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This paper presents the nonlinear free vibration analysis of axisymmetric polar orthotropic circular membrane, based on the large
deflection theory of membrane and the principle of virtual displacement. We have derived the governing equations of nonlinear
free vibration of circular membrane and solved them by the Galerkin method and the Bessel function to obtain the generally exact
formula of nonlinear vibration frequency of circular membrane with outer edges fixed. The formula could be degraded into the
solution from small deflection vibration; thus, its correctness has been verified. Finally, the paper gives the computational examples
and comparative analysis with the other solution. The frequency is enlarged with the increase of the initial displacement, and the
larger the initial displacement is, the larger the effect on the frequency is, and vice versa. When the initial displacement approaches
zero, the result is consistent with that obtained on the basis of the small deflection theory. Results obtained from this paper provide
the accurate theory for themeasurement of the pretension of polar orthotropic composite materials by frequencymethod and some
theoretical basis for the research of the dynamic response of membrane structure.

1. Introduction

Themembrane structure is a kind of large span flexible space
structure, which has a wide range of applications as discussed
elsewhere [1]. However, due to its small weight and stiffness
and low natural frequency as well as small damping, it is very
sensitive to the action of wind, rain, and other external loads
and easy to produce vibration as discussed elsewhere [2].The
deformation of membrane structure, caused by the vibration,
leads to the destruction of membrane structure in practical
engineering. Since this kind of case is common, studying the
vibration of membrane structure and its dynamic response
under the external excitation becomes the key scientific issues
in the field of membrane structure. In actual engineering, the
dynamic characteristics of the membrane structure mainly
show up as the vibration problem in large deflection, when
the membrane is under impact loading.

From the last century, many scholars at home and abroad
have done a lot of research work about it. The problem of
large deflection of elastic circular membrane was studied by
Chien et al. [3]. A nonlinear relaxationmethodwas employed
to solve the nonlinear partial differential equations governing
the large deflection response of various axisymmetric circular
membranes, by Kao and Perrone [4]. The problem of large
deflections of rotationally orthotropic circular membrane
was investigated by Cheng and Yang [5], in which the rela-
tions between the load and membrane forces as well as the
deflection and the central deflection were obtained.The large
deformation of circular membrane under the concentrated
force was analyzed by Chen and Zheng [6]. Kang [7] dealt
with a composite rectangular membrane with an oblique
interface. Young et al. [8] made a numerical calculation
and experimental study on the dynamic characteristics of
thin-film membranes. The nonlinear vibration analysis of
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a prestretched hyperelastic annular membrane under finite
deformations was completed by Soares and Gonalves [9].
Qian [10] researched the vibration problem of the rectangular
membrane with two different directions of force, circular
membrane, and elliptic membrane and obtained the approx-
imate solution of the vibration frequency of arbitrary shape
membrane.Wu [11] obtained the analytical solution of natural
vibration modes of the intermediate support membrane by
the Laplace transform. Lin and Chen [12] used analytical
method to obtain the theoretical solution of free vibration of
annular isotropic membrane. Ou yang [13] studied a Robin
problemof the vibration of a perturbed boundarymembrane,
using parametric deformation method and the condition for
the solvability of the problem.The nondegenerate vibrational
frequency and vibration mode of this problem are obtained.
Lin and Chen [14] used the finite element method to analyze
the free vibration of flat membrane. Qiao et al. [15] used
the Newmark method of dynamic analysis and the Newton-
Raphson iterative method of nonlinear analysis to program
composition for the nonlinear dynamic response analysis of
membrane structure. However, the theoretical research on
the nonlinear vibration of orthotropic circular membrane is
relatively rare.

In this paper, according to the large deflection theory
of membrane, we study the vibration of axisymmetric polar
orthotropic circular membrane and use the principle of vir-
tual displacement to create the governing vibration equations
of circularmembranewith outer edges fixed.TheBessel func-
tion and the Galerkin method are used to get a generally
accurate expression of the nonlinear free vibration frequency
of circular membrane, and the results obtained in this paper
are compared with other existing results.The work presented
in this paper provides a theoretical basis for the study of the
dynamic response of polar orthotropic membrane materials.

2. Basic Equations

The studied circular membrane is axisymmetric polar ortho-
tropic and it is assumed that all outer edges of the membrane
are fixed. 𝑟 denotes the radius of the membrane, ℎ denotes
the thickness of the membrane, 𝜌 denotes aerial density of
themembranematerial, and𝑁

𝑟
and𝑁

𝜃
denote initial tension

along radial and circumferential direction, respectively, as
shown in Figure 1.

