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We obtain space-time estimates on the solution 𝑢(𝑡, 𝑥) to the Cauchy problem of damped fractional wave equation. We mainly
focus on the linear equation.The almost everywhere convergence of the solution to linear equations as 𝑡 → 0

+ is also studied, with
the initial data satisfying certain regularity conditions.

1. Introduction

Let (𝑡, 𝑥) ∈ [0,∞) × R𝑛, 𝛼 > 0, 𝑎, 𝑏 ∈ C, and let Δ be the
Laplace operator.We consider the followingCauchy problem:

𝑎𝑢
𝑡𝑡
(𝑡) (𝑥) + 2𝑏𝑢

𝑡
(𝑡, 𝑥) + (−Δ)

𝛼

𝑢 (𝑡, 𝑥) = 0, (1)

with initial conditions

𝑢 (0, 𝑥) = 𝑓 (𝑥) , 𝑢
𝑡
(0, 𝑥) = 𝑔 (𝑥) . (2)

Here, as usual, the fractional Laplacian (−Δ)𝛼 is defined
through the Fourier transform:

̂
(−Δ)

𝛼

𝑓 (𝜉) =




𝜉





2𝛼
̂
𝑓 (𝜉) (3)

for all test functions 𝑓. The partial differential equation in (1)
is significantly interesting in mathematics, physics, biology,
and many scientific fields. It is the wave equation when 𝑎 =
1, 𝑏 = 0, and𝛼 = 1 and it is the half wave equation when
𝑎 = 0, 2𝑏 = 𝑖, and𝛼 = 1/2. As known, the wave equation is
one of the most fundamental equations in physics. Another
fundamental equation in physics is the Schrödinger equation
which can be deduced from (1) by letting 𝑎 = 0, 2𝑏 = 𝑖,
and 𝛼 = 1. The Schrödinger equation plays a remarkable role
in the study of quantum mechanics and many other fields in
physics. Also, (1) is the heat equation when 𝑎 = 0, 𝑏 = 1/2,
and 𝛼 = 1.

As we all know, wave equation, Schrödinger equation,
heat equation, and Laplace equations are most important

and fundamental types of partial differential equations. The
researches on these equations and their related topics are
well-mature and very rich and they are still quite active and
robust research fields in modern mathematics. The reader is
readily to find hundreds and thousands of interesting papers
by searching the Google Scholar or checking the MathSciNet
in AMS. Here we list only a few of them that are related to this
research paper [1–23].

With an extra damping term 2𝑏𝑢
𝑡
(𝑡, 𝑥) in the wave

equation, one obtains the damped wave equation

𝑢
𝑡𝑡
(𝑡, 𝑥) + 2𝑏𝑢

𝑡
(𝑡, 𝑥) − Δ𝑢 (𝑡, 𝑥) = 0, 𝑏 > 0. (4)

We observe that there are also a lot of research articles in
the literature addressing the above damped wave equation.
Among numerous research papers we refer to [24–35] and
the references therein. From the reference papers, we find
that the damped wave equation (4) is well studied in many
interesting topics such as the local and global well-posedness
of some linear, semilinear, and nonlinear Cauchy problems
and asymptotic and regularity estimates of the solution. We
observe that the space frames of these studies focus on the
Lebesgue spaces and the Lebesgue Sobolev spaces.

These observations motivate us to consider the Cauchy
problem of a more general fractional damped wave equation:

𝑢
𝑡𝑡
(𝑡, 𝑥) + 2𝑏𝑢

𝑡
(𝑡, 𝑥) + (−Δ)

𝛼

𝑢 (𝑡, 𝑥) = 0,

𝑢 (0, 𝑥) = 𝑓 (𝑥) , 𝑢
𝑡
(0, 𝑥) = 𝑔 (𝑥) ,

(5)
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where 𝛼, 𝑏 > 0 are fixed constants. According to our best
knowledge, the fractional damped wave equation was not
studied in the literature, except the wave case 𝛼 = 1. So our
plan is to first study the linear equation (5) and to prove some
𝐿
𝑝
→ 𝐿

𝑞 estimates. In our later works, we will use those
estimates to study the well-posedness of certain nonlinear
equations. We can easily check that the solution of (5) is
formally given by

𝑢
𝑏
(𝑓, 𝑔) (𝑡, 𝑥)

= {𝑒
−𝑏𝑡 cosh (𝑡√𝐿)𝑓 + 𝑒−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

(𝑏𝑓 + 𝑔)} ,

(6)

where 𝐿 is the Fourier multiplier with symbol 𝑏2 − |𝜉|2𝛼 (see
Appendix). Thus our interest will focus on the operators

𝑇
𝛼,𝑏
(𝑡) := 𝑒

−𝑏𝑡 cosh (𝑡√𝐿) ,

𝑆
𝛼,𝑏
(𝑡) := 𝑒

−𝑏𝑡
sinh (𝑡√𝐿)

√𝐿

.

(7)

Using dilation, we will restrict ourselves to the case 𝑏 = 1
so the theorems are all stated for 𝑢(𝑓, 𝑔) = 𝑢

1
(𝑓, 𝑔) (see

Remark 6). We now denote

𝑆
𝛼
(𝑡) = 𝑆

𝛼,1
(𝑡) = 𝑒

−𝑡
sinh (𝑡√1 − (−Δ)𝛼)

√1 − (−Δ)
𝛼

,

𝑇
𝛼
(𝑡) = 𝑇

𝛼,1
(𝑡) = 𝑒

−𝑡 cosh (𝑡√1 − (−Δ)𝛼) .

(8)

These two operators are both convolution. We denote their
kernels by Ω

𝛼
(𝑡) and𝐾

𝛼
(𝑡). Thus, we may write

𝑇
𝛼
(𝑡) 𝑓 = 𝐾

𝛼
(𝑡) ∗ 𝑓, 𝑆

𝛼
(𝑡) 𝑓 = Ω

𝛼
(𝑡) ∗ 𝑓. (9)

To state our main results, we need the following definition of
admissible triplet.

Definition 1. A triplet (𝑝, 𝑞, 𝑟) is called 𝜎-admissible if

1

𝑞

≤ 𝜎(

1

𝑟

−

1

𝑝

) , (10)

where 0 < 𝑟 ≤ 𝑝 ≤ +∞, 𝑟 < 𝑞 < ∞, and 𝜎 > 0.

The following theorems are part of the main results in the
paper.

Theorem 2. Let 𝛼 > 0 and let (𝑝, 𝑞, 𝑟) be 𝑛/2𝛼-admissible and
1 ≤ 𝑝 ≤ +∞. Then for any 𝛽 > 𝑛𝛼|1/𝑝 − 1/2|, one has

(∫

∞

0





𝐾
𝛼
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽
(R𝑛)
,

(∫

∞

0





Ω
𝛼
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽−𝛼
(R𝑛)
.

(11)

Here, �̇�𝑝
𝛾
(R𝑛) denotes the homogeneous Sobolev 𝐿𝑝 space with

order 𝛾, and𝐻𝑟 denotes the real Hardy space.

Theorem 3. Let 𝛼 = 1, (𝑝, 𝑞, 𝑟) be 𝑛/2-admissible and 1 ≤ 𝑝 ≤
+∞. Then the damped wave operators satisfy

(∫

∞

0





𝐾
1
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽
(R𝑛)
,

(∫

∞

0





Ω
1
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽−1
(R𝑛)
,

(12)

for any 𝛽 > (𝑛 − 1)|1/𝑝 − 1/2|.

By the above theorems, we easily obtain the following
space-time estimates on the solution 𝑢(𝑡, 𝑥).

Theorem 4. Let 𝛼 > 0 and let (𝑝, 𝑞, 𝑟) be 𝑛/2𝛼-admissible and
1 ≤ 𝑝 ≤ +∞. For the solution 𝑢(𝑡, 𝑥) of (5), one has

(∫

∞

0

‖𝑢‖
𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽−𝛼

+




𝑔



𝐻
𝑟
(R𝑛)

+




𝑔



�̇�
𝑝

𝛽−𝛼
(R𝑛)
.

(13)

Theorem 5. Let 𝛼 = 1, (𝑝, 𝑞, 𝑟) be 𝑛/2-admissible and 1 ≤ 𝑝 ≤
+∞. The solution 𝑢(𝑡, 𝑥) of the damped wave equation satisfies

(∫

∞

0

‖𝑢‖
𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽
(R𝑛)

+




𝑓



�̇�
𝑝

𝛽−1

+




𝑔



𝐻
𝑟
(R𝑛)

+




𝑔



�̇�
𝑝

𝛽−1
(R𝑛)
,

(14)

for any 𝛽 > (𝑛 − 1)|1/𝑝 − 1/2|.

Remark 6. For (5) with general 𝑏 > 0, it is not hard to see that

𝑇
𝑎,𝑏
(𝑡) 𝑓 (𝑥) = 𝑇

𝑎,1
(𝑠) 𝑓

𝑏
(𝑏
1/𝛼

𝑥) ,

𝑆
𝑎,𝑏
(𝑡) 𝑓 (𝑥) = 𝑆

𝑎,1
(𝑠) (

1

𝑏

𝑓
𝑏
) (𝑏

1/𝛼

𝑥) ,

(15)

where 𝑠 = 𝑏𝑡 and 𝑓
𝑏
(𝑥) = 𝑓(𝑏

−1/𝛼
𝑥). Therefore,

𝑢
𝑏
(𝑓, 𝑔) (𝑡, 𝑥) = 𝑢 (𝑓

𝑏
,

1

𝑏

𝑔
𝑏
) (𝑏𝑡, 𝑏

1/𝛼

𝑥) (16)

and by applyingTheorem 4, we have

(∫

∞

0





𝑢
𝑏






𝑞

𝐿
𝑝𝑑𝑡)

1/𝑞

⪯ 𝑏
(𝑛/𝛼)(1/𝑟−1/𝑝)−1/𝑞

(




𝑓



𝐻
𝑟 + 𝑏

−1



𝑔



𝐻
𝑟)

+ 𝑏
−𝛽/𝛼−1/𝑞

(




𝑓



�̇�
𝑝

𝛽

+ 𝑏




𝑓



�̇�
𝑝

𝛽−𝛼

+




𝑔



�̇�
𝑝

𝛽−𝛼

) .

(17)

For 𝛼 = 1, we have a similar result usingTheorem 5.

In the statement of these theorems, the notation 𝐴 ⪯

𝐵 means that there is a constant 𝐶 > 0 independent of
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all essential variables such that 𝐴 ≤ 𝐶𝐵. Also, throughout
this paper, we use the notation 𝐴 ≃ 𝐵 to mean that there
exist positive constants 𝐶 and 𝑐, independent of all essential
variables such that

𝑐𝐵 ≤ 𝐴 ≤ 𝐶𝐵. (18)

It is easy to see that, by the linearity, we only need to prove
Theorems 2 and 3. To this end, we will carefully study the
kernels

𝐾
𝛼
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
cosh (𝑡√1 − 


𝜉





2𝛼

) 𝑒
𝑖⟨𝑥,𝜉⟩

𝑑𝜉,

Ω
𝛼
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛

sinh(𝑡√1 − 

𝜉





2𝛼

)

√1 −




𝜉





2𝛼

𝑒
𝑖⟨𝑥,𝜉⟩

𝑑𝜉.

(19)

Using the linearization

(1 + 𝑠)
1/2

≃ 1 +

𝑠

2

, (20)

for small |𝜉|, we have

cosh (𝑡√1 − 

𝜉





2𝛼

) ≃ cosh(𝑡(1 −




𝜉





2𝛼

2

))

=

𝑒
𝑡(1−|𝜉|

2𝛼
/2)
+ 𝑒
−𝑡(1−|𝜉|

2𝛼
/2)

2

.

(21)

Thus for small |𝜉|,

𝑒
−𝑡 cosh (𝑡√1 − 


𝜉





2𝛼

)

≃

𝑒
−𝑡
𝑒
𝑡(1−|𝜉|

2𝛼
/2)
+ 𝑒
−𝑡
𝑒
−𝑡(1−|𝜉|

2𝛼
/2)

2

≃ 𝑒
−𝑡|𝜉|
2𝛼
/2

.

