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We obtain space-time estimates on the solution u(t, x) to the Cauchy problem of damped fractional wave equation. We mainly
focus on the linear equation. The almost everywhere convergence of the solution to linear equationsast — 07 is also studied, with

the initial data satisfying certain regularity conditions.

1. Introduction

Let (t,x) € [0,00) X R", &« > 0, a,b € C, and let A be the
Laplace operator. We consider the following Cauchy problem:

auy, (t) (x) + 2bu, (£, x) + (-A) u (t,x) = 0, 1)
with initial conditions
u(0,x) = f(x),

Here, as usual, the fractional Laplacian (—A)" is defined
through the Fourier transform:

CAF @) = [ F &) 3)

for all test functions f. The partial differential equation in (1)
is significantly interesting in mathematics, physics, biology,
and many scientific fields. It is the wave equation when a =
1,b = 0,anda = 1 and it is the half wave equation when
a =0,2b = i,anda = 1/2. As known, the wave equation is
one of the most fundamental equations in physics. Another
fundamental equation in physics is the Schrodinger equation
which can be deduced from (1) by letting a = 0, 2b = i,
and « = 1. The Schrédinger equation plays a remarkable role
in the study of quantum mechanics and many other fields in
physics. Also, (1) is the heat equation whena = 0, b = 1/2,
anda = 1.

As we all know, wave equation, Schrédinger equation,
heat equation, and Laplace equations are most important

u, (0,x) = g (x). (2)

and fundamental types of partial differential equations. The
researches on these equations and their related topics are
well-mature and very rich and they are still quite active and
robust research fields in modern mathematics. The reader is
readily to find hundreds and thousands of interesting papers
by searching the Google Scholar or checking the MathSciNet
in AMS. Here we list only a few of them that are related to this
research paper [1-23].

With an extra damping term 2bu,(t,x) in the wave
equation, one obtains the damped wave equation

u,, (t, x) +2bu, (t,x) — Au(t,x) =0, b>0. (4)
We observe that there are also a lot of research articles in
the literature addressing the above damped wave equation.
Among numerous research papers we refer to [24-35] and
the references therein. From the reference papers, we find
that the damped wave equation (4) is well studied in many
interesting topics such as the local and global well-posedness
of some linear, semilinear, and nonlinear Cauchy problems
and asymptotic and regularity estimates of the solution. We
observe that the space frames of these studies focus on the
Lebesgue spaces and the Lebesgue Sobolev spaces.

These observations motivate us to consider the Cauchy
problem of a more general fractional damped wave equation:

Uy, (%) + 2bu, (£, x) + (=A)"u (¢, x) = 0,

u(0,x) = f (x),

(5)
u, (0,x) = g(x),



where a,b > 0 are fixed constants. According to our best
knowledge, the fractional damped wave equation was not
studied in the literature, except the wave case « = 1. So our
plan is to first study the linear equation (5) and to prove some
LP — L7 estimates. In our later works, we will use those
estimates to study the well-posedness of certain nonlinear
equations. We can easily check that the solution of (5) is
formally given by

w, (f,9) (£ x)

tsinh (t\/z) (6)

= <|e_bt cosh (t\/Z)f +e? T (bf +g)} ,

where L is the Fourier multiplier with symbol b? — [E]** (see
Appendix). Thus our interest will focus on the operators

T,,(t) = e " cosh (t\/f) ,

- 7)
e Sinh (t\/f)
VL
Using dilation, we will restrict ourselves to the case b = 1

so the theorems are all stated for u(f,g) = u,(f,g) (see
Remark 6). We now denote

S(X,b (t) =€

_,sinh (t 1- (—A)“)

V= A
T, (t) = Ty, (t) = ¢ cosh (t\/l - (—A)“) .

These two operators are both convolution. We denote their
kernels by Q,(t) and K (t). Thus, we may write

T, f=Ka®)*f,  Su@®) f=Qu @) f (9

To state our main results, we need the following definition of
admissible triplet.

Se () =8, () =e

Definition 1. A triplet (p, g, ) is called o-admissible if
1 1 1
—sa(———), (10)
q rp

where 0 <7 < p < +00,r < g <o00,and o > 0.

The following theorems are part of the main results in the
paper.

Theorem 2. Let« > 0 and let (p, q, r) be n/2a-admissible and
1 < p < +00. Then for any > na|l/p — 1/2|, one has

([ 10+ fnt) " <15

arwey T "f"L*;(R"y

([ 1000+ lte) 15

marwyy T "f"L‘;j_a(R")'
(11)

Here, D;([R”) denotes the homogeneous Sobolev L space with
ordery, and H" denotes the real Hardy space.
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Theorem 3. Leta = 1, (p, g, 1) ben/2-admissible and 1 < p <
+00. Then the damped wave operators satisfy

([ 10+ ) <11

R T "f"L’,;(R”)’

(7100 fliet) <11

R T "f"L‘;fl([R”)’
(12)

forany 5> (n—1)|1/p—1/2].

By the above theorems, we easily obtain the following
space-time estimates on the solution u(z, x).