According to the large deflection theory ofmembrane, the
equations are established, which are based on the hypothesis
as follows.

(i) Themembrane is soft and springy, which cannot resist
moment, and the tension is in the tangent plane at any
time.

(ii) There is only transverse vibrationwithout considering
the damping in vibration process.

(iii) The influence of membranes thickness variation in
vibration process can be neglected.

(iv) The paper only considers geometric nonlinearity for
membranes with the hypothesis that the membrane
is homogeneous, continuous, and linearly elastic in
vibration process.
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Figure 1: Circular membrane with all edges fixed and force diagram
of the element.

The corresponding boundary conditions can be expressed
as follows:

𝑤|
𝑟 = 𝑎

= 0, 𝑢
𝑟




𝑟 = 𝑎

= 0, (1)

where𝑤 denotes the deflection of membranes and 𝑢
𝑟
denotes

the radial displacement.
The geometrical equation of axisymmetric deformation

of the circular membrane in polar coordinates is given by

𝜀
𝑟
=

𝑑𝑢

𝑑𝑟

+

1

2

(

𝑑𝑤

𝑑𝑟

)

2

, 𝜀
𝜃
=

𝑢

𝑟

. (2)

The physical equations are

𝑁
𝑟
= ℎ𝜎
𝑟
=

𝐸
𝑟
ℎ

1 − 𝜇
𝑟
𝜇
𝜃

(𝜀
𝑟
+ 𝜇
𝜃
𝜀
𝜃
) ,

𝑁
𝜃
= ℎ𝜎
𝜃
=

𝐸
𝜃
ℎ

1 − 𝜇
𝑟
𝜇
𝜃

(𝜀
𝜃
+ 𝜇
𝑟
𝜀
𝑟
) ,

(3)

where 𝐸
𝑟
and 𝐸

𝜃
represent Young’s modulus along radial and

circumferential direction, respectively; 𝜇
𝑟
𝜇
𝜃
represents Pois-

son’s ratio, respectively; 𝜀 represents the strain; 𝜎 represents
the stress.

The equation of compatibility is

𝜀
𝑟
=

𝑑

𝑑𝑟

(𝑟𝜀
𝜃
) +

1

2

(

𝑑𝑤(𝑟, 𝑡)

𝑑𝑟

)

2

(4)

and 𝜀
𝑟
and 𝜀
𝜃
can be transformed into the below form, with

(3); that is,

𝜀
𝑟
=

𝑁
𝑟

𝐸
𝑟
ℎ

−

𝑁
𝜃
𝜇
𝜃

𝐸
𝜃
ℎ

, 𝜀
𝜃
=

𝑁
𝜃

𝐸
𝜃
ℎ

−

𝑁
𝑟
𝜇
𝑟

𝐸
𝑟
ℎ

. (5)

Substituting (5) into (4) and letting 𝜆2 = 𝐸
𝜃
/𝐸
𝑟
= 𝜇
𝜃
/𝜇
𝑟

yield

𝑟

𝑑
2

𝑑𝑟
2
(𝑟𝑁
𝑟
) +

𝑑 (𝑟𝑁
𝑟
)

𝑑𝑟

− 𝜆
2

𝑁
𝑟
= −

1

2

𝐸
𝜃
ℎ(

𝑑𝑤

𝑑𝑟

)

2

. (6)
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Introducing the stress function 𝜎
𝑟
= (1/𝑟)(𝑑𝜙/𝑑𝑟), 𝜎

𝜃
=

𝑑
2

𝜙/𝑑𝑟
2 and letting 𝑁

𝑟
= ℎ𝜎
𝑟
= (ℎ/𝑟)(𝑑𝜙/𝑑𝑟), 𝑁

𝜃
= ℎ𝜎
𝜃
=

ℎ(𝑑
2

𝜙/𝑑𝑟
2

), (6) can be simplified as follows:

𝑟

𝑑
3

𝜙

𝑑𝑟
3
+

𝑑
2

𝜙

𝑑𝑟
2
− 𝜆
2
1

𝑟

𝑑𝜙

𝑑𝑟

= −

1

2

𝐸
𝜃
(

𝑑𝑤 (𝑟, 𝑡)

𝑑𝑟

)

2

. (7)

According to the principle of virtual displacement, con-
sidering the vibration inertia power of membranes as dis-
tributed load, the equation of the large deflection vibration
of membranes can be given as follows:

∫

𝑎

0

[𝜓 + ℎ (𝜎
𝑟
+ 𝜎
0𝑟
)

