

𝑖,0
, 𝑉

𝑛+1

𝑖,1
, . . . , 𝑉

𝑛+1

𝑖,𝐽−1
]
𝑇

,

𝑉
𝑛+1/2

𝑖
= [𝑉

𝑛+1/2

𝑖,0
, 𝑉

𝑛+1/2

𝑖,1
, . . . , 𝑉

𝑛+1/2

𝑖,𝐽−1
]
𝑇

,

𝐹
𝑖
= [0, 0, . . . , 0, 𝜖

𝐽−1
𝑉

𝑛+1

𝑖,𝐽
]
𝑇

𝐽
,

𝑅
𝑛+1/2

𝑖
= [(−𝛼

𝑖
𝑉

𝑛+1/2

𝑖−1,0
−(𝛾

𝑖
−

2

Δ𝜏
)𝑉

𝑛+1/2

𝑖,0
−𝛽

𝑖
𝑉

𝑛+1/2

𝑖+1,0
) , . . . ,

(−𝛼
𝑖
𝑉

𝑛+1/2

𝑖−1,𝐽−1
− (𝛾

𝑖
−

2

Δ𝜏
)𝑉

𝑛+1/2

𝑖,𝐽−1
− 𝛽

𝑖
𝑉

𝑛+1/2

𝑖+1,𝐽−1
)]

𝑇

,

𝐴
2
=

[
[
[

[

𝛿
0

−𝜖
0

0 𝛿
1

−𝜖
1

d d −𝜖
𝐽−2

𝛿
𝐽−1

]
]
]

]𝐽×𝐽

.

(88)

The matrix form of (87) is

𝐴
2
𝑉

𝑛+1

𝑖
+ 𝐹

𝑛+1

𝑖
= 𝑅

𝑛+1/2

𝑖
. (89)

Thematrix equations (84) and (89) can be solved by using LU
decomposition.

The goal of the computation is to find the fair price of the
Asian option at emission, that is,𝑉(𝑆

0
, 𝐼

0
, 0).Weneed tomake

sense of any value 𝐼 ∈ [0, 𝐼max] and stock price 𝑆 ∈ [0, 𝑆max] at
time 𝑡 = 0. There are no problems with the stock prices, but
the integral at time zero can only be 0 for continuous averages;
that is, 𝐼

0
= 0.

Figure 1 is the results we obtained by using the above
discretization scheme with 𝜎̃ = 0.8, 𝜎 = 0.5, 𝑟 = 0.10, 𝑇 = 1,
and 𝐾 = 100. The point marked by ∗ is the price 𝑉(0, 𝑆, 0)

of the Asian option. We choose 𝑆max = 3𝐾 to ensure the
desirable accuracy.

Table 1 shows the convergence of the results with the
refinement of the grid. From (78), the values of variable 𝐼

lie in the interval [0, 𝐾𝑇], where 𝐾𝑇 is the boundary and
0 is the point where the continuous averages Asian options

are valued, so there is no point that is less important on the
interval [0, 𝐾𝑇]. Hence we use uniform grids in direction 𝐼.

In our uncertain volatility model, the pricing PDEs (48)
are similar to the PDEs in certain volatility model with
volatility 𝜎 = 𝜎̃ 𝜎. Barraquand and Pudet [16] and Zvan et
al. [17] give numerical results of Asian options with certain
volatilities. In the uncertain volatility model, when 𝜎̃ =

0.8, 𝜎 = 0.5, the Asian option PDE is the same as that of
the Asian option with certain volatility 𝜎 = 0.4. When the
parameters 𝑟 = 0.10, 𝑇 = 1, 𝐾 = 95, and grid Δ𝐼 =

0.11875, ΔS = 2.85, the price of the Asian call option we
calculate is 13.82. The results with the same parameters of
Barraquand and Pudet [16] and Zvan et al. [17] are 13.825 and
13.721, respectively.