Theorem 4. Let o > 0 and let (p, g, ) be n/2a-admissible and
1 < p < +00. For the solution u(t, x) of (5), one has

00 q 1/q
(I It 1 et P 1

+ "g“HT([R”) + "9”L;ﬂ(R")-
(13)

Theorem 5. Leta = 1, (p, q, 1) ben/2-admissibleand 1 < p <
+00. The solution u(t, x) of the damped wave equation satisfies

0o g 1/q
<J0 "u”LP([R")dt> < ”f

+ ”g"HT([R") + ||9||L;71(R")>

arwey T ”f"L;(R") + ”f"L‘;H

(14)
forany B> (n—-1)|1/p - 1/2|.

Remark 6. For (5) with general b > 0, it is not hard to see that

Top () f () =T,y () £, (b)),

i y (15)
Sup (B) F (%) =8, (5) (E fb> (%),

where s = bt and f,(x) = f(b_l/“x). Therefore,
w, (f,9) (tx)=u (fb, %gb) (bt,b"*x) (16)

and by applying Theorem 4, we have

0 q 1/‘1
(], Ikt

< p D (|, 47 g

W O

01 (Ul oy + )

For o = 1, we have a similar result using Theorem 5.

In the statement of these theorems, the notation A <
B means that there is a constant C > 0 independent of
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all essential variables such that A < CB. Also, throughout
this paper, we use the notation A = B to mean that there
exist positive constants C and ¢, independent of all essential
variables such that

cB< A<CB. (18)

It is easy to see that, by the linearity, we only need to prove
Theorems 2 and 3. To this end, we will carefully study the
kernels

Ka(t)(x)=e_tj cosh (¢ 1—|E|2“)e"<"’5)dg,

(
(t 1_|£|20¢) . (19)
Y dE.

Using the linearization

sinh

.0 -¢" |

S
1+ =1+ > (20)

for small |£|, we have

20
20 |E|
cosh(t\/l— ):cosh t{1-—"—
(21)
S OIEP/2) | ot /2)
B 2
Thus for small |&],
e cosh <t\/1 - |E|2“>
N y (22)
3 et -8 /2) 4 o=t —t(-IE*/2) L 2

2

This indicates that, for || near zero, T, behaves like the
fractional heat operator (see [11, 29, 30, 36, 37]).
For large [&|, we similarly have

cosh (t\/l - |E|Z“) = cosh <it|£|a V(1- |f|_2a)>

eitl«fl“ _ e—itlil“
2

(23)

This indicates that as |£| near oo, €T, behaves like the wave
operator if « = 1 and like the Schrédinger operator if & = 2;
see [12, 16, 38, 39].

In the same manner, the operator S, (¢) behaves the same
as the operator T,. Based on these facts, we will estimate
the kernels in their low frequencies, median frequencies, and
high frequencies, separately, by using different methods. We
will estimate the kernels in Section 2 and complete the proofs
of main theorems in Section 3. Finally, in Section 4, we will
study the almost everywhere convergence for the solution
u(t,x) ast — 0'. The similar convergence theorem for
Schrodinger operator e f(x) has been widely studied; see
(3, 40-44].

2. Estimates on Kernels

As we mentioned in the first section, we will estimate the
kernels K, (t) and Q,(t) based on their different frequencies.
So we will divide this section into several subsections.

2.1. Estimate for |&| near Zero. Let ¢, be a C*™ radial function
with support in {£ € R" : [£** < 1/2} and satisfy ¢, = 1
whenever |£]** < 1/3. In this section we are going to obtain
the decay estimates on the kernels

Ka,o(t)(x)=€7tj ¢, () cosh (t\/1 - |E|2"‘> ¢ gg,

sinh | t1 —

(
()
V1 - [g

With those decay estimates, we then are able to obtain two
H? bounds for the convolutions with the above two kernels.
Without loss of generality, we assume 0 < 2« < 1. This
assumption is not essential by tracking the following proofs.

Qo () (x) =™ jR 1 )

(24)

Proposition 7. Let K, , and Q,  be defined as above. For all
t > 0, one has

—-n—2a

Ko 1) 0] < (L4724 (1+ 1+ x]) ",
(25)

—n—2a

Q0 (1) (O] < L+ 821+ 1+ |x])
Proof. The estimates of two inequalities are the same, so we
will prove the first one only.

Q) If (1+6)*|x| < 1and 0 < ¢ < 1, then it is obvious
to see

Keo @] < [ Iy @< 1. (26)

(i) If(1+£)Y*|x| < 1and t > 1, then by scaling

g (t)( f1/2a )
_ rla gt J’ ¢ (®cosh < tm> JE0) g @)
=t J. ¢, ( e )cosh <W) ei(f’@df.