𝜕𝑤

𝜕𝑟

]

𝜕𝛿𝑤

𝜕𝑟

𝑟𝑑𝑟 = 0, (8)

where 𝜎
0𝑟

denotes pretension of circular membrane; load
function is 𝜓 = (1/𝑟) ∫𝑟

0

(−𝜌ℎ�̈�)𝑟𝑑𝑟.
Taking the small deflection theory of membrane into

account, every piece element of membranes has no elonga-
tion; therefore, according to the elastic Hooke’s law, themem-
brane is given a constant tension. The equation of the small
deflection vibration of membranes should be

∫

𝑎

0

(𝜓 + ℎ𝜎
0𝑟

𝜕𝑤

𝜕𝑟

)

𝜕𝛿𝑤

𝜕𝑟

𝑟𝑑𝑟 = 0. (9)

3. Governing Equation

The equation of transverse free vibration of membranes is

∇
2

𝑤 =

𝜌

𝑁

𝜕
2

𝑤

𝜕𝑡
2
, (10)

where 𝑤 denotes the deflection of membranes. On the polar
coordinates, ∇2 = 𝜕

2

/𝜕𝑟
2

+ (1/𝑟)(𝜕/𝜕𝑟) + (1/𝑟
2

)(𝜕
2

/𝜕𝜃
2

);
for the axisymmetric circular membrane, ∇2 = 𝑑

2

/𝑑𝑟
2

+

(1/𝑟)(𝑑/𝑑𝑟).
In order to solve the vibration differential equation,

through the method of separation of variables, the functions
which satisfy the boundary conditions (1) are taken as follows:

𝑤 (𝑟, 𝑡) = 𝑊 (𝑟) 𝑇 (𝑡) . (11)

Substituting (11) into (6) yields

∇
2

𝑊 ⋅ 𝑇 (𝑡) =

𝜌

𝑁

⋅
̈
𝑇 (𝑡) ⋅ 𝑊. (12)

Letting 𝜇2 = 𝜌 ̈
𝑇(𝑡)/𝑁𝑇(𝑡), then

∇
2

𝑊 =

𝜌

𝑁

𝜇
2

𝑊. (13)

Letting (𝜌/𝑁)𝜇2 = 𝛾2, then

(∇
2

− 𝛾
2

)𝑊 = 0, (14)

(

𝜕
2

𝜕𝑟
2
+

1

𝑟

𝜕

𝜕𝑟

− 𝛾
2

)𝑊 = 0. (15)

Let the shape function of displacement be

𝑊 = 𝑅 (𝑟) cos 𝑛𝜃, (16)

where 𝑛 = 0, 1, 2, 3, . . .. When 𝑛 = 0, the shape function is
symmetrical. In this paper, the deformation of circular mem-
branes is axisymmetric, so 𝑛 = 0.

Substituting 𝑊 = 𝑅(𝑟) cos 𝑛𝜃 into (15), an ordinary
differential equation is obtained:

𝑑
2

𝑅

𝑑𝑟
2
+

1

𝑟

𝑑𝑅

𝑑𝑟

+ (𝛾
2

−

𝑛
2

𝑟
2
)𝑅 = 0. (17)

A dimensionless parameter (𝑥 = 𝛾𝑟) is introduced; we
have

𝑥
2
𝑑
2

𝑅

𝑑𝑟
2
+ 𝑥

𝑑𝑅

𝑑𝑟

+ (𝑥
2

− 𝑛
2

) 𝑅 = 0. (18)

A general solution for this differential equation is

𝑅 = 𝐶
1
𝐽
𝑛
(𝑥) + 𝐶

2
𝑁
𝑛
(𝑥) , (19)

where 𝐽
𝑛
(𝑥) and 𝑁

𝑛
(𝑥) are the first and second kind Bessel

functions of the Order-𝑁 real variable, respectively:

𝐽
𝑛
(𝑥)=

∞

∑

𝑘=0

(−1)
𝑘

1

𝑘!Γ (𝑛+𝑘+1)

(

𝑥

2

)

2𝑘+𝑛

(




arg 𝑧


<𝜋) ,

𝑁
𝑛
(𝑥)=

𝐽
𝑛
(𝑥) cos 𝑛𝜋−𝐽

−𝑛
(𝑥)

sin 𝑛𝜋
(|𝑧|<∞,





arg 𝑧


<𝜋) .