Table 2 is the comparison of our results with those of
Zvan et al. [17]. Z, F, and V in Table 2 refer to the result
of Zvan et al. [17]. Our results are denoted by Asian fixed
strike, which calculated with Δ𝜏 = 0.01, 0.02, 0.04, Δ𝐼 =

0.059375, 0.11875, 0.2375, and Δ𝑆 = 2.85 for maturities of
one quarter, half a year, and one year, respectively. Since
𝐼max = 𝐾𝑇, the partitions in 𝐼 direction are related with the
maturity 𝑇. The execution time is much less than theirs. The
grid spacing was chosen to achieve an accuracy of at least
0.10% of 𝑆. Our results are close to that of Zvan et al. [17] and
the difference is less than 0.10% of 𝑆.

Our calculation procedure is different from Zvan et al.
[17], as well as Barraquand and Pudet [16], in the following
four aspects. First, our pricing PDE (78) is in terms of the
running sum 𝐼

𝑡
. Zvan et al. [17] and Barraquand and Pudet

[16] use the pricing PDE

− 𝜕
𝜏
𝑉 (𝜏, 𝑆, 𝐴) +

1

2
𝑆
2
𝜎
2
𝑉
𝑆𝑆

(𝜏, 𝑆, 𝐴) + 𝑟𝑆𝑉
𝑆
(𝜏, 𝑆, 𝐴)

+
𝑆 − 𝐴

𝑡
𝑉
𝐴
(𝜏, 𝑆, 𝐴) − 𝑟𝑉 (𝜏, 𝑆, 𝐴) = 0,

(90)

where 𝐴
𝑡
is defined as 𝐴

𝑡
= 𝐼

𝑡
/𝑡. But PDE (78) and (90) are

equivalent for pricing fixed strike European Asian options.
Second, since the PDEs are different, PDE (78) and (90) must
have different boundary conditions. We do not know the
boundary conditions used by Zvan et al. [17]. The forward
shooting grid method used by Barraquand and Pudet [16]
proceeds without any boundary conditions. Third, our PDE
(78) is defined on the domain 𝐷 = {(𝑡, 𝑆, 𝐼) : 0 ≤ 𝑡 ≤ 𝑇, 0 ≤

𝑆 ≤ 𝑆max, 0 ≤ 𝐼 ≤ 𝐾𝑇}, and 𝐼max = 𝐾𝑇 is the boundary and
𝐼 = 0 is the point where the options are valued. So there is
no point that is less important on the interval [0, 𝐾𝑇]. Hence
our numerical schemes use uniform grid spacing, while Zvan
et al. [17] use nonuniform grid spacing of 41 × 45 on domain
[0, 300] × [0, 300]. To achieve an accuracy of at least 0.1% of
𝑆, our grids are much finer than Zvan et al. [17].

3.2. Numerical Computation of Floating Strike Asian Options.
To value the arithmetic average floating strike Asian call (put)
options, we need to solve (67) (see (69)) for 𝐻(𝑡, 𝑅), and
the values of the options will be 𝑉(𝑡, 𝑆, 𝐼) = 𝑆𝐻(𝑡, 𝑅) with
𝑅 = 𝐼/𝑆. Actually, what we really care about is the option
values at time 𝑡 = 0, while, from the definition of 𝐼

𝑡
, it is

obvious that 𝐼
0
= 0 and therefore 𝑅

0
= 0, so our goal of the
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Table 1: Successive grid refinements demonstrating convergence of the results with the refinements when 𝑟 = 0.10, 𝑇 = 1, 𝜎̃ = 0.8, 𝜎 = 0.5,
and 𝐾 = 95. The values are the option prices at 𝑆 = 100. Δ𝑆 and Δ𝐼 denote the grid spacing in directions 𝑆 and 𝐼, respectively. Δ𝑡 = 0.04.
Execution times (in seconds) are in parentheses.

Δ𝐼 = 0.95 Δ𝐼 = 0.475 Δ𝐼 = 0.2375 Δ𝐼 = 0.11875 Δ𝐼 = 0.059375

Δ𝑆 = 5.70
14.532 14.19 14.021 13.94 13.89
(1.01) (2.10) (7.081) (27.225) (90)

Δ𝑆 = 2.85
14.42 14.08 13.914 13.82 13.781
(3.08) (7.13) (23.012) (76.51) (292)

Δ𝑆 = 1.425
14.39 14.053 13.879 13.790 13.74
(10.22) (24.71) (76.01) (238) (940)

Table 2: Fixed strike Asian call values when 𝑟 = 0.10 and 𝐾 = 95.
The values are the option prices at 𝑆 = 100. Our results are denoted
by Asian fixed strike, which calculated with Δ𝜏 = 0.01, 0.02, 0.04,
Δ𝐼 = 0.059375, 0.11875, 0.2375, and Δ𝑆 = 2.85 for maturities of
one quarter, half a year, and one year, respectively. Z, F, and V refer
to the result of Zvan et al. [17]. Execution times (in seconds) are in
parentheses.