(22)

This indicates that, for |𝜉| near zero, 𝑇
𝛼
behaves like the

fractional heat operator (see [11, 29, 30, 36, 37]).
For large |𝜉|, we similarly have

cosh (𝑡√1 − 

𝜉





2𝛼

) = cosh (𝑖𝑡

𝜉





𝛼
√(1 −





𝜉





−2𝛼

))

≃

𝑒
𝑖𝑡|𝜉|
𝛼

− 𝑒
−𝑖𝑡|𝜉|
𝛼

2

.

(23)

This indicates that as |𝜉| near∞, 𝑒𝑡𝑇
𝛼
behaves like the wave

operator if 𝛼 = 1 and like the Schrödinger operator if 𝛼 = 2;
see [12, 16, 38, 39].

In the same manner, the operator 𝑆
𝛼
(𝑡) behaves the same

as the operator 𝑇
𝛼
. Based on these facts, we will estimate

the kernels in their low frequencies, median frequencies, and
high frequencies, separately, by using different methods. We
will estimate the kernels in Section 2 and complete the proofs
of main theorems in Section 3. Finally, in Section 4, we will
study the almost everywhere convergence for the solution
𝑢(𝑡, 𝑥) as 𝑡 → 0

+. The similar convergence theorem for
Schrödinger operator 𝑒𝑖𝑡Δ𝑓(𝑥) has been widely studied; see
[3, 40–44].

2. Estimates on Kernels

As we mentioned in the first section, we will estimate the
kernels 𝐾

𝛼
(𝑡) and Ω

𝛼
(𝑡) based on their different frequencies.

So we will divide this section into several subsections.

2.1. Estimate for |𝜉| near Zero. Let 𝜙
1
be a 𝐶∞ radial function

with support in {𝜉 ∈ R𝑛 : |𝜉|2𝛼 ≤ 1/2} and satisfy 𝜙
1
≡ 1

whenever |𝜉|2𝛼 ≤ 1/3. In this section we are going to obtain
the decay estimates on the kernels

𝐾
𝛼,0
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
𝜙
1
(𝜉) cosh (𝑡√1 − 


𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉,

Ω
𝛼,0
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
𝜙
1
(𝜉)

sinh(𝑡√1 − 

𝜉





2𝛼

)

√1 −




𝜉





2𝛼

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉.

(24)

With those decay estimates, we then are able to obtain two
𝐻
𝑝 bounds for the convolutions with the above two kernels.

Without loss of generality, we assume 0 < 2𝛼 < 1. This
assumption is not essential by tracking the following proofs.

Proposition 7. Let 𝐾
𝛼,0

and Ω
𝛼,0

be defined as above. For all
𝑡 > 0, one has





𝐾
𝛼,0
(𝑡) (𝑥)





⪯ (1 + 𝑡)

−𝑛/2𝛼

(1 + (1 + 𝑡)
−1/2𝛼

|𝑥|)

−𝑛−2𝛼

,





Ω
𝛼,0
(𝑡) (𝑥)





⪯ (1 + 𝑡)

−𝑛/2𝛼

(1 + (1 + 𝑡)
−1/2𝛼

|𝑥|)

−𝑛−2𝛼

.

(25)

Proof. The estimates of two inequalities are the same, so we
will prove the first one only.

(i) If (1 + 𝑡)−1/2𝛼|𝑥| ≤ 1 and 0 < 𝑡 ≤ 1, then it is obvious
to see





𝐾
𝛼,0
(𝑡) (𝑥)





⪯ ∫

R𝑛





𝜙
1
(𝜉)




𝑑𝜉 ⪯ 1. (26)

(ii) If (1 + 𝑡)−1/2𝛼|𝑥| ≤ 1 and 𝑡 > 1, then by scaling

𝑡
𝑛/2𝛼

𝐾
𝛼,0
(𝑡) (𝑡

1/2𝛼

𝑥)

= 𝑡
𝑛/2𝛼

𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝜉) cosh (𝑡√1 − 


𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑡
1/2𝛼
𝑥⟩

𝑑𝜉

= 𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉) cosh (√𝑡2 − 𝑡

𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉.

(27)

Since

𝑒
−𝑡 cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)

⪯ 𝑒
−𝑡

𝑒

√𝑡
2
−𝑡|𝜉|
2𝛼

⪯ exp(−




𝜉





2𝛼

1 + √1 −




𝜉





2𝛼

/𝑡

)

⪯ 𝑒
−|𝜉|
2𝛼
/2

,

(28)
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we have






𝑡
𝑛/2𝛼

𝐾
𝛼,0
(𝑡) (𝑡

1/2𝛼

𝑥)






⪯ ∫

R𝑛






𝜙
1
(𝑡
−1/2𝛼

𝜉)






𝑒
−|𝜉|
2𝛼
/2

𝑑𝜉 ⪯ 1.

(29)

(iii) If (1 + 𝑡)−1/2𝛼|𝑥| > 1 and 𝑡 > 1, then by (ii) we know

𝑡
𝑛/2𝛼

𝐾
𝛼,0
(𝑡) (𝑡

1/2𝛼

𝑥)

= 𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉) cosh (√𝑡2 − 𝑡

𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉.

(30)

Using the Leibniz rule, we have

𝜕
𝑛

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

𝜉) cosh (√𝑡2 − 𝑡

𝜉





2𝛼

))

=

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝜕
𝑛−𝑘

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

𝜉)) 𝜕
𝑘

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)) .

(31)

Observe that

𝜕
𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)) ≃

sinh(√𝑡2 − 𝑡

𝜉





2𝛼

)

√𝑡
2
− 𝑡




𝜉





2𝛼

𝑡|𝜉|
2𝛼−2

𝜉
𝑖
.

(32)

For 𝑘 ≥ 1, using an induction argument we have

𝜕
𝑘

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)) ≃ 𝐹 (𝑡, 𝜉)

𝑘

∑

𝑗=1

𝑡
𝑗
𝜓
𝑘

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

,

(33)

where 𝜖
𝑘
≥ 0, 𝜓𝑘

𝑗
(𝜉) ⪯ |𝜉|

2𝑗𝛼−𝑘, and

𝐹 (𝑡, 𝜉) = cosh(√𝑡2 − 𝑡|𝜉|2𝛼) or sinh(√𝑡2 − 𝑡|𝜉|2𝛼) .

(34)

For each fixed 𝑥 ∈ R𝑛, there exists at least one variable 𝑥
𝑖

such that |𝑥
𝑖
| ≥ |𝑥|/𝑛. By integration by parts 𝑛 times on the

variable 𝜉
𝑖
, we obtain

𝑡
𝑛/2𝛼

𝐾
𝛼,0
(𝑡) (𝑡

1/2𝛼

𝑥)

≃

1

𝑥
𝑛

𝑖

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝑒
−𝑡

∫

R𝑛
𝜕
𝑛−𝑘

𝜉𝑖
(𝜙
1
(𝑡
−1/2𝛼

𝜉)) 𝜕
𝑘

𝜉𝑖

× (cosh (√𝑡2 − 𝑡

𝜉





2𝛼

)) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

≃

1

𝑥
𝑛

𝑖

𝑛−1

∑

𝑘=1

𝑘

∑

𝑗=1

𝐶
𝑘

𝑛
𝑒
−𝑡

× ∫

R𝑛
𝜕
𝑛−𝑘

𝜉𝑖
(𝜙
1
(𝑡
−1/2𝛼

𝜉)) 𝐹 (𝑡, 𝜉)

×

𝑡
𝑗
𝜓
𝑘

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

+

1

𝑥
𝑛

𝑖

𝑛

∑

𝑗=1

𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉) 𝐹 (𝑡, 𝜉)

×

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

+

1

𝑥
𝑛

𝑖

𝑒
−𝑡

∫

R𝑛
𝜕
𝑛

𝜉𝑖
(𝜙
1
(𝑡
−1/2𝛼

𝜉))

× cosh (√𝑡2 − 𝑡

𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉.

(35)

The main terms needed to be estimated are

1

𝑥
𝑛

𝑖

𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉) 𝐹 (𝑡, 𝜉)

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡|𝜉|

2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉,

(36)

with 𝑗 = 1, 2, . . . , 𝑛. The other terms can be treated easily by
further taking integration by parts.

We let Φ be a 𝐶∞ radial function satisfying Φ(𝜉) = 1 if
|𝜉| ≤ 1 and Φ(𝜉) = 0 if |𝜉| > 2. Let Ψ(𝜉) = 1 − Φ(𝜉). By the
partition of unity we write

1

𝑥
𝑛

𝑖

𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉) 𝐹 (𝑡, 𝜉)

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

=

1

𝑥
𝑛

𝑖

𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉)Φ (|𝑥| 𝜉) 𝐹 (𝑡, 𝜉)

×

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

+

1

𝑥
𝑛

𝑖

𝑒
−𝑡

∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉)Ψ (|𝑥| 𝜉) 𝐹 (𝑡, 𝜉)

×

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

= 𝐼
1
+ 𝐼
2
.

(37)
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We note that 𝑡 > 1, and the support of 𝜙
1
(𝑡
−1/2𝛼

𝜉) together
with (28) implies

𝑒
−𝑡

𝐹 (𝑡, 𝜉)

𝑡
𝑗

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

⪯ 𝑒
−𝑡

𝑒

√𝑡
2
−𝑡|𝜉|
2𝛼

⪯ exp(−




𝜉





2𝛼

2

) .

(38)

Therefore





𝐼
1





⪯

1

|𝑥|
𝑛
∫

R𝑛
𝑒
−|𝜉|
2𝛼
/2 



𝜙
1
(𝑡
−1/2𝛼𝜉

)Φ (|𝑥| 𝜉)











𝜉





2𝑗𝛼−𝑛

𝑑𝜉

⪯

1

|𝑥|
𝑛
∫

|𝜉|≤2/|𝑥|





𝜉





2𝑗𝛼−𝑛

𝑑𝜉

⪯ |𝑥|
−𝑛−2𝑗𝛼

.

(39)

By integration by parts,





𝐼
2






⪯

1

|𝑥|
𝑛+1
𝑒
−𝑡

×


















∫

R𝑛
Ψ (|𝑥| 𝜉)

× 𝜕
𝜉𝑖
(𝜙

1
(𝑡
−1/2𝛼

𝜉) 𝐹 (𝑡, 𝜉)

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

)𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉


















+

1

|𝑥|
𝑛+1
𝑒
−𝑡

×


















∫

R𝑛
𝜕
𝜉𝑖
(Ψ (|𝑥| 𝜉)) 𝜙

1
(𝑡
−1/2𝛼

𝜉) 𝐹 (𝑡, 𝜉)

×

𝑡
𝑗
𝜓
𝑛

𝑗
(𝜉)

(√𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑗+𝜖𝑘

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉


















= 𝐽
1
+ 𝐽
2
.

(40)

Here, an easy computation gives

𝐽
1
⪯

1

|𝑥|
𝑛+1
∫

|𝜉|≥1/|𝑥|





Ψ (|𝑥| 𝜉)





𝑒
−|𝜉|
2𝛼
/2



𝜉





2𝑗𝛼−𝑛−1

𝑑𝜉

⪯ min{ 1

|𝑥|
𝑛+1
,

1

|𝑥|
𝑛+2𝛼

} .

(41)

For 𝐽
2
, noting that






𝜕
𝜉𝑖
(Ψ (|𝑥| 𝜉))






⪯ |𝑥| Ψ



(|𝑥| 𝜉) (42)

and Ψ(𝑠) is supported in [1/2, 2], we have

𝐽
2
⪯

1

|𝑥|
𝑛
∫

1/2|𝑥|≤|𝜉|≤2/|𝑥|

|𝜉|
2𝑗𝛼−𝑛

𝑑𝜉 ⪯

1

|𝑥|
𝑛+2𝑗𝛼

. (43)

(iv) If (1 + 𝑡)−1/2𝛼|𝑥| > 1 and 0 < 𝑡 ≤ 1, then a similar
argument, without scaling, shows that





𝐾
𝛼,0
(𝑡) (𝑥)





⪯

1

|𝑥|
𝑛+2𝛼

. (44)

The proposition now follows from (i)–(iv).