(20)

Equation (11) is only the general solution of the governing
differential equation. Only after it satisfies concrete boundary
conditions does it meet the practical engineering problems.
Due to the clamped edges of the circular membrane, we have

𝑤|
𝑟=𝑎

= 0, |𝑤| < ∞,

𝜕𝑤

𝜕𝑟








𝑟=𝑎

= 0, (21)

where 𝑎 denotes the radius of the circular membrane.
𝑁
𝑛
(𝑥) and 𝐽

𝑛
(𝑥) are infinite. Because |𝑤| < ∞, when 𝑥 =

𝛾𝑟 = 0, so 𝐶
2
= 0.

And (19) can be simplified as

𝑅 = 𝐶
1
𝐽
𝑛
(𝛾
𝑖
𝑟) ,

𝑊 (𝑟) = 𝐶
1
𝐽
𝑛
(𝛾
𝑖
𝑟) cos 𝑛𝜃,

(22)

And when 𝑛 = 0, the vibration mode is symmetrical. In this
paper, the deformation of the circular membrane is axisym-
metric, so 𝑛 = 0; namely,

𝑊(𝑟) = 𝐶
1
𝐽
0
(𝛾
𝑖
𝑟) . (23)

Substituting the boundary conditions into (19) and (23)
yields

𝐶
1
𝐽
0
(𝛾
𝑖
𝑎) = 0. (24)

Because 𝐶
1
is not identically equal to zero, there is 𝛾

𝑖
,

satisfying

𝐽
0
(𝛾
𝑖
𝑎) = 0. (25)
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Namely, 𝛾
𝑖
𝑎 is the zero solution of the 𝐽

0
(𝑥).

Using theMATLAB software to solve the six zero point of
the first kind zero-order Bessel function, we have rootBessel
= 2.4048, 5.5201, 8.6537, 11.7915, 14.9309, 18.0711.

Obtaining the Bessel function expansion by definition, we
have

𝐽
0
(𝑥) = 1 −

𝑥
2

2
2
+

𝑥
4

2
4
⋅ (2!)
2
−

𝑥
6

2
6
⋅ (3!)
2
+ ⋅ ⋅ ⋅ . (26)

The front four of 𝐽
0
(𝑥) will be used in the following,

namely:

𝐽
0
(𝑥) = 1 −

𝑥
2

4

+

𝑥
4

64

−

𝑥
6

2304

. (27)

Substituting (27) into (11), the deflection expression is

𝑤 (𝑟, 𝑡) = 𝐽
0
(𝛾
𝑖
𝑟) 𝑇 (𝑡) . (28)

Substituting (27) into (28) yields

𝑤 (𝑟, 𝑡) = (𝑏 + 𝑐

𝑟
2

𝑎
2
+ 𝑑

𝑟
4

𝑎
4
+ 𝑒

𝑟
6

𝑎
6
)𝑇 (𝑡) ,

𝑏, 𝑑, > 0, 𝑐, 𝑒 < 0.

(29)

Substituting (29) into (6) and solving the Euler equation
yield

𝑑𝜙

𝑑𝑟

= −

𝐸
𝜃

2

𝑋𝑇
2

(𝑡) + 𝐶
1
𝑟
𝜆

+ 𝐶
2
𝑟
−𝜆

, (30)

where

𝑋 =

4𝑐
2

(9 − 𝜆
2
) 𝑎
4

𝑟
3

+

16𝑑
2

+ 24𝑐𝑒

(49 − 𝜆
2
) 𝑎
8

𝑟
7

+

36𝑒
2

(121 − 𝜆
2
) 𝑎
12

𝑟
11

+

16𝑐𝑑

(25 − 𝜆
2
) 𝑎
6

𝑟
5

+

48𝑑𝑒

(81 − 𝜆
2
) 𝑎
10

𝑟
9

.

(31)

when 𝑟 = 0, the stress (𝜎
𝑟
) is finite, so

𝐶
2
= 0. (32)

At the same time, the boundary condition is: 𝑢
𝑟
|
𝑟=𝑎

= 0,
yields:

𝑟𝜀
𝜃




𝑟=𝑎

= 0,

(

𝑟

𝐸
𝜃

𝑑
2

𝜙

𝑑𝑟
2
−

𝜇
𝑟

𝐸
𝑟

𝑑𝜙

𝑑𝑟

)









𝑟=𝑎

= 0.