Since

¢ cosh <\/t2 - t|§|2“>

2a
<e’le NE=HE < exp ——lﬂ (28)
1++41- |£|2a/t

20
- 2
<l



we have

K 0 (27)| = [ [61 ()| g < 1.
29)

(iii) If (1 + £)7/*¥|x| > 1 and t > 1, then by (ii) we know
tn/Zale’O (t) (tl/thx)

=e! JW o (t_l/z‘xf) cosh < W) ei<E’x>dE. 0

Using the Leibniz rule, we have
o <¢2 (£717%%€) cosh <\/t2 - t|£|2“>>
= St (g (7)) % (cosh (Ve - ol ).
k=0

(31)
Observe that
. [0 g2
o () - g
e —t
(32)

For k > 1, using an induction argument we have

) L P
82_ <cosh( t —t|£|2 )) —F(t,f)jé( t2_t1|£|2“>j+ek,

(33)
where ¢, > 0, u/j?(f) < [&7%7 and
F (&) = cosh('\/t2 - t|£|2“> or sinh<'\/l‘2 - t|§|2“>.
(34)

For each fixed x € R”", there exists at least one variable x;
such that |x;| > |x|/n. By integration by parts »n times on the
variable ;, we obtain

tn/Z“Ka)O (t) (tl/Zocx)

St [ ot (0 ()t

k=0

x (cosh ( 2 - t|€|2“>) ¢ g
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- LS ya
Xi k=1j=1
SR Y G I
£y} ()

XN I GRUEE

j=1

ei(f,x)dg

. Y} (§) |
(W)Jﬂk

1—t n -1/2«a
e o (o ()

x cosh ( \t2 - t|£|2“) & g

ei(E»X) dE

(35)
The main terms needed to be estimated are
1 _ -1/2a tjwn (f) i(€,x
e tJRn ¢, (t 1/2 E)F(t,’g’) j j+6ke(£, Ve,
! (e - eigr)
(36)

with j = 1,2,...,n. The other terms can be treated easily by
further taking integration by parts.

We let @ be a C* radial function satisfying ®(§) = 1 if
€] < 1and @(&) = 0if |&] > 2. Let ¥(&) = 1 — ®(&). By the
partition of unity we write

AACE
<W>J+ek
1

O G LIS

i

1 -1/2a
e (R P

X

ei(E’x>df

AN
(Ve ey ™

e [ ()Y@

i

ei<f,x>d£

=1, + L.
(37)
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We note that ¢+ > 1, and the support of ¢, (CIRt3) together
with (28) implies

e 'F(t,§)

(38)

Therefore
1
|["

1

2w
|x|

I, < JW 2 g, (71299 @ (1] D) £ "

[
1§1<2/lx]

< x|

By integration by parts,

1|
2 |x|n+le
qIRIEE
iyn
<y ¢ (CE) B —— ) g
()
-t
+ |x|n+le
<| [ o D9 (Y F e
§ 'y} (§) g
< 2 t|§|2“>
:]1+]2-
(40)

Here, an easy computation gives

1 £ EOVEP
] < —j W (1] &)] 8 2o g
x| [£]>1/]x]

. . (41)
<mny——-—,——r.
{ |X|n+1 |x|n+2{x }

5
For J,, noting that
|0z, (% (1x1©)] < 1P (Ix1 &) (42)
and W/ (s) is supported in [1/2, 2], we have
L, < =% J P < — L (43)
xI" J1japisigi<2/ixd |27

(iv) If (1 + t)_l/Z“IxI > land 0 < t < 1, then a similar
argument, without scaling, shows that

1Ko () ()] < lxl% (44)

The proposition now follows from (i)-(iv). O

Proposition 8. Let f € H'(R"). Then for anyt > 0 and 0 <
r < p <409,

1Ko ®) # fligogry = A+ 7Y £l
”Qa,o(t) % f“HP(R“) <(1 +t)—(n/Zoc)(l/r—l/P)"f”HT(Rn)‘
Particularly, we have
|Kao(®)  fllioogny = (1 + t)_n/zm||f||pr(w)’

[00®) * fliogn < 1+ 07" £]

H'(R")"

Proof. We prove the proposition for the kernel K, , only, since
the proof for the other one is exactly the same. Let us first
consider the case p = +ocoand 0 < r < 1. Invoking an
interpolation argument [45, 46], we may assume that n(1/r —
1) is a positive integer. Thus the dual space of H' is the
homogeneous Lipschitz space A n1/r-1)(R™) (one can see the
definition in [46]), which is exactly the homogeneous Holder

space C"/""V(R™). By duality we have

IKuol®)* i % UK o5 = Mol o a
X

If t > 1, it is easy to check that

sup ”K(x,o(t)(x - ')"Cn(ur-n
xeR”

= sup “Ka,o(t)(tl/zax - ')”Cnu/r—n
xeR”

(48)
< e sup

xeR"

Jo 0 (PR P@

x cosh ( \t2 - t|E|2“) ei<5’x>df‘ ,

where P(§) is a homogeneous polynomial of degree n(1/r—1).
Thus, using the same argument as before we obtain

1Kao® * flleo <7\ fly- (49)



6
Ifo<t<l,
sup “sz,0 (t) (x - ) Cnl/r-1)
xeR”
< sup J ¢ () P(§) e cosh (t\ll - |£|2“> ei(E’x>d£|
xeR" | JR"
<1

(50)
This shows that, forall0 < r < 1,

Ka®) Sl <040l D

On the other hand, if we write

Koo (©) = ™', (6) cosh (t\/1 - |s|2“>, (52)

then by checking the proof of Proposition 7, we find

|ofm (t,6)] < 1&7™ (53)

for all multi-indices k. So by the Calderén-Torchinsky multi-
plier theorem [47], we also have, forall 0 < r < 1,

IKao® # flr = 1 £ e (54)

Now interpolating between (51) and (54), we finish the proof
forO0<r<1.
For the case 1 < r < +00, we use Young’s inequality to get

[Keo * O£ 115 = Kol oll 1
where 1/r + 1/q = 1/p + 1. By Proposition 7,

"Ka,() (t) ”U

(L.