Proposition 8. Let 𝑓 ∈ 𝐻𝑟(R𝑛). Then for any 𝑡 > 0 and 0 <
𝑟 ≤ 𝑝 < +∞,





𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐻
𝑝
(R𝑛)

⪯ (1 + 𝑡)
−(𝑛/2𝛼)(1/𝑟−1/𝑝)




𝑓



𝐻
𝑟
(R𝑛)
,





Ω
𝛼,0
(𝑡) ∗ 𝑓




𝐻
𝑝
(R𝑛)

⪯ (1 + 𝑡)
−(𝑛/2𝛼)(1/𝑟−1/𝑝)




𝑓



𝐻
𝑟
(R𝑛)
.

(45)

Particularly, we have





𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐿
∞
(R𝑛)

⪯ (1 + 𝑡)
−𝑛/2𝛼𝑟




𝑓



𝐻
𝑟
(R𝑛)
,





Ω
𝛼,0
(𝑡) ∗ 𝑓




𝐿
∞
(R𝑛)

⪯ (1 + 𝑡)
−𝑛/2𝛼𝑟




𝑓



𝐻
𝑟
(R𝑛)
.

(46)

Proof. Weprove the proposition for the kernel𝐾
𝛼,0

only, since
the proof for the other one is exactly the same. Let us first
consider the case 𝑝 = +∞ and 0 < 𝑟 < 1. Invoking an
interpolation argument [45, 46], we may assume that 𝑛(1/𝑟 −
1) is a positive integer. Thus the dual space of 𝐻𝑟 is the
homogeneous Lipschitz space Λ̇

𝑛(1/𝑟−1)
(R𝑛) (one can see the

definition in [46]), which is exactly the homogeneous Hölder
space �̇�𝑛(1/𝑟−1)(R𝑛). By duality we have





𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐿
∞ ⪯ sup

𝑥∈R𝑛





𝐾
𝛼,0
(𝑡)(𝑥 − ⋅)




�̇�
𝑛(1/𝑟−1)





𝑓



𝐻
𝑟 . (47)

If 𝑡 ≥ 1, it is easy to check that

sup
𝑥∈R𝑛





𝐾
𝛼,0
(𝑡)(𝑥 − ⋅)




�̇�
𝑛(1/𝑟−1)

= sup
𝑥∈R𝑛






𝐾
𝛼,0
(𝑡)(𝑡

1/2𝛼

𝑥 − ⋅)





�̇�
𝑛(1/𝑟−1)

⪯ 𝑡
−𝑛/2𝛼𝑟 sup

𝑥∈R𝑛










∫

R𝑛
𝜙
1
(𝑡
−1/2𝛼

𝜉) 𝑃 (𝜉) 𝑒
−𝑡

× cosh(√𝑡2 − 𝑡|𝜉|2𝛼) 𝑒𝑖⟨𝜉,𝑥⟩𝑑𝜉









,

(48)

where𝑃(𝜉) is a homogeneous polynomial of degree 𝑛(1/𝑟−1).
Thus, using the same argument as before we obtain





𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐿
∞ ⪯ 𝑡

−𝑛/2𝛼𝑟



𝑓



𝐻
𝑟 . (49)
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If 0 < 𝑡 ≤ 1,

sup
𝑥∈R𝑛





𝐾
𝛼,0
(𝑡) (𝑥 − ⋅)




�̇�
𝑛(1/𝑟−1)

⪯ sup
𝑥∈R𝑛










∫

R𝑛
𝜙
1
(𝜉) 𝑃 (𝜉) 𝑒

−𝑡 cosh (𝑡√1 − 

𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉










⪯ 1.

(50)

This shows that, for all 0 < 𝑟 < 1,




𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐿
∞ ⪯ (1 + 𝑡)

−𝑛/2𝛼𝑟



𝑓



𝐻
𝑟 . (51)

On the other hand, if we write

𝑚(𝑡, 𝜉) =
̂
𝐾
𝛼,0
(𝑡) (𝜉) = 𝑒

−𝑡

𝜙
1
(𝜉) cosh(𝑡√1 − |𝜉|2𝛼) , (52)

then by checking the proof of Proposition 7, we find





𝜕
𝑘

𝜉
𝑚(𝑡, 𝜉)






⪯ |𝜉|

−|𝑘| (53)

for all multi-indices 𝑘. So by the Calderón-Torchinsky multi-
plier theorem [47], we also have, for all 0 < 𝑟 < 1,





𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐻
𝑟 ⪯




𝑓



𝐻
𝑟 . (54)

Now interpolating between (51) and (54), we finish the proof
for 0 < 𝑟 < 1.

For the case 1 ≤ 𝑟 ≤ +∞, we use Young’s inequality to get




𝐾
𝛼,0
∗ (𝑡)𝑓




𝐿
𝑝 =





𝐾
𝛼,0
(𝑡)



𝐿
𝑞





𝑓



𝐿
𝑟 , (55)

where 1/𝑟 + 1/𝑞 = 1/𝑝 + 1. By Proposition 7,




𝐾
𝛼,0
(𝑡)



𝐿
𝑞

≤ (∫

R𝑛








(1 + 𝑡)
−𝑛/2𝛼

(1 + (1 + 𝑡)
−1/2𝛼

|𝑥|)

−𝑛−2𝛼





𝑞

𝑑𝑥)

1/𝑞

≤ (1 + 𝑡)
−(𝑛/2𝛼)(1/𝑟−1/𝑝)

.

(56)

2.2. Estimate for |𝜉| Lying in the Mid-Interval. Let 𝜙
2
be a 𝐶∞

radial function with support in {𝜉 ∈ R𝑛 : 1/4 ≤ |𝜉|2𝛼 ≤ 200}

and satisfy 𝜙
1
≡ 1 whenever 1/3 ≤ |𝜉|2𝛼 ≤ 100. We first will

obtain the decay estimate on the kernels

𝐾
𝛼,𝑚
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
𝜙
2
(𝜉) cosh(𝑡√1 − |𝜉|2𝛼) 𝑒𝑖⟨𝜉,𝑥⟩𝑑𝜉,

Ω
𝛼,𝑚
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
𝜙
2
(𝜉)

sinh(𝑡√1 − |𝜉|2𝛼)

√1 − |𝜉|
2𝛼

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

(57)

and then prove the mapping properties of the convolution
operators with the above kernels. As in Section 2.1, we assume
0 < 2𝛼 < 1 without loss of generality.

Proposition 9. For all 𝑡 > 0 and𝑁 > 0, we have





𝐾
𝛼,𝑚
(𝑡) (𝑥)





⪯ (1 + 𝑡)

−𝑛/2𝛼−𝑁

(1 + (1 + 𝑡)
−1/2𝛼

|𝑥|)

−𝑛−2𝛼

,





Ω
𝛼,𝑚
(𝑡) (𝑥)





⪯ (1 + 𝑡)

−𝑛/2𝛼−𝑁

(1 + (1 + 𝑡)
−1/2𝛼

|𝑥|)

−𝑛−2𝛼

.

(58)

Proof. If (1 + 𝑡)−1/2𝛼|𝑥| ≤ 1, then the proof is the same as
(i) and (ii) in the proof of Proposition 7. So we assume (1 +
𝑡)
−1/2𝛼

|𝑥| > 1 and 𝑡 > 1. In the case of 𝑡 ≤ 1, we use the same
proof as the following argument for 𝑡 > 1, without taking the
scaling kernel.

For 𝑡 > 1, consider the scaling kernel

𝑡
𝑛/2𝛼

𝐾
𝛼,𝑚
(𝑡) (𝑡

1/2𝛼

𝑥)

= 𝑡
𝑛/2𝛼

𝑒
−𝑡

∫

R𝑛
𝜙
2
(𝜉) cosh (𝑡√1 − 


𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑡
1/2𝛼
𝑥⟩

𝑑𝜉

= 𝑒
−𝑡

∫

R𝑛
𝜙
2
(𝑡
−1/2𝛼

𝜉) cosh (√𝑡2 − 𝑡

𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉.

(59)

By the Leibniz rule,

𝜕
𝑛

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

𝜉) cosh (√𝑡2 − 𝑡

𝜉





2𝛼

))

=

𝑛

∑

𝑘=0

𝐶
𝑘

𝑛
𝜕
𝑛−𝑘

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

𝜉)) 𝜕
𝑘

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)) .

(60)

Next we prove the following estimate:









𝜕
𝑘

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

))










⪯ exp(









√𝑡
2
− 𝑡




𝜉





2𝛼










)

𝑘

∑

𝑗=1

𝑡
𝑗



𝜉





2𝑗𝛼−𝑘

.

(61)

In fact, using Taylor’s expansion, we have

cosh(√𝑡2 − 𝑡|𝜉|2𝛼) =
+∞

∑

𝑙=0

(𝑡
2
− 𝑡|𝜉|

2𝛼

)

𝑙

(2𝑙)!

. (62)

Then by an easy computation,

𝜕
𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)) ≃

+∞

∑

𝑙=1

𝑙(𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑙−1

(2𝑙)!

𝑡




𝜉





2𝛼−2

𝜉
𝑖
,

𝜕
2

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

))

≃

+∞

∑

𝑙=2

𝑙 (𝑙 − 1) (𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑙−2

(2𝑙)!

𝑡
2



𝜉





4𝛼−4

𝜉
2

𝑖

+

+∞

∑

𝑙=1

𝑙(𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑙−1

(2𝑙)!

𝑡 (




𝜉





2𝛼−4

𝜉
2

𝑖
+




𝜉





2𝛼−2

) .

(63)
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Thus, by the induction, we have

𝜕
𝑘

𝜉𝑖
(cosh(√𝑡2 − 𝑡|𝜉|2𝛼))

≃

𝑘

∑

𝑗=1

+∞

∑

𝑙=𝑗

𝑙 (𝑙 − 1) ⋅ ⋅ ⋅ (𝑙 − 𝑗 + 1) (𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑙−𝑗

(2𝑙)!

𝑡
𝑗

𝜓
𝑘

𝑗
(𝜉) ,

(64)

where

𝜓
𝑘

𝑗
(𝜉) ⪯ |𝜉|

2𝑗𝛼−𝑘

. (65)

Since

𝑙 (𝑙 − 1) ⋅ ⋅ ⋅ (𝑙 − 𝑗 + 1)

(2𝑙)!

≤

1

(2 (𝑙 − 𝑗))!

, (66)

we obtain














+∞

∑

𝑙=𝑗

𝑙 (𝑙 − 1) ⋅ ⋅ ⋅ (𝑙 − 𝑗 + 1) (𝑡
2
− 𝑡




𝜉





2𝛼

)

𝑙−𝑗

(2𝑙)!















⪯

+∞

∑

𝑙=𝑗









√𝑡
2
− 𝑡




𝜉





2𝛼








2(𝑙−𝑗)

(2 (𝑙 − 𝑗))!

⪯ exp(









√𝑡
2
− 𝑡




𝜉





2𝛼










) .

(67)

So (61) is proved. Note by the compact support of 𝜙
2
(𝑡
−1/2𝛼

𝜉),
we have

𝑡

4

≤ |𝜉|
2𝛼

≤ 200𝑡, (68)

and we will prove, for all such 𝜉,










𝑒
−𝑡

𝜕
𝑘

𝜉𝑖
cosh(√𝑡2 − 𝑡|𝜉|2𝛼)










⪯ 𝑒
−𝑏|𝜉|
2𝛼
𝑘

∑

𝑗=1

𝑡
𝑗

|𝜉|
2𝑗𝛼−𝑘

, 𝑏 > 0.