(33)

Substituting (30) into (33) yields

𝐶
1
=

𝐸
𝜃

2 (𝜆 − 𝜇
𝜃
) 𝑎
𝜆−1

𝑌𝑇
2

(𝑡) , (34)

where

𝑌 = 𝑎
−2

{

4𝑐
2

(3 − 𝜇
𝜃
)

(9 − 𝜆
2
)

+

16 (𝑑
2

+ 24𝑐𝑒) (7 − 𝜇
𝜃
)

(49 − 𝜆
2
)

+

36𝑒
2

(11 − 𝜇
𝜃
)

(121 − 𝜆
2
)

+

16𝑐𝑑 (5 − 𝜇
𝜃
)

(25 − 𝜆
2
)

+

48𝑑𝑒 (9 − 𝜇
𝜃
)

(81 − 𝜆
2
)

} .

(35)

Substituting (32) and (34) into (30) yields

𝑑𝜙

𝑑𝑟

= [−

𝐸
𝜃

2

𝑋 +

𝑌𝐸
𝜃

2 (𝜆 − 𝜇
𝜃
) 𝑎
𝜆−1

𝑟
𝜆

]𝑇
2

(𝑡) . (36)

Substituting (29) into (8), according to the Galerkin
method, yields

∫

𝑎

0

𝑄

𝑑𝑊(𝑟)

𝑑𝑟

𝑟𝑑𝑟 = 0. (37)

Here, 𝑄 = 𝜓 + ℎ((1/𝑟)(𝑑𝜙/𝑑𝑟) + 𝜎
0𝑟
)(𝜕𝑤/𝜕𝑟)

∫

𝑎

0

𝜓

𝑑𝑊(𝑟)

𝑑𝑟

𝑟𝑑𝑟 = ∫

𝑎

0

1

𝑟

∫

𝑟

0

(−𝜌ℎ�̈�) 𝑟𝑑𝑟

𝑑𝑊 (𝑟)

𝑑𝑟

𝑟𝑑𝑟

= −𝑆𝑎
2

𝜌ℎ
̈
𝑇 (𝑡) ,

(38)

where

∫

𝑎

0

ℎ(

1

𝑟

𝑑𝜙

𝑑𝑟

+ 𝜎
0𝑟
)

𝜕𝑤

𝜕𝑟

𝑑𝑊 (𝑟)

𝑑𝑟

𝑟𝑑𝑟

= (−

ℎ

2

𝐸
𝜃
𝐹
1
+

𝑌𝐸
𝜃
ℎ

2 (𝜆 − 𝜇
𝜃
)

𝐹
2
)𝑇
3

(𝑡) + 𝐻
1
ℎ𝜎
0𝑟
𝑇 (𝑡) ,

(39)

where

𝐹
1

= 𝑎
−2

{(

2

3

𝑐
2

+

8

5

𝑑
2

+

18

7

𝑒
2

+ 2𝑐𝑑 + 4𝑑𝑒 +

12

5

𝑐𝑒)

× (9 − 𝜆
2

)

−1

+ (16𝑑
2

+ 24𝑐𝑒)

× (

2

5

𝑐
2

+

8

7

𝑑
2

+ 2𝑒
2

+

4

3

𝑐𝑑 + 3𝑑𝑒 +

12

7

𝑐𝑒)

× (49 − 𝜆
2

)

−1

+ 36𝑒
2

(

2

7

𝑐
2

+

8

9

𝑑
2

+

18

11

𝑒
2

+𝑐𝑑 +

12

5

𝑑𝑒 +

4

3

𝑐𝑒)
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× (121 − 𝜆
2

)

−1

+ 16𝑐𝑑 (

1

2

𝑐
2

+

4

3

𝑑
2

+

9

4

𝑒
2

+

8

5

𝑐𝑑 +

24

7

𝑑𝑒 + 2𝑐𝑒)

× (25 − 𝜆
2

)

−1

+ 48𝑑𝑒 (

1

3

𝑐
2

+ 𝑑
2

+

9

5

𝑒
2

+

8

7

𝑐𝑑 +

8

3

𝑑𝑒 +

3

2

𝑐𝑒)

× (81 − 𝜆
2

)

−1

} ,

𝐹
2
=

4𝑐
2

3 + 𝜆

+

16𝑑
2

+ 24𝑐𝑒

7 + 𝜆

+

36𝑒
2

11 + 𝜆

+

16𝑐𝑑

5 + 𝜆

+

48de
9 + 𝜆

,

𝐻
1
= 𝑐
2

+ 2𝑑
2

+ 3𝑒
2

+

8

3

𝑐𝑑 +

24

5

𝑑𝑒 + 3𝑐𝑒.