<(1+ t)—(n/Za)(l/r—l/p).

m(t,§) =

o (55)

-n—20

q 1/q
dx)

—n/20c(1+(1+t) 1/20c| |)

(56)

O
2.2. Estimate for |&| Lying in the Mid-Interval. Let ¢, be a C*
radial function with support in {& € R™ : 1/4 < |E]** < 200}

and satisfy ¢, = 1 whenever 1/3 < ¢ |** < 100. We first will
obtain the decay estimate on the kernels

Ken ()= [ 6,0 cos (11167 )t

sinh (t\/l - |5|2“>
1- (g

QO =€ [ 4,8) 69 g

(57)

and then prove the mapping properties of the convolution
operators with the above kernels. As in Section 2.1, we assume
0 < 2 < 1 without loss of generality.
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Proposition 9. Forallt > 0 and N > 0, we have

n—2a

K (1) ()] < 1+ )N (14 @+ 0) 2% )x]) 7,

-n—2a

|Qm () ()] < (1 + f)fn/zaiN(l +(1+1)7 |x)
(58)

Proof. If (1 + t)_l/zo‘lxl < 1, then the proof is the same as

(i) and (ii) in the proof of Proposition 7. So we assume (1 +

t)_l/Z“IxI > 1andt > 1. In the case of t < 1, we use the same

proof as the following argument for ¢ > 1, without taking the
scaling kernel.
Fort > 1, consider the scaling kernel

e Ko () (¢ [/ )
=Pt | gy @cosh (1= [g) g (g
ot JR” ¢, (t_l/z"‘f) cosh <W> 6V gE

By the Leibniz rule,

% (‘/’2 (t_l/z‘xf) cosh ( W))
- iCﬁa?jk (‘/’2 (t*l/zaf)) aé (cosh ( W)) .
k=0

(60)

Next we prove the following estimate:

Bé <cosh (\/t2 - t|§|2“>>‘
> itj|5|2j“_k-
i1

In fact, using Taylor’s expansion, we have
cosh ( \t2 - t|£|2“>

Then by an easy computation,

-1
+ool(t2 _ t|£|2“)
A2 —eleP)) =
O, (cosh( t t|£| )) = 1; D) t
aé_ (cosh < \Vit? - t|E|2a>>

1wl (-1)(f - t|§|2"‘)lf2

=2 QD!

=2

(61)
< exp <’ 2 - t|£|2a

(2 - 1))
g oy (62)

|E|20c—2£i,

clee

+Ool(t2 _ tlEIZa)l—l

+) oy

I=1

(|€|2(x—45i2 + l£|20c—2) '

(63)
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Thus, by the induction, we have

)

k400l (] — 1)+ (] — i 2 _ ey
:jzzuzjl(l 1) (1 J(;rl)l!)(t tE) Oy ),
(64)
where
v; @) = [ (65)
Since
e e
we obtain
S?U—l)~0—j+lﬂﬁ—ﬂﬂmy]
& 20!
(67)

+OO| 2 —t|£2“ 2(-j)
IASLLE B )

So (61) is proved. Note by the compact support of ¢, (t~/2*¥),
we have

< exp (‘ 2 - 1fg*

t
7S [E]** < 200¢, (68)

and we will prove, for all such &,

e_tag_ cosh < \t2 - t|E|2“>

k
< e—bIEIZ ZHlEIZ]afk) b>o.

=

(69)

Ift/4 < |E** < t, (69) thenis a consequence of (61) and (28).
Ift < |E]** < 5t/4, then

b VHEPe £ _ \HEP ot /2 -20EP5 (70)

When 5t/4 < [£|** < 200t, similar to (33), we get

e_tag_ (cosh (i\lt|§|2a - t2>>

k ik (71)
~ e_tF (t) E) Z : u/] (E) Jtex
= (VP P)
which is further bounded (note also ¢t > 1) by
k H ; 20 k . .
eftzt”ﬂz;tx—k < e—l{l /ZOOZt”E'Z]a—k' (72)
j=1 j=1

Thus we have proved (69). Fix an x € R" and let x; be the
variable such that x; > |x|/n. Using integration by parts (n+1)
times on &;, we obtain

tn/20c am(t)( 1/20¢ )

n+1
- %Zcﬁﬂe_tj gkl (¢2( —1/2aE))
i k=0
x ag_ (cosh ( \t2 - t|E|2a>> &) gE
n+l "
= gz+1 ZCnH J o (‘/52( _1/20‘&)) e’
X ag (cosh <\/t2 - t|5|2(x>> ¢ g
1 nt “1/2a\\ —
+ x;’l+1 JR” 851 1((/52 (t 2 ))6 ‘
x cosh < V2 - t|E|2a> ¢ dE

=K, + K,.