(69)

If 𝑡/4 ≤ |𝜉|2𝛼 ≤ 𝑡, (69) then is a consequence of (61) and (28).
If 𝑡 < |𝜉|2𝛼 ≤ 5𝑡/4, then

𝑒
−𝑡

𝑒
√𝑡|𝜉|
2𝛼
−𝑡
2

= 𝑒
√𝑡|𝜉|
2𝛼
−𝑡
2
−𝑡

⪯ 𝑒
−𝑡/2

⪯ 𝑒
−2|𝜉|
2𝛼
/5

.
(70)

When 5𝑡/4 < |𝜉|2𝛼 ≤ 200𝑡, similar to (33), we get

𝑒
−𝑡

𝜕
𝑘

𝜉𝑖
(cosh (𝑖√𝑡


𝜉





2𝛼

− 𝑡
2
))

≃ 𝑒
−𝑡

𝐹 (𝑡, 𝜉)

𝑘

∑

𝑗=1

𝑡
𝑗
𝜓
𝑘

𝑗
(𝜉)

(√𝑡|𝜉|
2𝛼
− 𝑡
2
)

𝑗+𝜖𝑘

(71)

which is further bounded (note also 𝑡 > 1) by

𝑒
−𝑡

𝑘

∑

𝑗=1

𝑡
𝑗

|𝜉|
2𝑗𝛼−𝑘

⪯ 𝑒
−|𝜉|
2𝛼
/200

𝑘

∑

𝑗=1

𝑡
𝑗

|𝜉|
2𝑗𝛼−𝑘

. (72)

Thus we have proved (69). Fix an 𝑥 ∈ R𝑛 and let 𝑥
𝑖
be the

variable such that𝑥
𝑖
> |𝑥|/𝑛. Using integration by parts (𝑛+1)

times on 𝜉
𝑖
, we obtain

𝑡
𝑛/2𝛼

𝐾
𝛼,𝑚
(𝑡) (𝑡

1/2𝛼

𝑥)

≃

1

𝑥
𝑛+1

𝑖

𝑛+1

∑

𝑘=0

𝐶
𝑘

𝑛+1
𝑒
−𝑡

∫

R𝑛
𝜕
𝑛−𝑘+1

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

𝜉))

× 𝜕
𝑘

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2𝛼

)) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

≃

1

𝑥
𝑛+1

𝑖

𝑛+1

∑

𝑘=1

𝐶
𝑘

𝑛+1
∫

R𝑛
𝜕
𝑛−𝑘+1

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

𝜉)) 𝑒
−𝑡

× 𝜕
𝑘

𝜉𝑖
(cosh (√𝑡2 − 𝑡


𝜉





2

𝛼)) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

+

1

𝑥
𝑛+1

𝑖

∫

R𝑛
𝜕
𝑛+1

𝜉𝑖
(𝜙
2
(𝑡
−1/2𝛼

)) 𝑒
−𝑡

× cosh (√𝑡2 − 𝑡

𝜉





2𝛼

) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

= 𝐾
1
+ 𝐾

2
.

(73)

By (61), (69), and the compact support of 𝜙
2
, we have





𝐾
1






⪯

1

|𝑥|
𝑛+1

𝑛+1

∑

𝑘=1

𝐶
𝑘

𝑛+1

𝑘

∑

𝑗=1

∫

|𝜉|≈𝑡
1/2𝛼






𝜕
𝑛−𝑘+1

𝜉𝑖
𝜙
2
(𝑡
−1/2𝛼

𝜉)







× 𝑒
−𝑏|𝜉|
2𝛼

𝑡
𝑗



𝜉





2𝑗𝛼−𝑘

𝑑𝜉

⪯ 𝑡
−𝑁/2𝛼 1

|𝑥|
𝑛+1

𝑛+1

∑

𝑘=1

𝐶
𝑘

𝑛+1

𝑘

∑

𝑗=1

∫

|𝜉|≈𝑡
1/2𝛼






𝜙
(𝑛−𝑘+1)

2
(𝑡
−1/2𝛼

𝜉)







× 𝑡
(−𝑛+𝑘−1)/2𝛼+𝑗+𝑁/2𝛼

𝑒
−𝑏|𝜉|
2𝛼

×




𝜉





2𝑗𝛼−𝑘

𝑑𝜉

⪯ 𝑡
−𝑁/2𝛼 1

|𝑥|
𝑛+1

𝑛+1

∑

𝑘=1

𝐶
𝑘

𝑛+1

𝑘

∑

𝑗=1

∫

|𝜉|≈𝑡
1/2𝛼





𝜉





4𝑗𝛼+𝑁−𝑛−1

𝑒
−𝑏|𝜉|
2𝛼

𝑑𝜉

⪯ 𝑡
−𝑁/2𝛼 1

|𝑥|
𝑛+1
.

(74)

The second term 𝐾
2
can be calculated directly to finish the

whole proof.

By Proposition 9 and the same argument in proving
Proposition 8, we have the following boundedness.
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Proposition 10. Let 𝑓 ∈ 𝐻𝑟(R𝑛). Then for any 𝑡,𝑁 > 0 and
𝑟 ≤ 𝑝 < +∞,





𝐾
𝛼,𝑚
(𝑡) ∗ 𝑓




𝐻
𝑝
(R𝑛)

⪯ (1 + 𝑡)
−𝑁



𝑓



𝐻
𝑟
(R𝑛)
,





Ω
𝛼,𝑚
(𝑡) ∗ 𝑓




𝐻
𝑝
(R𝑛)

⪯ (1 + 𝑡)
−𝑁



𝑓



𝐻
𝑟
(R𝑛)
.

(75)

Particularly, we have





𝐾
𝛼,𝑚
(𝑡) ∗ 𝑓




𝐿
∞
(R𝑛)

⪯ (1 + 𝑡)
−𝑁



𝑓



𝐻
𝑟
(R𝑛)
,





Ω
𝛼,𝑚
(𝑡) ∗ 𝑓




𝐿
∞
(R𝑛)

⪯ (1 + 𝑡)
−𝑁



𝑓



𝐻
𝑟
(R𝑛)
.

(76)

2.3. Estimates for |𝜉| near the Infinity. Let 𝜙
3
be a 𝐶∞ radial

function with support in {𝜉 ∈ R𝑛 : |𝜉|2𝛼 ≥ 26} and satisfy
𝜙
3
≡ 1 whenever |𝜉|2𝛼 ≥ 100. Defining

𝐾
𝛼,∞
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
𝜙
3
(𝜉) cosh (𝑖𝑡√


𝜉





2𝛼

− 1) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉,

Ω
𝛼,∞
(𝑡) (𝑥) = 𝑒

−𝑡

∫

R𝑛
𝜙
3
(𝜉)

sinh(𝑖𝑡√

𝜉





2𝛼

− 1)

𝑖√




𝜉





2𝛼

− 1

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉,

(77)

we have the following proposition.

Proposition 11. Let 1 ≤ 𝑝 ≤ +∞ and 𝛼 > 0. Then there exists
a 𝛿

𝑝
> 0 such that for any 𝛽 > 𝑛𝛼|1/2 − 1/𝑝| and 𝑡 > 0, we

have




𝐾
𝛼,∞
(𝑡) ∗ 𝑓




𝐿
𝑝
(R𝑛)

⪯ 𝑒
−𝑡

(1 + 𝑡)
𝛿𝑝


𝑓



�̇�
𝑝

𝛽

,





Ω
𝛼,∞
(𝑡) ∗ 𝑓




𝐿
𝑝
(R𝑛)

⪯ 𝑒
−𝑡

(1 + 𝑡)
𝛿𝑝


𝑓



�̇�
𝑝

𝛽−𝛼

.

(78)

Proof. We will show the case 𝑛 ≥ 2 and leave the easy case
𝑛 = 1 to the reader. Again, we will only show the inequality
of𝐾

𝛼,∞
(𝑡) ∗ 𝑓 since the proof of the other one is similar.

Define an analytic family of operators

𝑇
𝑧
(𝑓) (𝑥)

= 𝑒
−𝑡

∫

R𝑛

𝑒
𝑖𝑡√|𝜉|

2𝛼
−1





𝜉





𝑧
𝜙
3
(𝜉)

̂
𝑓 (𝜉) 𝑒

𝑖⟨𝑥,𝜉⟩

𝑑𝜉, 𝑧 ∈ C.

(79)

By the Plancherel formula, we have





𝑇
𝑧
(𝑓)



𝐿
2
(R𝑛)

⪯ 𝑒
−𝑡



𝑓



𝐿
2
(R𝑛)

for Re 𝑧 = 0. (80)

If we can show




𝑇
𝑧
(𝑓)



𝐿
1
(R𝑛)

⪯ (1 + 𝑡)
𝜆

𝑒
−𝑡



𝑓



𝐿
1
(R𝑛)

(81)

for Re 𝑧 > 𝑛𝛼/2 and some 𝜆 > 0, the proposition easily
follows by a complex interpolation on these two inequalities
for 1 ≤ 𝑝 ≤ 2. Then we can use a trivial dual argument
to achieve the proposition for the whole range of 𝑝. Also,
without loss of generality, we prove (81) with 𝑧 = 𝛽 > 𝑛𝛼/2.

LetΦ be a standard cutoff function with support in {𝜉 : 1/2 ≤
|𝜉| ≤ 2} satisfying

∑Φ(2
−𝑗 



𝜉




) ≡ 1, ∀𝜉 ̸= 0. (82)

Defining

𝑊
𝛼

𝑗
(𝑡) 𝑓 (𝑥)

= 𝑒
−𝑡

∫

R𝑛
𝑒
𝑖𝑡√|𝜉|

2𝛼
−1

Φ(2
−𝑗

𝜉) 𝜙
3
(𝜉)

̂
𝑓 (𝜉) 𝑒

𝑖⟨𝑥,𝜉⟩

𝑑𝜉,

(83)

then (81) will follow if we prove





𝑊
𝛼

𝑗
(𝑡)𝑓(𝑥)





𝐿
1
⪯ 𝑒

−𝑡

(1 + 𝑡)
𝜆

2
𝑗𝑛𝛼/2




𝑓



𝐿
1 . (84)

In fact, (84) implies
∞

∑

𝑗=0






2
−(𝑛𝛼/2+𝜖)𝑗

𝑊
𝛼

𝑗
(𝑡) 𝑓 (𝑥)





𝐿
1

⪯

∞

∑

𝑗=0

2
−𝑗𝜖

(1 + 𝑡)
𝜆

𝑒
−𝑡



𝑓



𝐿
1 , ∀𝜖 > 0.

(85)

Noting that 2−𝑗 ≃ |𝜉| in the support of Φ(2−𝑗𝜉), we get (81)
from the above inequality.

Next we prove (84). Let R
𝛼,𝑗

be the kernel of𝑊𝛼

𝑗
(𝑡). By

Young’s inequality, it suffices to show





R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

(1 + 𝑡)
𝜆

2
𝑗𝑛𝛼/2

, (86)

for some 𝜆 > 0. By the definition, without loss of generality,
we may write

R
𝛼,𝑗
(𝑥, 𝑡) = 𝑒

−𝑡

∫

R𝑛
Φ(2

−𝑗

𝜉) 𝑒
𝑖𝑡√|𝜉|

2𝛼
−1

𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

= 𝑒
−𝑡

2
𝑗𝑛

∫

R𝑛
Φ (𝜉) 𝑒

𝑖𝑡√2
2𝛼𝑗
|𝜉|
2𝛼
−1

𝑒
𝑖2
𝑗
⟨𝜉,𝑥⟩

𝑑𝜉.