(40)

Substituting all the above into (8) yields

𝑑
2

𝑇 (𝑡)

𝑑𝑡
2

+ (−

𝐻
1
𝜎
0𝑟

𝑆𝑎
2
𝜌

)𝑇 (𝑡)

+ [

𝐸
𝜃
𝐹
1

2𝑆𝑎
2
𝜌

−

𝐸
𝜃
𝑌

2𝑆𝑎
2
𝜌 (𝜆 − 𝜇

𝜃
)

] 𝑇
3

(𝑡) = 0.

(41)

Letting 𝑀 = −𝐻
1
𝜎
0𝑟
/𝑆𝑎
2

𝜌, 𝑁 = 𝐸
𝜃
𝐹
1
/2𝑆𝑎
2

𝜌 − 𝐸
𝜃
𝑌/

2𝑆𝑎
2

𝜌(𝜆 − 𝜇
𝜃
) yields

𝑑
2

𝑇 (𝑡)

𝑑𝑡
2

+𝑀 ⋅ 𝑇 + 𝑁 ⋅ 𝑇
3

(𝑡) = 0. (42)

4. Solution of Free Vibration Frequency

Integrating (42) yields

(

𝑑𝑇(𝑡)

𝑑𝑡

)

2

+𝑀 ⋅ 𝑇
2

(𝑡) +

𝑁

2

⋅ 𝑇
4

(𝑡) = 𝐾. (43)

In (43), the value of𝐾 is determined by the initial condi-
tions. Assuming that the initial displacement is𝑇|

𝑡=0
= 𝑇
0
, 𝑇
0

is the amplitude of the membrane, so the initial velocity is

𝑑𝑇(𝑡)

𝑑𝑡








𝑡=0

= 0. (44)

Substituting 𝑇|
𝑡=0

= 𝑇
0
and (44) into (43) yields

𝐾 = 𝑀𝑇
2

0
+

𝑁

2

𝑇
4

0
. (45)

Substituting𝐾 = 𝑀𝑇
2

0
+ (𝑁/2)𝑇

4

0
into (43) yields

𝑑𝑇 (𝑡)

𝑑𝑡

= 𝑇
2

0
√

𝑀

𝑇
2

0

+

𝑁

2

⋅ √(1 −

𝑇
2

𝑇
2

0

) ⋅ (1 +

𝑁𝑇
2

0

2𝑀 +𝑁𝑇
2

0

𝑇
2

𝑇
2

0

).

(46)

Letting 𝜉 = 𝑇2
0
√𝑀/𝑇

2

0
+ 𝑁/2, 𝑘2 = 𝑁𝑇2

0
/(2𝑀 +𝑁𝑇

2

0
).

Integrating (46) by the method of separation of variables,
we can obtain the period of the vibration of the membrane:

𝑍 =

4

𝜉

∫

𝑇0

0

1

√(1 − (𝑇
2
/𝑇
2

0
)) (1 + 𝑘

2
⋅ (𝑇
2
/𝑇
2

0
))

𝑑𝑇. (47)

Letting 𝑇/𝑇
0
= sin 𝜃, then (47) can be simplified as follows:

𝑍 =

4𝑇
0

𝜉

∫

𝜋/2

0

1

√1 + 𝑘
2
⋅ sin2𝜃

𝑑𝜃, (0 ≤ 𝑘 ⋅ sin 𝜃 ≤ 1) ,

(48)

where (1 + 𝑘2 ⋅ sin2𝜃)−1/2 could be spread as a power series
with respect to 𝑘 ⋅ sin 𝜃:

(1 + 𝑘
2

⋅ sin2𝜃)
−1/2

= 1 −

1

2

𝑘
2sin2𝜃 + 1 ⋅ 3

2 ⋅ 4

𝑘
4sin4𝜃

+ ⋅ ⋅ ⋅ + (−1)
𝑛 (2𝑛 − 1)!!

(2𝑛)!!

(𝑘 sin 𝜃)2𝑛.

(49)

Substituting (49) into (48) and then solving (48) through
integrating item by item yield

𝑍 =

4𝑇
0

𝜉

∫

𝜋/2

0

[1 −

1

2

𝑘
2sin2𝜃 + 1 ⋅ 3

2 ⋅ 4

𝑘
4sin4𝜃

+ ⋅ ⋅ ⋅ (−1)
𝑛 (2𝑛 − 1)!!

(2𝑛)!!

(𝑘 sin 𝜃)2𝑛] 𝑑𝜃

=

2𝜋𝑇
0

𝜉

[1 − (

1

2

)

2

𝑘
2

+ (

1 ⋅ 3

2 ⋅ 4

)

2

𝑘
2

+ ⋅ ⋅ ⋅ + (−1)
𝑝

(

(2𝑝 − 1)!!