𝜎̃ 𝜎 𝑇 Asian fixed strike Z, F, and V

0.2

0.5
0.25 6.190 (23.0) 6.133
0.5 7.199 (24.0) 7.244
1 9.204 (23.6) 9.316

1
0.25 6.56 (23.0) 6.501
0.5 7.99 (24.1) 7.921
1 10.44 (25.0) 10.309

2
0.25 8.30 (24.1) 8.123
0.5 10.55 (24.4) 10.357
1 13.91 (25.2) 13.721

computation is to find the prices of the Asian options at 𝑡 = 0;
that is, 𝑉(0, 𝑆, 0) = 𝑆𝐻(𝑡, 0).

To solve (67), we use the fully implicit positive coefficient
discretization, which will ensure convergence to the viscosity
solution.

Let 𝜏 = 𝑇 − 𝑡, and then the PDE in (67) can be changed
into the following forward equation in time:

− 𝜕
𝜏
𝐻(𝜏, 𝑅) + sup

𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑅

2
𝜎
2
𝐻

𝑅𝑅
(𝜏, 𝑅)

+ (1 − 𝑟𝑅)𝐻
𝑅
(𝜏, 𝑅) = 0.

(91)

Now, let us consider the discretization of (91). Define a
grid 0 = 𝑅

0
< 𝑅

1
< ⋅ ⋅ ⋅ < 𝑅

𝑀
= 𝑅max and a set of timesteps

0 = 𝜏
0
< 𝜏

1
< ⋅ ⋅ ⋅ < 𝜏

𝑁
= 𝑇. Let the discretization parameters

be given by

Δ𝑅
𝑖
= 𝑅

𝑖+1
− 𝑅

𝑖
, 𝑖 = 0, . . . ,𝑀; (92)

we use even discretization in time; that is, 𝜏𝑛+1 − 𝜏
𝑛

= Δ𝜏,
𝑛 = 0, . . . , 𝑁 − 1.

Let𝐻𝑛

𝑖
be the approximate values of the solution at 𝜏𝑛, 𝑅

𝑖
;

that is, 𝐻𝑛

𝑖
≃ 𝐻(𝜏

𝑛
, 𝑅

𝑖
). If 1 − 𝑟𝑅

𝑖
≥ 0, we use forward

difference to term 𝐻
𝑅
(𝜏, 𝑅). Otherwise, we use backward

difference to term𝐻
𝑅
(𝜏, 𝑅).

The general form of the discretized PDE (91) is

𝛼
𝑛+1

𝑖
𝐻

𝑛+1

𝑖−1
+ 𝛾

𝑛+1

𝑖
𝐻

𝑛+1

𝑖
+ 𝛽

𝑛+1

𝑖
𝐻

𝑛+1

𝑖+1
=

1

Δ𝜏
𝐻

𝑛

𝑖
, (93)

with

𝛼
𝑛+1

𝑖
= −

𝜎̃
2
𝑅

2

𝑖
(𝜎̂

𝑛+1

𝑖
)
2

2Δ𝑅
𝑖
Δ𝑅

𝑖+1

,

𝛽
𝑖
= −

𝜎̃
2
𝑅

2

𝑖
(𝜎̂

𝑛+1

𝑖
)
2

2Δ𝑅
2

𝑖+1

−
1 − 𝑟𝑅

𝑖

Δ𝑅
𝑖+1

,

if 1 − 𝑟𝑅
𝑖
≥ 0,

𝛼
𝑛+1

𝑖
= −

𝜎̃
2
𝑅

2

𝑖
(𝜎̂

𝑛+1

𝑖
)
2

2Δ𝑅
𝑖
Δ𝑅

𝑖+1

−
𝑟𝑅

𝑖
− 1

Δ𝑅
𝑖

,

𝛽
𝑖
= −

𝜎̃
2
𝑅

2

𝑖
(𝜎̂

𝑛+1

𝑖
)
2

2Δ𝑅
2

𝑖+1

,

if 1 − 𝑟𝑅
𝑖
< 0,

𝛾
𝑛+1

𝑖
= − 𝛼

𝑛+1

𝑖
− 𝛽

𝑛+1

𝑖
+

1

Δ𝜏
,

(94)