(87)

Using the Taylor expansion with integral remainder, for 𝑟 ∈
supp(Φ), we write

√𝑟
2𝛼
− 1 = 𝑟

𝛼

+ 𝑔(

1

𝑟

) , (88)

where

𝑔 (𝑟) = −

𝑟
𝛼

2

∫

1

0

(1 − 𝑠𝑟
2𝛼

)

−1/2

𝑑𝑠. (89)

This gives

𝑒
𝑖𝑡√2
2𝑗𝛼
𝑟
2𝛼
−1

= 𝑒
𝑖𝑡2
𝑗𝛼
𝑟
𝛼

𝑒
𝑖𝑡𝑔(1/𝑟2

𝑗𝛼
)

, (90)

for 2𝛼𝑗 ≥ 100 and 1/2 ≤ 𝑟 ≤ 2. By the definition of 𝑔 it is easy
to see that for any integer𝑚 ≥ 0










𝑑
𝑚

𝑑𝑟
𝑚
𝑒
𝑖𝑡𝑔(1/2

𝑘𝛼
𝑟)










⪯ (1 + 𝑡)
𝑚 (91)

uniformly for 2𝛼𝑗 ≥ 100 and 1/2 ≤ 𝑟 ≤ 2.
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Now we write

R
𝛼,𝑗
(𝑥, 𝑡) = 𝑒

−𝑡

2
𝑗𝑛

∫

R𝑛
𝑒
𝑖℘(𝜉,𝑡,𝑗)

Φ (𝜉) 𝑒
𝑖𝑡𝑔(1/2

𝑗𝛼
|𝜉|)

𝑑𝜉, (92)

where the phase function ℘ is defined as

℘ (𝜉, 𝑡, 𝑗) = 𝑡2
𝑗𝛼



𝜉





𝛼

+ 2
𝑗

⟨𝜉, 𝑥⟩. (93)

Let sets 𝐸
1
, 𝐸
2
, and 𝐸

3
be defined as

𝐸
1
= {𝑥 ∈ R

𝑛

: |𝑥| ≥ 𝑀𝑡2
𝑗(𝛼−1)

} ,

𝐸
2
= {𝑥 ∈ R

𝑛

: |𝑥| ≤ 𝑚𝑡2
𝑗(𝛼−1)

} ,

𝐸
3
= {𝑥 ∈ R

𝑛

: 𝑚𝑡2
𝑗(𝛼−1)

< |𝑥| < 𝑀𝑡2
𝑗(𝛼−1)

} ,

(94)

where

𝑀 = 𝑛2
𝛼+100max {𝛼, 1

𝛼

} (95)

and𝑚 = 1/𝑀. Hence,





R
𝛼,𝑗





𝐿
1
=






𝜒
𝐸1
R
𝛼,𝑗





𝐿
1
+






𝜒
𝐸2
R
𝛼,𝑗





𝐿
1
+






𝜒
𝐸3
R
𝛼,𝑗





𝐿
1
, (96)

where 𝜒
𝐸
denotes the characteristic function of a set 𝐸.

Furthermore, we let

𝐸
1,𝑚
= {𝑥 ∈ 𝐸

1
:




𝑥
𝑚





≥




𝑥
𝑖





for 𝑖 = 1, 2, . . . , 𝑛} , (97)

for𝑚 = 1, 2, . . . , 𝑛. Then






𝜒
𝐸1
R
𝛼,𝑗





𝐿
1
≤

𝑛

∑

𝑚=1






𝜒
𝐸1,𝑚

R
𝛼,𝑗





𝐿
1
. (98)

For each 𝜒
𝐸1,𝑚

R
𝛼,𝑗
, using integration by parts on the 𝜉

𝑚

variable, it is easy to obtain that, for𝑚 = 1, 2, . . . , 𝑛,






𝜒
𝐸1,𝑚
(𝑥)R

𝛼,𝑗
(𝑥, 𝑡)






⪯ 𝑒

−𝑡

2
𝑗𝑛

𝜒
𝐸1,𝑚
(𝑥)min {1, (2𝑗 |𝑥|)

−𝑁

} ,

(99)

for any positive number𝑁.
By the polar decomposition,

𝜒
𝐸2
(𝑥)R

𝛼,𝑗
(𝑥, 𝑡)

= 𝑒
−𝑡

2
𝑗𝑛

∫

𝑆
𝑛−1

(∫

∞

0

Φ
0
(𝑟) 𝑒

𝑖𝑃(𝑟,𝑡,𝑗)

𝑑𝑟) 𝑑𝜎 (𝜉


) ,

(100)

where the phase function 𝑃 is defined by

𝑃 (𝑟, 𝑡, 𝑗) = 𝑡2
𝑗𝛼

𝑟
𝛼

+ 2
𝑗

𝑟 ⟨𝜉


, 𝑥⟩ ,

Φ
0
(𝑟) = Φ (𝑟) 𝑒

𝑖𝑡𝑔(1/2
𝑗𝛼
𝑟)

.

(101)

Using integration by parts on the inner integral, we obtain






𝜒
𝐸2
(𝑥)R

𝛼,𝑗
(𝑥, 𝑡)






⪯ 𝑒

−𝑡

2
𝑗𝑛

𝜒
𝐸2
(𝑥)min {1, (𝑡2𝑗𝛼)

−𝑁

} ,

(102)

for any positive number𝑁.

By the Proposition in [48, page 344],






𝜒
𝐸3
(𝑥)R

𝛼,𝑗
(𝑥, 𝑡)






⪯ 𝑒

−𝑡

2
𝑗𝑛

𝜒
𝐸3
(𝑥)min {1, (𝑡2𝑗𝛼)

−𝑛/2

} .

(103)

Thus, if 𝑡2𝑗𝛼 ≥ 1





𝜒
𝐸3
R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

|𝑥|≃𝑡2
𝑗(𝛼−1)

(𝑡2
𝑗𝛼

)

−𝑛/2

𝑑𝑥

⪯ 𝑒
−𝑡

𝑡
𝑛/2

2
𝑗𝛼𝑛/2

.

(104)

If 𝑡2𝑗𝛼 ≤ 1,





𝜒
𝐸3
R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

|𝑥|≃𝑡2
𝑗(𝛼−1)

𝑑𝑥

⪯ 𝑒
−𝑡

(𝑡2
𝑗𝛼

)

𝑛

≤ 𝑒
−𝑡

.

(105)

For 𝜒
𝐸2
R
𝛼,𝑗
, if 𝑡2𝑗𝛼 ≤ 1,






𝜒
𝐸2
R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

|𝑥|⪯𝑡2
𝑗(𝛼−1)

𝑑𝑥

⪯ 𝑒
−𝑡

(𝑡2
𝑗𝛼

)

𝑛

⪯ 𝑒
−𝑡

.

(106)

If 𝑡2𝑗𝛼 > 1 and then we choose𝑁 = 𝑛,





𝜒
𝐸2
R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

(𝑡2
𝑗𝛼

)

−𝑁

(𝑡2
𝑗(𝛼−1)

)

𝑛

= 𝑒
−𝑡

(𝑡2
𝑗𝛼

)

−𝑁

𝑡
𝑛

2
𝑗𝑛𝛼

⪯ 𝑒
−𝑡

.

(107)

Finally we estimate 𝜒
𝐸1
R
𝛼,𝑗
. For each𝑚 = 1, 2, . . . , 𝑛,






𝜒
𝐸1,𝑚

R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

|𝑥|⪰𝑡2
𝑗(𝛼−1)

min {1, (2𝑗 |𝑥|)
−𝑁

} 𝑑𝑥.

(108)

If the set {𝑥 : 𝑡2𝑗(𝛼−1) ⪯ |𝑥| ⪯ 2−𝑗} is not empty, we write






𝜒
𝐸1,𝑚

R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

𝑡2
𝑗(𝛼−1)

⪯|𝑥|≤2
−𝑗

𝑑𝑥

+ 𝑒
−𝑡

2
𝑗𝑛

∫

2
−𝑗
≤|𝑥|

min {1, (𝑡2𝑗𝛼)
−𝑁

} 𝑑𝑥

= 𝐽
1
+ 𝐽
2
.

(109)

Clearly

𝐽
1
≤ 𝑒

−𝑡

. (110)

Also, choose a sufficiently large𝑁, and then

𝐽
2
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

|𝑥|≥2
−𝑗

(2
𝑗

|𝑥|)

−𝑁

𝑑𝑥 ⪯ 𝑒
−𝑡

. (111)

If the set {2−𝑗 ≥ |𝑥| ⪰ 𝑡2𝑗(𝛼−1)} is empty, then we also have






𝜒
𝐸1,𝑚

R
𝛼,𝑗





𝐿
1
⪯ 𝑒

−𝑡

2
𝑗𝑛

∫

|𝑥|≥2
−𝑗

(2
𝑗

|𝑥|)

−𝑁

𝑑𝑥 ⪯ 𝑒
−𝑡

. (112)

The proposition is proved.
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3. Proof of Theorems 2 and 3

Proof of Theorem 2. Recalling the definition of

𝐾
𝛼,0
(𝑡) , 𝐾

𝛼,𝑚
(𝑡) , 𝐾

𝛼,∞
(𝑡) , Ω

𝛼,0
(𝑡) , Ω

𝛼,𝑚
(𝑡) , Ω

𝛼,∞
(𝑡)

(113)

in Section 2, we have




𝐾
𝛼
(𝑡) ∗ 𝑓






⪯




𝐾
𝛼,0
(𝑡) ∗ 𝑓





+




𝐾
𝛼,𝑚
(𝑡) ∗ 𝑓





+




𝐾
𝛼,∞
(𝑡) ∗ 𝑓





,





Ω
𝛼
(𝑡) ∗ 𝑓






⪯




Ω
𝛼,0
(𝑡) ∗ 𝑓





+




𝐾
𝛼,𝑚
(𝑡) ∗ 𝑓





+




Ω
𝛼,∞
(𝑡) ∗ 𝑓





.

(114)

By the triangle inequality and Propositions 8, 10, and 11,
we only have to verify that, for any 𝑛/2𝛼-admissible triplet
(𝑝, 𝑞, 𝑟),

(∫

∞

0





𝐾
𝛼,0
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)
,

(∫

∞

0





Ω
𝛼,0
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)
.

(115)

These two inequalities are obviously true if

1

𝑞

<

𝑛

2𝛼

(

1

𝑟

−

1

𝑝

) . (116)

For 1/𝑞 = (𝑛/2𝛼)(1/𝑟 − 1/𝑝), denote

𝐹 (𝑡) 𝑓 =




𝐾
𝛼,0
(𝑡) ∗ 𝑓




𝐿
𝑝
(R𝑛)
. (117)

By Proposition 8, we have

𝐹 (𝑡) 𝑓 ⪯ (1 + 𝑡)
−1/𝑞



𝑓



𝐻
𝑟 . (118)

This indicates that, for any 𝜆 > 0, there exists a positive
constant 𝐶 independent of 𝜆 and 𝑓 such that





{𝑡 :




𝐹 (𝑡) 𝑓





> 𝜆}






≤






{𝑡 : 𝐶𝑡

−1/𝑞



𝑓



𝐻
𝑟 > 𝜆}






≤ (

𝐶




𝑓



𝐻
𝑟

𝜆

)

𝑞

.

(119)

This shows that 𝐾
𝛼,0
(𝑡) is a bounded mapping from 𝐻

𝑟
(R𝑛)

to the mixed norm space 𝐿𝑞,∞([0,∞], 𝐿𝑝(R𝑛)) for any
admissible triplet (𝑝, 𝑞, 𝑟). Now we choose admissible triplets
(𝑝, 𝑞

1
, 𝑟
1
) and (𝑝, 𝑞

2
, 𝑟
2
) satisfying

𝑟
1
< 𝑟 < 𝑟

2
< ∞, 𝑞

1
< 𝑞 < 𝑞

2
< ∞,

1

𝑞

=

𝜃

𝑞
1

+

1 − 𝜃

𝑞
2

,

1

𝑟

=

𝜃

𝑟
1

+

1 − 𝜃

𝑟
2

.

(120)

Then by the Marcinkiewicz interpolation, we easily obtain

(∫

∞

0





𝐾
𝛼,0
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)
. (121)

Similarly we can show that, for any 𝑛/2𝛼-admissible triplet
(𝑝, 𝑞, 𝑟),

(∫

∞

0





Ω
𝛼,0
(𝑡) ∗ 𝑓






𝑞

𝐿
𝑝
(R𝑛)
𝑑𝑡)

1/𝑞

⪯




𝑓



𝐻
𝑟
(R𝑛)
. (122)

Proof of Theorem 3. By checking the above proof, we only
need to show the following proposition.

Proposition 12. There is a 𝛿
𝑝
> 0 for which if𝛽 > (𝑛−1)|1/𝑝−

1/2|, then




𝐾
1,∞
∗ 𝑓



𝐿
𝑝
(R𝑛)

⪯ (1 + 𝑡)
𝛿𝑝
𝑒
−𝑡



𝑓



�̇�
𝑝

𝛽
(R𝑛)
,





Ω
1,∞
∗ 𝑓



𝐿
𝑝
(R𝑛)

⪯ (1 + 𝑡)
𝛿𝑝
𝑒
−𝑡



𝑓



�̇�
𝑝

𝛽−1
(R𝑛)

(123)

hold for all 1 ≤ 𝑝 ≤ ∞.