(73)
By (61), (69), and the compact support of ¢,, we have

K|

n+l

G |

an kﬁ-l(/)2 (t—l/thE)|

!

E' tl/z«x

% e—b|£|2“tj| 5|21<x—k dE

f~N/2a Z Z J
1
n+1k . n+ e~ tl/z"‘

5 (kD) 20k j+N/2ae—b|E|2"‘

n k+1) (t—I/ZaE)'

% |El2j‘x_kdf

n+l

n+1 Z nHZ J

|E| t1/2¢x

—N/2¢x | |4jrx+N—n-1e_h|g|2“ dE

Nja 1

LA

(74)

The second term K, can be calculated directly to finish the
whole proof. O

By Proposition 9 and the same argument in proving
Proposition 8, we have the following boundedness.



Proposition 10. Let f € H'(R"). Then for any t, N > 0 and
r < p <400,

IKem® * ey < @40 Wl

R 75)
190 (®) * f"HP(R”) <@+ fll gy
Particularly, we have
1K (®) # fllzsny = @+ 07l
(76)

[9am® * flisory = 1+ O™ f iy

2.3. Estimates for |&| near the Infinity. Let ¢; be a C* radial
function with support in {£ € R" : [§|** > 2°} and satisfy
¢; = 1 whenever |E[** > 100. Defining

Keoo 00 = ¢ | 5 @ cosh (ir]6* - 1) ¢t
sinh(zt |E|2“ )

W1

60 g

Qoo O =" [ 6,
(77)

we have the following proposition.
Proposition11. Let 1 < p < +00 and « > 0. Then there exists

Z(SP > 0 such that for any > na|l/2 — 1/pl and t > 0, we
ave

1K 00 (®) * f"LP(IR”)

"Qa,oo ) = f "LP(R“)

<e (@0 fly,
(78)
<e'(1+0%|f] i

Proof. We will show the case n > 2 and leave the easy case

n = 1 to the reader. Again, we will only show the inequality

of K, (t) * f since the proof of the other one is similar.
Define an analytic family of operators

T, (f) (%)
itI1EP* -1 (79)
:e_tJ ¢ i @ fEPdE zecC.

By the Plancherel formula, we have

1T (O 2 ey = e_[“f”LZ(R") for Rez=0.  (80)

If we can show

"Tz(f)"Ll(R”) =

for Rez > na/2 and some A > 0, the proposition easily
follows by a complex interpolation on these two inequalities
for 1 < p < 2. Then we can use a trivial dual argument
to achieve the proposition for the whole range of p. Also,
without loss of generality, we prove (81) with z = 3 > na/2.

1+ 0% g (81)
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Let @ be a standard cutoff function with supportin {§ : 1/2 <
€] < 2} satisfying

Yo (27fE) =1, vEo. (82)
Defining
Wi () f (%)
g (o Foden gy
- [0 (2 g @ T ¢V,
then (81) will follow if we prove
wWierfeo,, <e @+ 2™ . (84)
In fact, (84) implies
Tl o f @,
_ (85)

8

< Y2 Fa+t)e | fl, Ve>o.

Noting that 277 = |¢] in the support of ®(27/¢), we get (81)
from the above inequality.

Next we prove (84). Let R ; be the kernel of W;‘(t). By
Young’s inequality, it suffices to show

kg e t(1 + )t (86)

‘XJ||L1 -

for some A > 0. By the definition, without loss of generality,
we may write

R, (x,1) = e’ J ) (27]{) eit\lwei“’x)df
’ (87)

=2 J D (§) VI 0 g
-

Using the Taylor expansion with integral remainder, for r €
supp(®d), we write

() w

where
1 —_
g(r) = —% J (1 - srz‘x) 1/st. (89)

This gives
it/22ix 20 1
e

_ eitzf"‘r"‘ eitg(l/ijo‘)) (90)

for 2% > 100 and 1/2 < r < 2. By the definition of g it is easy
to see that for any integer m > 0

da" eitg(l/Zk“r)

e <(1+0)" (91)

uniformly for 2% > 100 and 1/2 < r < 2.
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Now we write

R, (1) = 2" J

eiP(f)f)j)q) (E) eifg(l/Zja|f|)d£ (92)
RVI

where the phase function g is defined as
p (&1, 7) = £27%[&|" + 27 (&, x). (93)
Let sets E,, E,, and E; be defined as
Ey ={x e R":|x| > Mt2/* "},
E, = {x eR": x| < thj(“_l)} , (94)
Ey={x e R":mt2/ ™V < |x| < M2/},
where
M = n2*""% max {oc, i} (95)
and m = 1/M. Hence,
[#Recsls = o Rl + e Rl + e Recs - 96)

where y; denotes the characteristic function of a set E.
Furthermore, we let

E,={x€E :|x,|>|x]| fori=12,...,n}, (97)