where

𝜎̂
𝑛+1

𝑖

= argmax
𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

𝜎̃
2
𝑅

2

𝑖
(𝜎

𝑛+1

𝑖
)
2

× [
𝐻

𝑛+1

𝑖−1

Δ𝑅
𝑖
Δ𝑅

𝑖+1

− (
𝐻

𝑛+1

𝑖

Δ𝑅
2

𝑖+1

+
𝐻

𝑛+1

𝑖

Δ𝑅
𝑖
Δ𝑅

𝑖+1

)

+
𝐻

𝑛

𝑖+1

Δ𝑅
2

𝑖+1

] .

(95)

Of course, we have𝛼𝑛+1

𝑖
≤ 0, 𝛽

𝑛+1

𝑖
≤ 0 and 𝛾

𝑛+1

𝑖
≥ 0. So the

discretization equation (93) satisfies the positive coefficient
condition of Forsyth and Labahn [41].
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Let

𝐻
𝑛
= [𝐻

𝑛

1
, . . . , 𝐻

𝑛

𝑀−1
]
𝑇

,

𝜎
𝑛+1

= [𝜎
𝑛+1

1
, . . . , 𝜎

𝑛+1

𝑀−1
]
𝑇

,

𝑓
𝑛+1

= [𝛼
𝑛+1

1
𝐻

𝑛+1

0
, 0, . . . , 0, 𝛽

𝑛+1

𝑀−1
𝐻

𝑛+1

𝑀
]
𝑇

𝑀−1
,

𝐴
𝑛+1

= 𝐴
𝑛+1

(𝜎
𝑛+1

𝑖
)

=

[
[
[
[
[
[
[
[

[

𝛾
𝑛+1

1
𝛽
𝑛+1

1

𝛼
𝑛+1

2
𝛾
𝑛+1

2
𝛽
𝑛+1

2

d d d

𝛼
𝑛+1

𝑀−1
𝛾
𝑛+1

𝑀−1

]
]
]
]
]
]
]
]

](𝑀−1)×(𝑀−1)

.

(96)

Then (93) can be written as the following matrix form

𝐴
𝑛+1

𝐻
𝑛+1

=
1

Δ𝜏
𝐻

𝑛
− 𝑓

𝑛+1
,

𝜎̂
𝑛+1

= argmax
𝜎≤𝜎
𝑛+1

≤𝜎

{[𝐴
𝑛+1

𝐻
𝑛+1

+ 𝑓
𝑛+1

]} .

(97)

By the boundary condition

𝜕
𝑡
𝐻(𝑡, 𝑅) + 𝜕

𝑅
𝐻(𝑡, 𝑅) = 0, 𝑅 = 0, (98)

we replace 𝐻
𝑛+1

0
in 𝑓

𝑛+1 with (Δ𝜏/(Δ𝑅
1

+ Δ𝜏))𝐻
𝑛+1

1
+

(Δ𝑅
1
/(Δ𝑅

1
+ Δ𝜏))𝐻

𝑛

0
. Then (97) can be written as

𝐴
𝑛+1

𝐻
𝑛+1

=
1

Δ𝜏
𝐻

𝑛
− 𝑓

𝑛+1

,

𝜎̂
𝑛+1

= argmax
𝜎≤𝜎
𝑛+1

≤𝜎

{[𝐴
𝑛+1

𝐻
𝑛+1

+ 𝑓
𝑛+1

]} ,

(99)

with

𝑓
𝑛+1

= [
𝛼
𝑛+1

1
Δ𝑅

1

Δ𝑅
1
+ Δ𝜏

𝐻
𝑛

0
, 0, . . . , 0, 𝛽

𝑛+1

𝑀−1
𝐻

𝑛+1

𝑀
]