Proof. Let

𝑊
𝛽
(𝑡) 𝑓 (𝑥) = 𝑒

−𝑡

∫

R𝑛

𝑒
𝑖𝑡√|𝜉|

2
−1
𝜙
3
(𝜉)

|𝜉|
𝛽

̂
𝑓 (𝜉) 𝑒

𝑖⟨𝑥,𝜉⟩

𝑑𝜉, (124)

where 𝜙
3
is defined in Section 2.3 (corresponding to 𝛼 = 1).

We will prove, for any 𝛽 > (𝑛 − 1)/2, that





𝑊
𝛽
(𝑡)𝑓(𝑥)





𝐿
1
⪯ 𝑒

−𝑡

(1 + 𝑡)
𝜆



𝑓



𝐿
1 , (125)

with some 𝜆 > 0. Then by repeating the complex inter-
polation argument in the proof of Proposition 11, with (81)
replaced by (125), we finish the proof of the proposition.

Next we turn to the proof of (125). Denote the kernel of
𝑊
𝛽
(𝑡) by

F
𝛽
(𝑥, 𝑡) = 𝑒

−𝑡

∫

R𝑛

𝑒
𝑖𝑡√|𝜉|

2
−1
𝜙
3
(𝜉)





𝜉





𝛽
𝑒
𝑖⟨𝑥,𝜉⟩

𝑑𝜉. (126)

By Young’s inequality, it suffices to show that if 𝛽 > (𝑛 − 1)/2,
then






F
𝛽
(𝑥, 𝑡)





𝐿
1
⪯ (1 + 𝑡)

(𝑛+1)/2

𝑒
−𝑡

. (127)

Let Φ be the cutoff function defined in Section 2.3. Then we
have

F
𝛽
(𝑥, 𝑡) = 𝑒

−𝑡

∞

∑

𝑘=6

∫

R𝑛

𝑒
𝑖𝑡√|𝜉|

2
−1

|𝜉|
𝛽
Φ(2

−𝑘 



𝜉




) 𝜙
3
(




𝜉




) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

= 𝑒
−𝑡

∞

∑

𝑘=6

𝑌
𝑘
(𝑥) ,

(128)

where, by [49, Ch. 4],

𝑌
𝑘
(𝑥) = ∫

R𝑛

𝑒
𝑖𝑡√|𝜉|

2
−1





𝜉





𝛽
Φ(2

−𝑘 



𝜉




) 𝜙
3
(




𝜉




) 𝑒
𝑖⟨𝜉,𝑥⟩

𝑑𝜉

≃ ∫

∞

0

𝑒
𝑖𝑡√𝑟
2
−1

𝑟
𝛽

𝜙
3
(𝑟)Φ (2

−𝑘

𝑟)𝑉
(𝑛−2)/2

(𝑟 |𝑥|) 𝑟
𝑛−1

𝑑𝑟.

(129)
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In the last integral,

𝑉] (𝑠) =
𝐽] (𝑠)

𝑠
] , (130)

and 𝐽](𝑠) is the Bessel function of order ].
So, by the Minkowski inequality,






F
𝛽
(⋅, 𝑡)





𝐿
1
≤ 𝑒

−𝑡

∞

∑

𝑘=6





𝑌
𝑘




𝐿
1 . (131)

First, we assume 𝑡 ≥ 1. Changing variables, we have

𝑌
𝑘
(𝑥)

=

|𝑥|
(2−𝑛)/2

2
𝑘(𝛽−𝑛/2−1)

∫

∞

0

𝑒
𝑖𝑡√2
2𝑘
𝑟
2
−1

Φ (𝑟) 𝜙
3
(2
𝑘

𝑟) 𝐽
(𝑛−2)/2

× (2
𝑘

𝑟 |𝑥|) 𝑟
𝑛/2−𝛽−1/2

𝑑𝑟.

(132)

Using the Taylor expansion with integral remainder, for
𝑟 ∈ supp(𝜙

3
), we write

√𝑟
2
− 1 = 𝑟 + 𝑔 (𝑟) , (133)

where

𝑔(

1

𝑟

) = −

1

2𝑟

∫

1

0

(1 −

𝑠

𝑟
2
)

−1/2

𝑑𝑠. (134)

This gives

𝑒
𝑖𝑡√2
2𝑘
𝑟
2
−1

= 𝑒
𝑖𝑡2
𝑘
𝑟

𝑒
𝑖𝑡𝑔(1/2

𝑘
𝑟)

, (135)

for 𝑘 ≥ 6 and 1/2 ≤ 𝑟 ≤ 2. By the definition of 𝑔 it is easy to
see that if we denote ℎ(𝑟) = 𝑔(1/2𝑘𝑟), then






ℎ
(𝑚)

(𝑟)






⪯ 2

−𝑘

. (136)

Also, for any integer𝑚 ≥ 0,










𝑑
𝑚

𝑑𝑟
𝑚
𝑒
𝑖𝑡𝑔(2
𝑘
𝑟)










⪯ 1 if 𝑡2−𝑘 ≤ 1,










𝑑
𝑚

𝑑𝑟
𝑚
𝑒
𝑖𝑡𝑔(2
𝑘
𝑟)










⪯ (𝑡2
−𝑘

)

𝑚

if 𝑡2−𝑘 > 1
(137)

uniformly for 𝑘 ≥ 10 and 1/2 ≤ 𝑟 ≤ 2.
When

2
𝑘

|𝑥| ≤ 2
4

, (138)

using the known estimate

𝐽
(𝑛−2)/2

(𝑟) = 𝑂 (𝑟
(𝑛−2)/2

) , as 𝑟 → 0, (139)

it is easy to see





𝑌
𝑘
(𝑥)




⪯ |𝑥|

(2−𝑛)/2

2
−𝑘(𝛽−𝑛/2−1)

(2
𝑘

|𝑥|)

(𝑛−2)/2

= 2
−𝑘(𝛽−𝑛)

.

(140)

Thus,

𝑒
−𝑡

∞

∑

𝑘=6






𝑌
𝑘
𝜒
{|𝑥|≤2

−𝑘+4
}





𝐿
1
⪯ 𝑒

−𝑡

∞

∑

𝑘=6

2
−𝑘(𝛽−𝑛)

∫

|𝑥|≤2
−𝑘+4

𝑑𝑥 ⪯ 𝑒
−𝑡

.

(141)

When

2
𝑘

|𝑥| > 2
4

, (142)

we use the asymptotic expansion of 𝐽
(𝑛−2)/2

(𝑟): for any integer
𝑁 ≥ 0,

𝐽] (𝑟) ≃ 𝑒
±𝑖𝑟

(

𝑁

∑

𝑗=0

𝑐
𝑗

𝑟
𝑗+1/2

) + 𝑂(𝑟
−(𝑁+1)−1/2

) , (143)

where 𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑁
are constants.

In this case,

𝑌
𝑘
(𝑥)

≃

𝑁

∑

𝑗=0

𝑐
𝑗

|𝑥|
(1−𝑛)/2−𝑗

2
𝑘(𝛽−𝑛/2−1/2+𝑗)

× ∫

∞

0

𝑒
𝑖2
𝑘
𝑟(𝑡±|𝑥|)

𝑒
𝑖𝑡𝑔(2
𝑘
𝑟)

Φ (𝑟) 𝜙
3
(2
𝑘

𝑟) 𝑟
𝑛/2−𝛽−𝑗

𝑑𝑟

+ 𝑂 (|𝑥|
(−𝑛+1)/2−𝑁−1

2
−𝑘(𝛽−𝑛/2+1/2+𝑁)

)

=

𝑁

∑

𝑗=0

𝑐
𝑗
𝑌
𝑘,𝑗
(𝑥) + 𝑂 (|𝑥|

(−𝑛+1)/2−𝑁−1

2
−𝑘(𝛽−𝑛/2+1/2+𝑁)

) ,

(144)

where, without loss of generality, we denote

𝑌
𝑘,𝑗
(𝑥)

=

|𝑥|
(1−𝑛)/2−𝑗

2
𝑘(𝛽−𝑛/2−1/2+𝑗)

× ∫

∞

0

𝑒
𝑖2
𝑘
𝑟(𝑡−|𝑥|)

𝑒
𝑖𝑡𝑔(2
𝑘
𝑟)

Φ (𝑟) 𝜙
3
(2
𝑘

𝑟) 𝑟
𝑛/2−𝛽−𝑗

𝑑𝑟.

(145)

It is easy to see that, for a suitable integer𝑁,

𝑒
−𝑡

∞

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2+1/2+𝑁)

∫

|𝑥|≥2
−𝑘+4

|𝑥|
(−𝑛+1)/2−𝑁−1

𝑑𝑥 ⪯ 𝑒
−𝑡

.

(146)

Thus it remains to show that, for each 𝑗,

𝑒
−𝑡

∞

∑

𝑘=6






𝑌
𝑘,𝑗
𝜒
{|𝑥|>2

−𝑘+4
}





𝐿
1
⪯ 𝑡
(𝑛+1)/2

𝑒
−𝑡

. (147)

Since the estimates of all 𝑌
𝑘,𝑗

are similar, we will only show

𝑒
−𝑡

∞

∑

𝑘=6






𝑌
𝑘,0
𝜒
{|𝑥|>2

−𝑘+4
}





𝐿
1
⪯ 𝑡
(𝑛+1)/2

𝑒
−𝑡

. (148)
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Using integration by parts and noting 𝜙
3
(2
𝑘
𝑟) ≡ 1 if 𝑘 > 28

and 𝑟 ∈ supp(Φ), it is easy to check that one has









∫

∞

0

𝑒
𝑖2
𝑘
𝑟(𝑡−|𝑥|)

𝑒
𝑖𝑡𝑔(2
𝑘
𝑟)

Φ (𝑟)Ψ (2
𝑘

𝑟) 𝑟
𝑛/2−𝛽−𝑗

𝑑𝑟










⪯ min {1, 2−𝑚𝑘|𝑡 − |𝑥||−𝑚(2−𝑘𝑡)
𝑚

}

(149)

if 2−𝑘𝑡 > 1, for any positive integer𝑚, and









∫

∞

0

𝑒
𝑖2
𝑘
𝑟(𝑡±|𝑥|)

𝑒
𝑖𝑡𝑔(2
𝑘
𝑟)

Φ (𝑟) 𝜙
3
(2
𝑘

𝑟) 𝑟
𝑛/2−𝛽−𝑗

𝑑𝑡










⪯ min {1, 2−𝜇𝑘|𝑡 − |𝑥||−𝜇}
(150)

if 2−𝑘𝑡 ≤ 1, for any positive integer 𝜇. Thus, we have the
following lemma.

Lemma 13. Let 2𝑘|𝑥| ≥ 10. For any𝑚 ≥ 0, one has





𝑌
𝑘,0
(𝑥)




⪯ |𝑥|

(1−𝑛)/2

2
−𝑘(𝛽−𝑛/2−1/2)

2
−𝑚𝑘

|𝑡 − |𝑥||
−𝑚 (151)

if 2−𝑘𝑡 ≤ 1.
Also, for any 𝜇 ≥ 0,





𝑌
𝑘,0
(𝑥)




⪯ |𝑥|

(1−𝑛)/2

2
−𝑘(𝛽−𝑛/2−1/2)

2
−𝜇𝑘

|𝑡 − |𝑥||
−𝜇

(2
−𝑘

𝑡)

𝜇

(152)

if 2−𝑘𝑡 > 1.

Now we continue the proof of the proposition. Write

∞

∑

𝑘=6






𝑌
𝑘,0
𝜒
{|𝑥|>2

−𝑘+4
}





𝐿
1
(R𝑛)

⪯

∞

∑

𝑘=6

∫

10/2
𝑘
<|𝑥|≤𝑡/2





𝑌
𝑘,0
(𝑥)




𝑑𝑥

+

∞

∑

𝑘=6

∫

|𝑥|>100𝑡





𝑌
𝑘,0
(𝑥)




𝑑𝑥

+

∞

∑

𝑘=6

∫

𝑡/2<|𝑥|≤100𝑡





𝑌
𝑘,0
(𝑥)




𝑑𝑥

= 𝐴
1
+ 𝐴

2
+ 𝐴

3
.