1,m

form=1,2,...,n Then

(98)

n
||XE1 ER“J“U = Z ||XE1,mm‘x’j 'Ll'
m=1

For each x; R, ;, using integration by parts on the &,
variable, it is easy to obtain that, form = 1,2,...,n,

Xz, () Ry j (D) < 27"y, (x) min {L @’ le)_N} ,

(99)
for any positive number N.
By the polar decomposition,
XE, () ma,j (1)
. 00 e (100)
- | ( [ o e’P"’f’”dr> do (&),
s+ \Jo
where the phase function P is defined by
P(r,t, ) = t27%7 + 27r <£',x> ,
(101)

O, (r) = O (r) 92D,

Using integration by parts on the inner integral, we obtain

'XEZ (X) R, ; (x, t)| < e_th"XEz (x) min {1, (th“)iN} ,
(102)

for any positive number N.

9
By the Proposition in [48, page 344],
iy , /2
|)(E3 ()R, (x, t)| <e tZJ")(E3 (x) min {1, (tzf“) } .
(103)
Thus, if £27% > 1
o )
N s N o ™
3 >JIIL |x|:t2j(a—1) (104)
< e—ttn/22jom/2.
If2/% <1,
T L
= (105)
< e_t(tha)n <e™.
For xp R, ;, if 2% < 1,
R, et J dx
e Ixl=e2iD (106)
< e_t(tha)n <e.
If£2/* > 1 and then we choose N = n,
i NN (a-1)\"
e, R = €727 (227) (1277
(107)
= e_t(tzj“)_Nt”ij <e’.
Finally we estimate y; R, ;. Foreachm =1,2,....,n,
~t jn : iy N
"XEl,mmmj“Ll <e 2 JIszth“"’l) min {1,(2 le) }dx.
(108)

If the set {x : 21D < |x| < 277} is not empty, we write

—t~jn
e, Rl <2 x

Jtzj(“’l)ﬁlxISZ’f

—tjn . jo\~N
+e ') J-Z'j£|x| m1n{1,(t2] ) }dx (109)
=L+
Clearly
Ji<e. (110)

Also, choose a sufficiently large N, and then

I, < e i J

|x|>277

. \-N
(2] |x|) dx <e™. (111)
Ifthe set {277 > |x| = £2/@ D} is empty, then we also have

”XEl,m ERW-" o= e 2" Jlxm-f (Zj le)_Ndx <e’. (112)

The proposition is proved. O
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3. Proof of Theorems 2 and 3

Proof of Theorem 2. Recalling the definition of

Koc,O (t) > Koc,m (t) > KOt,OO (t) > sz,O (t) > ro,m (t) > ro,oo (t)

(113)
in Section 2, we have
Ky () * f]
< Koo () # ]+ Ko () % f] + Koo () % £, .
Qg (1) * f]
< Qo () # f]+ [K () 5 f] + Qe (8) * f].

By the triangle inequality and Propositions 8, 10, and 11,
we only have to verify that, for any n/2«a-admissible triplet

(P, g 1),

1/q
(] 1o ® ¢ lndt) <
(115)
1/q
(J; 10000 5 Flnt) < Uflrreey
These two inequalities are obviously true if
Lon <1—l). (116)
q 2« p
For 1/q = (n/2a)(1/r — 1/ p), denote
F(®) f = [Kao® * fllogn- (117)
By Proposition 8, we have
F(t) f <@+ f]. (118)

This indicates that, for any A > 0, there exists a positive
constant C independent of A and f such that

|t |F @) £1 > Al

q (119)
SHquwmmm>AHg(9Q#£).

This shows that K, (t) is a bounded mapping from H'(R")
to the mixed norm space L**([0, 0], LP(R")) for any
admissible triplet (p, g, 7). Now we choose admissible triplets

(p>qy>11) and (p, q,, 1) satisfying
1 <71 <r,<oo, 4, <4< gy <00,

1-0 1 6 1-0
+ , )

9 9 92 ron &)

10 (120)

Then by the Marcinkiewicz interpolation, we easily obtain

([ 1@+ B rt) =

| ey 020

Abstract and Applied Analysis

Similarly we can show that, for any n/2«a-admissible triplet

(p.g: 1),
([ 1000+ ) " <17

(122)

H (R
O

Proof of Theorem 3. By checking the above proof, we only
need to show the following proposition. O

Proposition12. There isa6p > 0 for whichif § > (n—1)|1/p—
1/2|, then

IKico * Fllisn < A+ 0% | fllig oy

N (123)
19000 * Flsery = A+ 07 I fliz
hold for all 1 < p < oo.
Proof. Let
tt\)IEI
Wyt = | ¢ S0 E) pigy ity (124)

1|

where ¢; is defined in Section 2.3 (corresponding to & = 1).
We will prove, for any 8 > (n — 1)/2, that

We) f)], < e @+ M £l

with some A > 0. Then by repeating the complex inter-
polation argument in the proof of Proposition 11, with (81)
replaced by (125), we finish the proof of the proposition.