𝑇

𝑀−1

,

𝐴
𝑛+1

= 𝐴
𝑛+1

(𝜎
𝑛+1

)

=

[
[
[
[
[
[
[
[
[

[

𝛾
𝑛+1

1
+

𝛼
𝑛+1

1
Δ𝜏

Δ𝑅
1
+ Δ𝜏

𝛽
𝑛+1

1

𝛼
𝑛+1

2
𝛾
𝑛+1

2
𝛽
𝑛+1

2

d d d

𝛼
𝑛+1

𝑀−1
𝛾
𝑛+1

𝑀−1

]
]
]
]
]
]
]
]
]

]
(𝑀−1)×(𝑀−1)

.

(100)

It is clear that𝐴𝑛+1 is𝑀-matrix. From the property of𝑀-
matrix, the solution of (99) exists and is unique.

It is important to ensure that we generate a numerical
solution which converges to the viscosity solution. It has been

shown that (67) satisfies the strong comparison property [42–
44].Then, from Barles and Souganidis [45] and Barles [46], a
numerical scheme converges to the viscosity solution if the
method is consistent, stable, and monotone. Thus, we will
show that our numerical scheme satisfies these conditions.

Lemma 6 (Stability). The discretization (93) is stable.

Proof. It follows from (93) that

𝛾
𝑛+1

𝑖

󵄨󵄨󵄨󵄨󵄨
𝐻

𝑛+1

𝑖

󵄨󵄨󵄨󵄨󵄨
≤

1

Δ𝜏

󵄨󵄨󵄨󵄨𝐻
𝑛

𝑖

󵄨󵄨󵄨󵄨 − 𝛼
𝑛+1

𝑖

󵄨󵄨󵄨󵄨󵄨
𝐻

𝑛+1

𝑖−1

󵄨󵄨󵄨󵄨󵄨
− 𝛽

𝑛+1

𝑖

󵄨󵄨󵄨󵄨󵄨
𝐻

𝑛+1

𝑖+1

󵄨󵄨󵄨󵄨󵄨

≤
1

Δ𝜏

󵄩󵄩󵄩󵄩𝐻
𝑛󵄩󵄩󵄩󵄩∞ − (𝛼

𝑛+1

𝑖
+ 𝛽

𝑛+1

𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐻

𝑛+1󵄩󵄩󵄩󵄩󵄩∞
,

(101)

since 𝛼
𝑛+1

𝑖
≤ 0, 𝛽

𝑛+1

𝑖
≤ 0.

Denote

𝐻
𝑛+1

= [𝐻
𝑛+1

0
, . . . , 𝐻

𝑛+1

𝑀
]
𝑇

. (102)

If ‖𝐻𝑛+1

‖
∞

= |𝐻
𝑛+1

𝑗
|, 0 < 𝑗 < 𝑀, then we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝐻

𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩∞
≤

(1/Δ𝜏)
󵄩󵄩󵄩󵄩𝐻

𝑛󵄩󵄩󵄩󵄩∞

𝛾
𝑛+1

𝑖
+ 𝛼

𝑛+1

𝑖
+ 𝛽

𝑛+1

𝑖

=
󵄩󵄩󵄩󵄩𝐻

𝑛󵄩󵄩󵄩󵄩∞. (103)

Otherwise, ‖𝐻
𝑛+1

‖
∞

= |𝐻
𝑛+1

0
| or ‖𝐻

𝑛+1

‖
∞

= |𝐻
𝑛+1

𝑀
|.

Therefore,
󵄩󵄩󵄩󵄩󵄩󵄩
𝐻

𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩∞
≤ max (󵄩󵄩󵄩󵄩󵄩𝐻

0󵄩󵄩󵄩󵄩󵄩∞
,
󵄨󵄨󵄨󵄨𝐻

𝑛

0

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝐻

𝑛

𝑁

󵄨󵄨󵄨󵄨) (104)

with𝐻
𝑛

0
, 𝐻𝑛

𝑁
being the given boundary conditions.

Lemma 7 (Monotonicity). The discretization (93) is mono-
tonic.