(153)

In𝐴
1
, noting𝛽−(𝑛−1)/2 > 0, we use the lemmawith 𝜇 = 1/2

and𝑚 = 1 :

𝐴
1
⪯

log 𝑡

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2+1/2)

∫

10/2
𝑘
<|𝑥|≤𝑡/2

|𝑥|
(−𝑛+1)/2

𝑑𝑥

+ 𝑡
−1

∞

∑

𝑘=log 𝑡+1
2
−𝑘(𝛽−𝑛/2+1/2)

∫

10/2
𝑘
<|𝑥|≤𝑡/2

|𝑥|
(−𝑛+1)/2

𝑑𝑥

⪯ 𝑡
(𝑛+1)/2

.

(154)

Similarly, in Lemma 13 we let 𝜇 = 𝑚 = 𝑛:

𝐴
2
⪯

log 𝑡

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2−1/2)

𝑡
𝑛

∫

100𝑡<|𝑥|

|𝑥|
(1−𝑛)/2−𝑛

2
−2𝑛𝑘

𝑑𝑥

+

∞

∑

𝑘=log 𝑡+1
2
−𝑘(𝛽−𝑛/2−1/2)

∫

100𝑡<|𝑥|

2
−𝑛𝑘

|𝑥|
(1−𝑛)/2−𝑛

𝑑𝑥

⪯ 𝑡
(𝑛+1)/2

.

(155)

Let

𝐸 = {𝑥 ∈ R
𝑛

:

𝑡

2

< |𝑥| ≤ 100𝑡} ,

𝐸
𝑘
= {𝑥 ∈ R

𝑛

: |𝑡 − |𝑥|| < 2
−𝑘

} .

(156)

Using Lemma 13, we write

𝐴
3
⪯

log 𝑡

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2−1/2)

× ∫

𝐸\𝐸𝑘

|𝑥|
(1−𝑛)/2

2
−𝜇𝑘

|𝑡 − |𝑥||
−𝜇

(2
−𝑘

𝑡)

𝜇

𝑑𝑥

+

∞

∑

𝑘=log 𝑡+1
2
−𝑘(𝛽−𝑛/2−1/2)

× ∫

𝐸\𝐸𝑘

|𝑥|
(1−𝑛)/2

2
−𝑚𝑘

|𝑡 − |𝑥||
−𝑚

𝑑𝑥

+

∞

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2−1/2)

∫

𝐸𝑘

|𝑥|
(1−𝑛)/2

𝑑𝑥

= 𝐵
1
+ 𝐵

2
+ 𝐵

3
.

(157)

Here, the last term

𝐵
3
=

∞

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2−1/2)

∫

𝐸𝑘

|𝑥|

1 − 𝑛

2

𝑑𝑥

⪯

∞

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2−1/2)

∫

𝑡+2
−𝑘

𝑡−2
−𝑘

𝑟
(1−𝑛)/2+𝑛−1

⪯ 𝑡
(𝑛+1)/2

.

(158)

Use the polar coordinate and Lemma 13 for 𝜇 = 1/2:

𝐵
1
=

log 𝑡

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2+1/2)

𝑡
1/2

∫

𝐸\𝐸𝑘

|𝑥|
(1−𝑛)/2

|𝑡 − |𝑥||
−1/2

𝑑𝑥

⪯

log 𝑡

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2+1/2)

𝑡
1/2

(∫

100𝑡

𝑡+2
−𝑘

𝑟
(𝑛−1)/2

(𝑟 − 𝑡)
−1/2

𝑑𝑟

+∫

𝑡−2
−𝑘

𝑡/2

𝑟
(𝑛−1)/2

(𝑟 − 𝑡)
−1/2

𝑑𝑟)
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⪯ 𝑡
𝑛/2

log 𝑡

∑

𝑘=6

2
−𝑘(𝛽−𝑛/2+1/2)

(∫

100𝑡

𝑡+2
−𝑘

(𝑟 − 𝑡)
−1/2

𝑑𝑟

+∫

𝑡−2
−𝑘

𝑡/2

(𝑟 − 𝑡)
−1/2

𝑑𝑟)

⪯ 𝑡
(𝑛+1)/2

.

(159)

Similarly, we can show

∞

∑

𝑘=log 𝑡+1
2
−𝑘(𝛽−𝑛/2−1/2)

∫

𝐸\𝐸𝑘

|𝑥|
(1−𝑛)/2

2
−𝑚𝑘

|𝑡 − |𝑥||
−𝑚

𝑑𝑥

⪯ 𝑡
(𝑛+1)/2

.

(160)

When 0 < 𝑡 ≤ 1, the proof is the same with only minor
modifications.

4. Almost Everywhere Convergence

Next we will study the pointwise convergence of the solution
𝑢(𝑡, 𝑥) of (5) to the initial data. We will prove the following.

Theorem 14. Let 𝑠 > 1/2. If 𝑓 belongs to the inhomogeneous
Sobolev space 𝐿2

𝑠
(R𝑛) and 𝑔 ∈ 𝐿

2

𝑠−𝛼
(R𝑛), then the solution

𝑢(𝑡, 𝑥) of (5) converges to 𝑓(𝑥) a.e. 𝑥 ∈ R𝑛 as 𝑡 → 0
+.

To prove this theorem, we need Lemma 15 and
Proposition 16.

Lemma 15 (see [50]). Let 𝑛 ≥ 2 and 1 < 𝑑 < 𝑛. Then

∫

R𝑛










∫

𝑆
𝑛−1

𝑔 (𝑢) 𝑒
𝑖𝑥⋅𝑢

𝑑𝜎 (𝑢)










2

𝑑𝑥

|𝑥|
𝑑
⪯ ∫

𝑆
𝑛−1





𝑔 (𝑢)






2

𝑑𝜎 (𝑢) .

(161)

Proposition 16. Let 𝑛 ≥ 2 and let𝑚(𝑡, |𝜉|) be defined onR+ ×
R𝑛 and satisfy






(1 +





𝜉




)
𝛾

𝑚(𝑡,




𝜉




)






⪯ 1. (162)

Denote the maximal function

𝑚
∗

𝑓 (𝑥) = sup
𝑡>0





𝑚 (𝑡, 𝐷) 𝑓 (𝑥)





. (163)

Then if 𝛾 > 0, we have





𝑚
∗

𝑓(𝑥)



𝐿
2
(|𝑥|
−𝑑
𝑑𝑥)
⪯




𝑓



�̇�
2

𝑙

,

𝑑 − 2𝛾

2

< 𝑙 <

𝑑

2

, 𝑑 > 1.

(164)

If 𝛾 ≤ 0, then





𝑚
∗

𝑓(𝑥)



𝐿
2
(|𝑥|
−𝑑
𝑑𝑥)
⪯




𝑓



𝐿
2

𝑙

, 𝑙 > 𝑑 − 𝛾 −

1

2

, 𝑑 > 1. (165)

Proof. Making 𝑡 into a function of 𝑥, we only have to bound

𝑚(𝑡 (𝑥) , 𝐷) 𝑓 (𝑥) = ∫

R𝑛
𝑒
𝑖⟨𝑥,𝜉⟩

𝑚(𝑡 (𝑥) ,




𝜉




)
̂
𝑓 (𝜉) 𝑑𝜉, (166)

where 𝑡(𝑥) : R𝑛 → R+ is any measurable function.
By the polar decomposition,




𝑚 (𝑡 (𝑥) , 𝐷) 𝑓 (𝑥)






=










∫

∞

0

𝑟
𝑛−1

𝑚(𝑡 (𝑥) , 𝑟) ∫

𝑆
𝑛−1

̂
𝑓 (𝑟𝜉



) 𝑒
𝑖⟨𝑟𝑥,𝜉


⟩

𝑑𝜎 (𝜉


) 𝑑𝑟










⪯ ∫

∞

0

𝑟
𝑛−1

(1 + 𝑟)
−𝛾










∫

𝑆
𝑛−1

̂
𝑓 (𝑟𝜉



) 𝑒
𝑖⟨𝑟𝑥,𝜉


⟩

𝑑𝜎 (𝜉


)










𝑑𝑟.

(167)

By Minkowski’s inequality, change of variables, and
Lemma 15, we have




𝑚 (𝑡 (𝑥) , 𝐷) 𝑓 (𝑥)




𝐿
𝑝
(|𝑥|
−𝑑
𝑑𝑥)

⪯ ∫

∞

0

𝑟
𝑛−1

(1 + 𝑟)
−𝛾

×










∫

𝑆
𝑛−1

̂
𝑓 (𝑟𝜉



) 𝑒
𝑖⟨𝑟𝑥,𝜉


⟩

𝑑𝜎 (𝜉


)








𝐿
2
(𝑑𝑥/|𝑥|

𝑑
)

𝑑𝑟

= ∫

∞

0

𝑟
𝑛/2+𝑑/2−1

(1 + 𝑟)
−𝛾

×










∫

𝑆
𝑛−1

̂
𝑓 (𝑟𝜉



) 𝑒
𝑖⟨𝑥,𝜉

⟩

𝑑𝜎 (𝜉


)








𝐿
2
(𝑑𝑥/|𝑥|

𝑑
)

𝑑𝑟

⪯ ∫

∞

0

𝑟
𝑛/2+𝑑/2−1

(1 + 𝑟)
−𝛾

(∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


))

1/2

𝑑𝑟

= (∫

2

0

+∫

∞

2

) 𝑟
𝑛/2+𝑑/2−1

(1 + 𝑟)
−𝛾

× (∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


))

1/2

𝑑𝑟

= 𝐿
1
+ 𝐿

2
.

(168)

When 𝛾 > 0, we have

𝐿
1
⪯ ∫

2

0

𝑟
𝑛/2+𝑑/2−1

(∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


))

1/2

𝑑𝑟

⪯ (∫

2

0

𝑟
𝑑−1−2𝑙

𝑑𝑟)

1/2

× (∫

2

0

𝑟
2𝑙

𝑟
𝑛−1

∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


) 𝑑𝑟)

1/2

⪯ (∫

2

0

𝑟
𝑑−1−2𝑙

𝑑𝑟)

1/2

(∫

|𝜉|≤2





𝜉





2𝑙




̂
𝑓 (𝜉)







2

𝑑𝜉)

1/2

⪯




𝑓



�̇�
2

𝑙
(R𝑛)
.

(169)
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Here we have to let

𝑑 − 1 − 2𝑙 < −1. (170)

On the other hand,

𝐿
2
⪯ ∫

∞

2

𝑟
𝑛/2+𝑑/2−1−𝛾

(∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


))

1/2

𝑑𝑟

⪯ (∫

∞

2

𝑟
𝑑−1−2𝑙−2𝛾

𝑑𝑟)

1/2

× (∫

∞

2

𝑟
2𝑙

𝑟
𝑛−1

∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


) 𝑑𝑟)

1/2

⪯ (∫

∞

2

𝑟
𝑑−1−2𝑙−2𝛾

𝑑𝑟)

1/2

(∫

|𝜉|≥2





𝜉





2𝑙




̂
𝑓 (𝜉)







2

𝑑𝜉)

1/2

⪯




𝑓



�̇�
2

𝑙
(R𝑛)
.

(171)

Obviously we have to let

𝑑 − 1 − 2𝑙 − 2𝛾 > −1, (172)

which, together with (170), implies

𝑑 − 2𝛼

2

< 𝑙 <

𝑑

2

. (173)

If 𝛾 ≤ 0, then

𝐿
1
⪯ (∫

2

0

𝑟
𝑑−1

𝑑𝑟)

1/2

× (∫

2

0

𝑟
𝑛−1

∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


) 𝑑𝑟)

1/2

⪯




𝑓



𝐿
2 ,

𝐿
2
⪯ (∫

∞

2

𝑟
−𝑑

𝑑𝑟)

1/2

× (∫

∞

2

𝑟
2𝑑−1−2𝛾

𝑟
𝑛−1

∫

𝑆
𝑛−1







̂
𝑓 (𝑟𝜉



)







2

𝑑𝜎 (𝜉


) 𝑑𝑟)

1/2

⪯




𝑓



𝐿
2

𝑑−𝛾−1/2

.

(174)

Proposition 16 is proved.

Proof of Theorem 14. Denote

𝑚
1
(𝑡,




𝜉




) = 𝑒

−𝑡 cosh (𝑡√1 − 

𝜉





2𝛼

) ,

𝑚
2
(𝑡,




𝜉




) = 𝑒

−𝑡

sinh(𝑡√1 − 

𝜉





2𝛼

)

√1 −




𝜉





2𝛼

.