Next we turn to the proof of (125). Denote the kernel of
Wj(t) by

(125)

ey, @
n |E|ﬁ

By Young’s inequality, it suffices to show that if § > (n—1)/2,
then

Optxn ¢ | §eDag.  (126)

|®s )], <+ £)rD2 g7t
Let @ be the cutoff function defined in Section 2.3. Then we

(127)

have
A |
Op(x,t)=e" ¢ o (27F|¢ £)) & gg
’ [ g oG gs o)
=" Y Vi (x),
k=6
(128)
where, by [49, Ch. 4],
it\1EP-1 '
= f i (27 &) s (1) 5 g

00 eit Vr2-1

-,

5 (1) @ (277) Voo (r 1x) "' dlr
(129)
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In the last integral,

v, = 29, (130)
s
and ], (s) is the Bessel function of order .
So, by the Minkowski inequality,
|©s 0l < e Xl (131)
k=6

First, we assume ¢ > 1. Changing variables, we have
Y (x)

x| @72 (0 R K
= g |, @700 ) e 132
X (2kr |x|) PP gy

Using the Taylor expansion with integral remainder, for
r € supp(¢;), we write

Nr2—-1=r+g(r), (133)
where
1 1 (! s\ V2
)= 1- = ds. 134
g ( r ) 2r Jo ( r? > B
This gives
eit H2k2 _ eitzkreitg(l/Zkr)’ (135)

for k > 6 and 1/2 < r < 2. By the definition of g it is easy to
see that if we denote h(r) = g(1/2kr), then

|n"™ ()] < 27, (136)
Also, for any integer m > 0,
m
A | L k<,
dr™
. (137)
d" gt K\ ek
—e <(t2 ift27" >1
" o] ¢ ()
uniformly for k > 10and 1/2 < r < 2.
When
2 x| < 2%, (138)
using the known estimate
Jnny2 M =0(r"?7), asr—o, (139)

it is easy to see

- —k(B-n/2— (n=2)/2 —k(B—
[V, ()] < |x| &2 kB2 1)(2k |x|) TR gk
(140)

11
Thus,
0 [} K(B-n)
—t —t —k(B-n —t
e Z"YkX{lxlSz—kH} o <e 22 J s dx <e .
k=6 k=6 Ixl<2
(141)
When
2%)x| > 24, (142)

we use the asymptotic expansion of J,_,,,(r): for any integer
N2=>0,

Y ARy
T, (r) = e <Z_rj+]1 5 > +O (PN o (143)

where ¢, ¢,, ..., ¢y are constants.
In this case,

Yy (x)

) N le(l—n)/Z—j

= C:——————
7 9k(B-n/2-1/2
= 2k(B-n/2-1/2+))

Ok : k i
o J (21D 192N @ (1) . (2kr) MBI g,
0

+0 (|x|(—n+1)/2—N—12—k(ﬁ—n/2+l/2+N))

N
~141)/2-N—1,—k(B-n/2+1/2+N
= Y Yy (x) + O (|x| VRN T REZHRAND)
=0
(144)
where, without loss of generality, we denote
Yk, j (x)
|x|(1—n)/2—j
= Sk(B-nf2-1/2+)) (145)
© idFr(t-Ixl) itg(2*r) k) n/2—p-j
x| e e D(r) ¢s (2 r) r dr.
0
It is easy to see that, for a suitable integer N,
(o]
e—tzz—k(ﬁ—n/2+1/2+N) J x| PN g ot
=6 |x|227k+4
(146)
Thus it remains to show that, for each j,
\ (/2
-t +1)/2
e Z"Yk’jX{lxbszM} I < tn e . (147)
k=6

Since the estimates of all Y ; are similar, we will only show

R (148)

[oe)
e’ Z ||Yk,OX{|x|>2’k*4}
k=6
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Using integration by parts and noting ¢,(2*r) = 1 ifk > 2°
and r € supp(®D), it is easy to check that one has

(oS IS . k .
J 21D a2 N gy (1) <2kr) 2 Bi g,
0

(149)
< min {1, 27| - |x||‘m(2‘kt)m}
if 27%¢ > 1, for any positive integer m, and
0 Drr(rxlxl) itg(2*r) K\ n/2-pj
J e'n I ®(r)¢3(2 r)r dt
0 (150)

< min {1,227t - |x|| ™}

if 27%¢ < 1, for any positive integer y. Thus, we have the
following lemma. O

Lemma 13. Let 2X|x| > 10. For any m > 0, one has
|Yk,0 (x)l < |x|(lfn)/22*k(ﬁ*"/2*1/2)2—mk|t T (151)

if2 %t < 1.
Also, for any y > 0,

|Yk,0 (x)| < |x|(l—n)/zsz(ﬁfn/z—l/Z)z—,uk|t _ Ix”fp(szt)!‘
(152)

if27% > 1.