Proof. The lemma is trivially true on the boundary, so let us
just see the cases 0 < 𝑖 < 𝑀 and 0 < 𝑛 ≤ 𝑁. Denote

𝐺
𝑛+1

𝑖
=

𝐻
𝑛+1

𝑖
− 𝐻

𝑛

𝑖

Δ𝜏

+ sup
𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

{𝛼
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖−1
+ 𝛽

𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖+1

+𝛾
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖
} .

(105)
For any 𝜖 > 0,

𝐺
𝑛+1

𝑖
(Δ𝑅,𝐻

𝑛+1

𝑖
, 𝐻

𝑛+1

𝑖+1
+ 𝜖,𝐻

𝑛+1

𝑖−1
, 𝐻

𝑛

𝑖
)

− 𝐺
𝑛+1

𝑖
(Δ𝑅,𝐻

𝑛+1

𝑖
, 𝐻

𝑛+1

𝑖+1
, 𝐻

𝑛+1

𝑖−1
, 𝐻

𝑛

𝑖
)

= sup
𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

(𝛼
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖−1
+ 𝛽

𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
) (𝐻

𝑛+1

𝑖+1
+ 𝜖)

+ 𝛾
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖
)

− sup
𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

(𝛼
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖−1
+ 𝛽

𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖+1

+ 𝛾
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
)𝐻

𝑛+1

𝑖
)

≤ sup
𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

(𝛽
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
) 𝜖) ≤ 0,

(106)



14 Mathematical Problems in Engineering

since 𝛽
𝑛+1

𝑖
(𝜎

𝑛+1

𝑖
) ≤ 0 and sup

𝜎≤𝜎≤𝜎
𝐺

1
(𝜎) − sup

𝜎≤𝜎≤𝜎
𝐺

2
(𝜎) ≤

sup
𝜎≤𝜎≤𝜎

(𝐺
1
(𝜎) − 𝐺

2
(𝜎)).

Similarly,

𝐺
𝑛+1

𝑖
(Δ𝑅,𝐻

𝑛+1

𝑖
, 𝐻

𝑛+1

𝑖+1
, 𝐻

𝑛+1

𝑖−1
+ 𝜖,𝐻

𝑛

𝑖
)

≤ 𝐺
𝑛+1

𝑖
(Δ𝑅,𝐻

𝑛+1

𝑖
, 𝐻

𝑛+1

𝑖+1
, 𝐻

𝑛+1

𝑖−1
, 𝐻

𝑛

𝑖
) ,

𝐺
𝑛+1

𝑖
(Δ𝑅,𝐻

𝑛+1

𝑖
, 𝐻

𝑛+1

𝑖+1
, 𝐻

𝑛+1

𝑖−1
, 𝐻

𝑛

𝑖
+ 𝜖)

≤ 𝐺
𝑛+1

𝑖
(Δ𝑅,𝐻

𝑛+1

𝑖
, 𝐻

𝑛+1

𝑖+1
, 𝐻

𝑛+1

𝑖−1
, 𝐻

𝑛

𝑖
) .

(107)

Lemma 8 (Consistency). The discretization (93) is consistent.

Proof. Suppose 𝜙(𝜏, 𝑅) is a smooth test function with
bounded derivatives of all orders with respect to (𝜏, 𝑅). Let

L𝐻(𝜏, 𝑅) = sup
𝜎
2
≤𝜎
2
≤𝜎
2

1

2
𝜎̃
2
𝑅

2
𝜎
2
𝐻

𝑅𝑅
(𝜏, 𝑅)

+ (1 − 𝑟𝑅)𝐻
𝑅
(𝜏, 𝑅) .