(175)

It is not hard to verify that




𝑚
1
(𝑡,




𝜉




)




⪯ 1,





𝑚
2
(𝑡,




𝜉




)




⪯ (1 +





𝜉




)
−𝛼

,

∀ (𝑡, 𝜉) ∈ R
+

×R
𝑛

.

(176)

Since

𝑢 (𝑡, 𝑥) = 𝑚
1
(𝑡, 𝐷) 𝑓 (𝑥) + 𝑚

2
(𝑡, 𝐷) 𝑓 (𝑥) + 𝑚

2
(𝑡, 𝐷) 𝑔 (𝑥)

= 𝑤 (𝑡, 𝐷) 𝑓 (𝑥) + 𝑚
2
(𝑡, 𝐷) 𝑔 (𝑥) ,

(177)

Theorem 14 will be proved if we can show, as 𝑡 → 0
+,

𝑚
2
(𝑡, 𝐷) 𝑔 (𝑥) → 0, a.e. 𝑥 ∈ R𝑛 (178)

for 𝑔 ∈ 𝐿2
𝑠−𝛼
(R𝑛) and

𝑤 (𝑡, 𝐷) 𝑓 (𝑥) → 𝑓 (𝑥) , a.e. 𝑥 ∈ R𝑛 (179)

for 𝑓 ∈ 𝐿
2

𝑠
(R𝑛). The proof of the two limits is similar and

we will only show the second convergence. Note that the
above convergence always holds for Schwarz function 𝑓. So a
further boundedness on the maximal function

𝑤
∗

𝑓 (𝑥) = sup
𝑡>0





𝑤 (𝑡, 𝐷) 𝑓 (𝑥)




 (180)

that





𝑤
∗

𝑓(𝑥)



𝐿
2
(𝑑𝑥/|𝑥|

𝑑
)
⪯




𝑓



𝐿
2
𝑠
(R𝑛)
, 𝑠 >

1

2

, (181)

is enough to imply Theorem 14.
Next we will prove (181). By (176) and Proposition 16,





𝑚
∗

1
𝑓(𝑥)




𝐿
2
(𝑑𝑥/|𝑥|

𝑑
)
⪯




𝑓



𝐿
2

𝑙
(R𝑛)
, ∀𝑙 > 𝑑 −

1

2

. (182)

Fix 𝑠 > 1/2. Taking 1 < 𝑑 < 𝑠 + 1/2 and 𝑙 close to 𝑑 − 1/2, we
have 𝑙 < 𝑠 and thus





𝑚
∗

1
𝑓(𝑥)




𝐿
2
(𝑑𝑥/|𝑥|

𝑑
)
⪯




𝑓



𝐿
2
𝑠
(R𝑛)
. (183)

Applying Proposition 16 with 𝛾 = 𝛼 and 1 < 𝑑 < 1 + 2𝛼, we
have





𝑚
∗

2
𝑓(𝑥)




𝐿
2
(𝑑𝑥/|𝑥|

𝑑
)
⪯




𝑓



�̇�
2

1/2
(R𝑛)

≤




𝑓



𝐿
2
𝑠
(R𝑛)
. (184)

Since

𝑤
∗

𝑓 (𝑥) ≤ 𝑚
∗

1
𝑓 (𝑥) + 𝑚

∗

2
𝑓 (𝑥) , (185)

we proved (181) when 𝑛 ≥ 2 (note that Proposition 16 was
proved only when 𝑛 ≥ 2).

For 𝑛 = 1, instead of (181), we will show





𝑤
∗

𝑓(𝑥)



𝐿
2
([−𝑁,𝑁])

⪯ 𝑁
1/2



𝑓



𝐿
2
𝑠
(R)
, 𝑠 >

1

2

, (186)
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which is also enough to obtain the pointwise convergence.
Taking ℎ(𝑥) ∈ 𝐿2([−𝑁,𝑁]), we have

∫

𝑁

−𝑁

𝑤 (𝑡 (𝑥) , 𝐷) 𝑓 (𝑥) ℎ (𝑥) 𝑑𝑥

= ∫

𝑁

−𝑁

∫

𝑅

𝑤 (𝑡 (𝑥) , 𝜉)
̂
𝑓 (𝜉) 𝑒

𝑖⟨𝑥,𝜉⟩

𝑑𝜉ℎ (𝑥) 𝑑𝑥

= ∫

R

̂
𝑓 (𝜉) ∫

𝑁

−𝑁

𝑤 (𝑡 (𝑥) , 𝜉) 𝑒
𝑖⟨𝑥,𝜉⟩

ℎ (𝑥) 𝑑𝑥 𝑑𝜉

⪯ (∫

R







̂
𝑓 (𝜉)







2

(1 +




𝜉





2

)

𝑠

𝑑𝜉)

1/2

×(∫

R








∫

𝑁

−𝑁
𝑤 (𝑡 (𝑥) , 𝜉) 𝑒

𝑖⟨𝑥,𝜉⟩
ℎ (𝑥) 𝑑𝑥








2

(1 +




𝜉





2

)

𝑠
𝑑𝜉)

1/2

.

(187)

Noting that

𝑤 (𝑡 (𝑥) , 𝜉) = 𝑚
1
(𝑡 (𝑥) , 𝜉) + 𝑚

2
(𝑡 (𝑥) , 𝜉) ⪯ 1, ∀ (𝑥, 𝜉) ,

(188)

we have










∫

𝑁

−𝑁

𝑤(𝑡(𝑥), 𝜉)𝑒
𝑖⟨𝑥,𝜉⟩

ℎ(𝑥)𝑑𝑥











2

⪯ 𝑁‖ℎ‖
2

𝐿
2
([−𝑁,𝑁])

. (189)

Therefore

∫

𝑁

−𝑁

𝑤 (𝑡 (𝑥) , 𝐷) 𝑓 (𝑥) ℎ (𝑥) 𝑑𝑥 ⪯ 𝑁
1/2



𝑓



𝐿
2
𝑠

⋅ ‖ℎ‖
𝐿
2
([−𝑁,𝑁])

(190)

and by duality





𝑤(𝑡(𝑥), 𝐷)𝑓(𝑥)




𝐿
2
([−𝑁,𝑁])

⪯ 𝑁
1/2



𝑓



𝐿
2
𝑠
(R)
, 𝑠 >

1

2

, (191)

from which (186) follows.

Appendix

We study the Cauchy problem

𝑢
𝑡𝑡
(𝑡, 𝑥) + 2𝑏𝑢

𝑡
(𝑡, 𝑥) + (−Δ)

𝛼

𝑢 (𝑡, 𝑥) = 0,

(𝑡, 𝑥) ∈ [0,∞) ×R
𝑛

,

𝑢 (0, 𝑥) = 𝑓 (𝑥) , 𝑢
𝑡
(0, 𝑥) = 𝑔 (𝑥) .

(A.1)

We claim that the solution, in the Fourier transform side, is
given by

�̂� (𝑡, 𝜉) = 𝑒
−𝑏𝑡 cosh (𝑡√𝑏2 − 


𝜉





2𝛼

)
̂
𝑓 (𝜉)

+ 𝑒
−𝑏𝑡

sinh(𝑡√𝑏2 − 

𝜉





2𝛼

)

√𝑏
2
−




𝜉





2𝛼

(𝑏
̂
𝑓 (𝜉) + 𝑔 (𝜉)) .

(A.2)

To verify this fact, we write the solution as

𝑢 (𝑡, 𝑥) = Λ (𝑡, 𝐿) 𝑓 (𝑥) + Γ (𝑡, 𝐿) 𝑔 (𝑥) , (A.3)

where

Γ (𝑡, 𝐿) = 𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

,

Λ (𝑡, 𝐿) = 𝑏𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

+ 𝑒
−𝑏𝑡 cosh (𝑡√𝐿) ,

𝐿 = 𝑏
2

− (−Δ)
𝛼

.

(A.4)

Take derivative,

𝑢
𝑡
= −(𝑏

2

𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

− 𝑏𝑒
−𝑏𝑡 cosh (𝑡√𝐿))

× 𝑓 − 𝑏𝑒
−𝑏𝑡 cosh (𝑡√𝐿)𝑓 + 𝑒−𝑏𝑡√𝐿 sinh (𝑡√𝐿)𝑓

− 𝑏𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

𝑔 + 𝑒
−𝑏𝑡 cosh (𝑡√𝐿) 𝑔

= −𝑏
2

𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

𝑓 + 𝑒
−𝑏𝑡 𝑏

2
− (−Δ)

𝛼

√𝐿

sinh (𝑡√𝐿)𝑓

+ 𝑒
−𝑏𝑡 cosh (𝑡√𝐿) 𝑔 − 𝑏𝑒−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

𝑔.

(A.5)

Thus

𝑢
𝑡
= 𝑒

−𝑏𝑡−(−Δ)
𝛼

√𝐿

sinh (𝑡√𝐿)𝑓 + 𝑒−𝑏𝑡 cosh (𝑡√𝐿) 𝑔

− 𝑏𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

𝑔,

𝑢
𝑡𝑡
= 𝑏𝑒

−𝑏𝑡 (−Δ)
𝛼

√𝐿

sinh (𝑡√𝐿)𝑓 − 𝑏𝑒−𝑏𝑡 cosh (𝑡√𝐿) 𝑔

+ 𝑏
2

𝑒
−𝑏𝑡

sinh (𝑡√𝐿)
√𝐿

𝑔 − 𝑒
−𝑏𝑡

(−Δ)
𝛼 cosh (𝑡√𝐿)𝑓

+ 𝑒
−𝑏𝑡
√𝐿 sinh (𝑡√𝐿) 𝑔 − 𝑏𝑒−𝑏𝑡 cosh (𝑡√𝐿) 𝑔.

(A.6)

Therefore,

2𝑏𝑒
𝑏𝑡

𝑢
𝑡
= 2𝑏

−(−Δ)
𝛼

√𝐿

sinh (𝑡√𝐿)𝑓 + 2𝑏 cosh (𝑡√𝐿) 𝑔

− 2𝑏
2
sinh (𝑡√𝐿)

√𝐿

𝑔,
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𝑒
𝑏𝑡

𝑢
𝑡𝑡
= 𝑏

(−Δ)
𝛼

√𝐿

sinh (𝑡√𝐿)𝑓 − 2𝑏 cosh (𝑡√𝐿) 𝑔

+ 𝑏
2
sinh (𝑡√𝐿)

√𝐿

𝑔 − (Δ)
𝛼 cosh (𝑡√𝐿)𝑓

+ √𝐿 sinh (𝑡√𝐿) 𝑔.
(A.7)

Thus,

𝑒
𝑏𝑡

𝑢
𝑡𝑡
+ 2𝑏𝑒

𝑏𝑡

𝑢
𝑡

=

−(−Δ)
𝛼

√𝐿

𝑏 sinh (𝑡√𝐿)𝑓 − 𝑏2
sinh (𝑡√𝐿)

√𝐿

𝑔

− (−Δ)
𝛼 cosh (𝑡√𝐿)𝑓 + 𝑏

2
− (−Δ)

𝛼

√𝐿

sinh (𝑡√𝐿) 𝑔

=

−(−Δ)
𝛼

√𝐿

𝑏 sinh (𝑡√𝐿)𝑓 − (−Δ)𝛼 cosh (𝑡√𝐿)𝑓

−

(−Δ)
𝛼

√𝐿

sinh (𝑡√𝐿) 𝑔

= −(−Δ)
𝛼

{cosh (𝑡√𝐿)𝑓 +
sinh (𝑡√𝐿)

√𝐿

(𝑏𝑓 + 𝑔)} .

(A.8)

Thus,

𝑢
𝑡𝑡
+ 2𝑏𝑢

𝑡
= −(−Δ)

𝛼

(𝑢)

= −(−Δ)
𝛼

(

𝑏 sinh (𝑡√𝐿)
√𝐿

+ cosh (𝑡√𝐿))𝑓

− (−Δ)
𝛼
sinh (𝑡√𝐿)

√𝐿

𝑔.

(A.9)

This shows the claim.
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