(2𝑝)!!

)

2

𝑘
2𝑝

]

=

2𝜋𝑇
0

𝜉

∞

∑

𝑛=0

(−1)
𝑝

(

(2𝑝 − 1)!!

(2𝑝)!!

)

2

𝑘
2𝑝

,

(50)

where 𝑝 = 𝑛 = 0, 1, 2, 3, . . ..
Therefore, the vibration frequency of the circular mem-

brane is

𝜔 =

2𝜋

𝑍

=

√𝑀 + (𝑁/2) 𝑇
2

0

∑
∞

𝑝=0
(−1)
𝑝

((2𝑝 − 1)!!/(2𝑝)!!)
2

(𝑁𝑇
2

0
/(2𝑀 +𝑁𝑇

2

0
))
𝑝
,

(51)
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Table 1: The frequency under different initial displacements (𝑟 =
0.5m and 𝜎

0𝑟
= 5.0 × 10

3 kN/m2).

𝜔 𝑇
0
= 0.10 𝑇

0
= 0.08 𝑇

0
= 0.04 𝑇

0
= 0.01

Rad/s 735.605 610.032 381.648 271.525
Hz 117.075 97.090 60.741 43.215
𝜔 𝑇

0
= 0.005 𝑇

0
= 0.001 𝑇

0
= 0.0001 𝑇

0
→ 0

Rad/s 264.678 262.444 262.351 262.350
Hz 42.125 41.769 41.754 41.754

where𝑀 = −𝐻
1
𝜎
0𝑟
/𝑆𝑎
2

𝜌,𝑁 = 𝐸
𝜃
𝐹
1
/2𝑆𝑎
2

𝜌 − 𝐸
𝜃
𝑌/2𝑆𝑎

2

𝜌(𝜆−

𝜇
𝜃
), and 𝑇

0
is the amplitude of the circular membrane. Next,

we will solve the free vibration frequency of circular mem-
brane in small deflection.

Substituting (29) into (9) yields

𝑑
2

𝑇 (𝑡)

𝑑𝑡
2

+ (−

𝐻
1
𝜎
0𝑟

𝑆𝑎
2
𝜌

)𝑇 (𝑡) = 0. (52)

Equation (52) can be seen as (43) when𝑁 = 0; substitut-
ing𝑁 = 0 into (51) yields

𝜔 =

1

𝑎

√

𝜎
0𝑟

𝜌

⋅ √−

𝐻
1

𝑆

. (53)

Directly letting 𝑇
0
→ 0 in (51), the situation may degen-

erate into a small deflection. Equation (51) can be turned into
the free vibration frequency of circular membrane in small
deflection:

𝜔 =

1

𝑎

√

𝜎
0𝑟

𝜌

⋅ √−

𝐻
1

𝑆

. (54)

So, the frequency formula which is deduced directly out
according to the vibration of circular membrane in small
deflection is equal to the frequency formulawhich is based on
the vibration of circular membrane in large deflection. This
proves that the result of this paper is correct.

5. Computational Examples and Discussion

Take the membrane material commonly applied in engineer-
ing as an example. Young’s moduli are 𝐸

𝑟
= 1.4 × 10

6 kN/m2
and 𝐸

𝜃
= 0.9 × 10

6 kN/m2, respectively; Poisson’s ratios are
𝜇
𝑟
= 0.3 and 𝜇

𝜃
= 0.193, respectively; the aerial density

of the membrane materials is 𝜌 = 1.7 kg/m2; the circular
membrane’s thickness is ℎ = 1.0mm.The first order vibration
frequency of the membrane is calculated by (51).

We can draw the conclusion from the result of Table 1:
The initial displacement (the amplitude) has influenced the
vibration frequency of circular membrane on the basis of the
large deflection theory. The frequency is enlarged with the
increase of the initial displacement, and the larger the initial
displacement is, the larger the effect on the frequency is, and
vice versa. When the initial displacement approaches zero,
the result is consistent with that obtained in this paper,
according to the small deflection theory.

200
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Result Curve 1
Result Curve 2
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Result Contrast 2
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𝜔
(R

ad
/s

)
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Figure 2: Frequency(𝜔)-initial displacement (𝑇
0
) curve.