(108)

Then
󵄨󵄨󵄨󵄨󵄨
𝐺

𝑛+1

𝑖
− 𝐻

𝜏
(𝜏, 𝑅) +L𝐻(𝜏, 𝑅)

󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐻
𝑛+1

𝑖
− 𝐻

𝑛

𝑖

Δ𝜏
− 𝐻

𝜏
(𝜏, 𝑅)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
L𝐻(𝜏, 𝑅) −L

𝑛+1

𝑖
𝐻(𝜏, 𝑅)

󵄨󵄨󵄨󵄨󵄨
,

(109)

where

L
𝑛+1

𝑖
𝐻(𝜏, 𝑅)

=
1

2
sup

𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

𝜎̃
2
𝑅

2

𝑖
(𝜎

𝑛+1

𝑖
)
2

× [
𝐻

𝑛+1

𝑖−1

Δ𝑅
𝑖
Δ𝑅

𝑖+1

− (
𝐻

𝑛+1

𝑖

Δ𝑅
2

𝑖+1

+
𝐻

𝑛+1

𝑖

Δ𝑅
𝑖
Δ𝑅

𝑖+1

)

+
𝐻

𝑛

𝑖+1

Δ𝑅
2

𝑖+1

] +
𝐻

𝑛+1

𝑖+1
− 𝐻

𝑛+1

𝑖

Δ𝑅
(1 − 𝑟𝑅

𝑖
) ,

(110)

if 1 − 𝑟𝑅
𝑖
≥ 0; otherwise

L
𝑛+1

𝑖
𝐻(𝜏, 𝑅)

=
1

2
sup

𝜎≤𝜎
𝑛+1

𝑖
≤𝜎

𝜎̃
2
𝑅

2

𝑖
(𝜎

𝑛+1

𝑖
)
2

× [
𝐻

𝑛+1

𝑖−1

Δ𝑅
𝑖
Δ𝑅

𝑖+1

− (
𝐻

𝑛+1

𝑖

Δ𝑅
2

𝑖+1

+
𝐻

𝑛+1

𝑖

Δ𝑅
𝑖
Δ𝑅

𝑖+1

)

+
𝐻

𝑛

𝑖+1

Δ𝑅
2

𝑖+1

] +
𝐻

𝑛+1

𝑖
− 𝐻

𝑛+1

𝑖−1

Δ𝑅
(1 − 𝑟𝑅

𝑖
) .

(111)

Using Taylor series expansions to (109), we have
󵄨󵄨󵄨󵄨󵄨
𝐺

𝑛+1

𝑖
− 𝐻

𝜏
(𝜏, 𝑅) +L𝐻(𝜏, 𝑅)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑂 (Δ𝜏) + 𝑂 (Δ𝑅) ; (112)

that is, (93) is consistent.

Table 3: Successive grid refinements demonstrating convergence of
the results with the refinements when 𝑟 = 0.10, 𝜎 = 0.5, 𝜎 = 1,
𝜎̃ = 0.4, 𝑇 = 1, and tolerance = 10

−4. The values are the option price
at 𝑆 = 100. Δ𝑅 denotes the grid spacing, and Δ𝜏 denotes the time
stepping. Execution times (in seconds) are in parentheses.

Δ𝑅 = 0.008 Δ𝑅 = 0.004 Δ𝑅 = 0.002 Δ𝑅 = 0.001 Δ𝑅 = 0.0005

Δ𝜏 = 0.008 Δ𝜏 = 0.004 Δ𝑡 = 0.002 Δ𝑡 = 0.001 Δ𝑡 = 0.0005

𝑐
12.698 12.129 11.828 11.673 11.592
(1.00) (2.19) (9.08) (35.66) (141.38)

𝑝
7.831 7.274 6.981 6.828 6.753
(1.01) (2.06) (9.05) (34.10) (143.12)

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

R

H

Figure 2: The 𝐻(0, 𝑅) function of the arithmetic average floating
strike Asian call option when 𝑟 = 0.10, 𝑇 = 1, 𝜎 = 0.5, 𝜎 = 1, 𝜎̃ =

0.4, and tolerance = 10
−4.

Therefore, we have the following.

Theorem 9. The solution of the discretization scheme (93)
converges uniformly to the unique viscosity solution of PDE
(91).

Table 3 shows the convergence of the values of the
arithmetic average floating strike Asian call and put options
with the refinement of the grid. We use uniform grids. To
ensure the desirable accuracy, we choose 𝑅max = 2. The
execution times are less than 40 seconds.

Figure 2 is the values of function 𝐻(0, 𝑅) for the arith-
metic average floating strike Asian call option with the given
parameters specified under the figure. The corresponding
option values are 𝑆𝐻(0, 0).
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