In Figure 2,we have drawn the relation curve of frequency
and initial displacement. “Result Curve 1” and “Result Con-
trast 1” are based on large deflection; “Result Curve 2” and
“Result Contrast 2” are based on small deflection; “Result
Contrast 1” and “Result Contrast 2” are the result for the other
method which is used in [16]. It could be concluded that
when the material properties and the initial pretension are
given, there is nonlinear relationship between the vibration
frequency and the initial deflection for the membrane in the
large deflection; when the initial deflection (𝑇

0
) is increasing,

not only the vibration frequency is increasing, but also
the slope of the curve will be slowly increasing, meaning
𝑑𝜔/𝑑𝑇

0
is gradually increasing. This also shows that the

larger 𝑇
0
is, the greater impact on 𝜔 it has. When the initial

deflection approaches zero, the result is consistent with that
obtained from the small deflection theory. Figure 2 reflects
substantially the geometrical nonlinearity of the vibration of
membranes; namely, formula (51) can reflect the geometric
nonlinear characteristics of the vibration of membranes.

We can draw the conclusion from the comparative anal-
ysis of the relation curves of the frequency and the initial
deflection drawn from this paper and [16]. The results of the
two kinds of formula are consistent; they both reflect the non-
linear characteristics of the membrane vibration; therefore,
the expression of frequency obtained in this paper is correct.
In [12, 17], the Bessel equation was deduced, so using the
Bessel function as the vibration function of the membrane
is reasonable. The more the number of the expansions of
the Bessel function is, the more accurate the frequency is.
In practice, the number of the expansions is determined by
necessity.

Compared to [16, 18, 19], in this paper, more precise
displacement potential function is applied, and the nonlinear
vibration and orthotropy of membrane are taken into con-
sideration too. In [18, 19], the thin circular plate is the object
of study. In [18] the nonlinear vibration of thin circular plate
has not been considered, and the initial pretension is imposed
on the membrane in our paper, so it is different from [19]. In
[16], the vibration displacement potential function of circular
membrane is based on the vibration of the thin circular plate;
its precision is not enough; the vibration of the plate and the
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Table 2: The frequency under various initial displacements and
various pretensions (𝜎

𝑜𝑥
= 𝜎
𝑜𝑦
= 𝜎o).

𝑇o (m) 0.0022583 0.0023742 0.001593 0.0016005
𝜎
𝑜
(kN/m2) 1200 2400 3700 4800

𝜔
1
(Hz) 13.2160 18.5630 22.9094 26.0790

𝜔
2
(Hz) 15 19 21 25

𝑇
0
(m) 0.0015625 0.0014709 0.0013644 0.001361

𝜎
𝑜
(kN/m2) 6100 7300 8500 9800

𝜔
1
(Hz) 29.3847 32.1331 34.6638 37.2162

𝜔
2
(Hz) 28 31 33 36

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Figure 3: Frequency(𝜔)-pretension (𝜎) curve.

vibration of the thin membrane are different. In this paper,
the Bessel function is chosen as the vibration displacement
potential function of circular membrane; it is more precise.

This formula can also be used to solve other membrane
structures with different geometry and boundary conditions.
For example, assume a squaremembrane structure with 1.0m
in side length; thenYoung’smoduli are𝐸

𝑥
= 1.52×10

6 kN/m2
and 𝐸

𝑦
= 1.29 × 10

6 kN/m2, respectively; Poisson’s ratios are
𝜇
𝑥
= 0.4 and 𝜇

𝑦
= 0.39, respectively; the aerial density of

the membrane materials is 𝜌 = 1.05 kg/m2; the membrane’s
thickness is ℎ = 0.82mm; the initial displacement is 𝑇

0
. We

used formula (51) to calculate the vibration frequency 𝜔
1
,

roughly. In Table 2, the experimental results 𝜔
2
are given too.

In Figure 3, the calculation data is compared with the
experimental data.The calculation results are consistent with
the results obtained from the experiment.

6. Conclusions

We apply the large deflection theory of membrane and the
principle of virtual displacement to derive the governing
vibration equations of circular membrane with outer edges
fixed, use the Bessel function to establish the accurate vibra-
tion mode function of the circular membrane, and then solve
them by the Galerkinmethod. At last, we obtain the generally
accurate formula of nonlinear vibration frequency of circular
membrane with outer edges fixed. And the frequency of the
vibration of circular membrane in small deflection which is

degenerated by the vibration of circular membrane in large
deflection is equal to the frequency which is deduced directly
out, according to the vibration of circular membrane in small
deflection. According to [18, 19], the formula of the vibration
frequency for orthotropic membrane, which is based on
the large deflection theory, is correct. The theoretical result
is of great significance to study the dynamic response of
membranes with forced vibration in large deflection and is
also available to verify the correctness of the other numerical
methods.
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