Now we continue the proof of the proposition. Write

(o]
Z ||Yk,OX{|x|>2’k“}
k=6

o0
<y I
=g J10/2k<|x|<t/2

(o)
£y [
k=g * |xI>100¢

o0
+y [

= Jij2<ixi<ioor

LY(R")
IYk,o (x)l dx

|Yk,o (x)l dx (159

[Yy. o (x)] dx

=A +A,+ A,

In A, noting B—(n—1)/2 > 0, we use the lemma with y = 1/2
andm =1:

logt

A< Zz—k(ﬁ—n/2+l/2) (n+D)/2 g,
k=6

| 1
10/2%<|x|<t/2

o0
s Z o-k(B-n/2+1/2) J le(f"”)/zdx

k=logt+1 10/2k<|x|<t/2

< t(n+l)/2.
(154)

Abstract and Applied Analysis

Similarly, in Lemma 13 we let 4 = m = n:

logt
A2 < Zz—k(ﬁ—n/Z—l/Z)tn j- lxl(l—n)/Z—nz—andx
= 100¢<[x|

o0
+ Z o-k(B-n/2-1/2) J' Z—nk|x|(1—n)/27n dx

k=logt+1 100¢<|x|
< {2,
(155)
Let
Lt
E ={x€R :5<|x|£100t},
(156)
E ={xeR": |t - x|l <27},
Using Lemma 13, we write
logt
A, < Z o k(B-n/2-1/2)
k=6
x J | 227 ) (27 dxc
E\E,
+ o k(B-n/2-1/2)
k=logt+1 (157)
x J x| 207K ¢ e | dxe
E\E;
o0
. Zz—k(ﬁ—n/z—l/z)J 1|2
k=6 Ey
=B, + B, + B;.
Here, the last term
- 1-n
B, = Zz"“ﬁ‘“/z‘l/”J x| — 2 dx
k=6 B 2
(158)

-k
r(l—n)/2+n—1 < t(n+1)/2.

t+2

< iz—k(ﬁ—n/z—uz) J

k=6 =27

Use the polar coordinate and Lemma 13 for g = 1/2:

logt
B, - Z2fk(/3—n/2+1/2)t1/2‘[ x| 21— [l 2 dx
k=6 E\E;

logt . 100t
< ZZ— (B-n/2+1/2) 112 J' PR g,
P t+27k

t-27F
+ J rUR G 2,
12
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logt

100t
< n/2 2—k B-n/2+1/2) L2
t Z o (r—t)y '“dr

k=6
t-2

+ J
t/2

—k

(r- t)_l/zdr>

< t(n+1)/2.
(159)
Similarly, we can show
-k (B-n/2-1/2) J x| 22K ]
k=log t+1 E\E, (160)

< t(n+1)/2.

When 0 < t < 1, the proof is the same with only minor
modifications.
4. Almost Everywhere Convergence

Next we will study the pointwise convergence of the solution
u(t, x) of (5) to the initial data. We will prove the following.

Theorem 14. Let s > 1/2. If f belongs to the inhomogeneous
Sobolev space Li(IR") and g € Lifa(lR"), then the solution
u(t, x) of (5) converges to f(x) a.e. x € R"ast — 0.

To prove this theorem, we need Lemmal5 and
Proposition 16.

Lemma 15 (see [50]). Letn >2and 1 < d < n. Then

Proposition 16. Letn > 2 and let m(t, |€|) be defined on R" x
R" and satisfy

J g w) e do (u)

L’H g w)[*do (u).
(161)

(1 (&) (e Je] < 1 (162)
Denote the maximal function
m*f(x) = sup |m (t,D) f (x)| . (163)
>0
Then if y > 0, we have
. d-2y d
[KOWICOI NSRS Vi <i<z,d>1
(164)
Ify <0, then
* 1
lm” £ GO 2ty < f||L§, I>d-y- > d>1. (165)

13

Proof. Making t into a function of x, we only have to bound
m(t().D) £ ()= | “Om (), J8]) F @ e, 60

where t(x) : R" — R is any measurable function.
By the polar decomposition,

[m (& (x),D) f ()
= Ijoor"_lm(t (x),r)J f(r{')ei(rx’g)da (E')dr
0 st

[, 76 (e)

dr.
(167)

o0
< J A )Y
0

By Minkowski’s inequality, change of variables, and
Lemma 15, we have

[l (¢ (), D) £ G| p a2
o n—1 -y
< JO r o (1+7)

dr
L2(dx/|x|?)

X

ra N\ ilrxE') !
LH f (rE )e do (E )

© np+d
_ J rn/2+ /2—1(1 +r)—y
0

o i<x,£’)d ’ d
L"-l f(rf )e G(E ) e r

JOO P22y <J’S’171 |J?(Tf’)|2da (f'))l/zdr

X

.
0

= ( >rn/2+d/2‘1(1 N r)_?’
(LG a0 (@) e

=L, +L,.

(168)

When y > 0, we have

L, =< LZ rn/zm/zq(LH |f(r£')|2dg (f'))l/zdr

5 1/2
ZwvmwQ

o

= ”f”L%(R”)'
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Here we have to let
d-1-2l<-1.
On the other hand,

L, < LOO rn/2+dl/2f1fy<Ln_l |f(i’fl)|2da (5,))1/zdr
< (Joo rd—l—zl—zydr)l/z
([ ] e (ear)

<([; rd_l_y_zyd’ynqmﬁ €7 (E)|2d€>1/2

=< ”f"L?(R")-

Obviously we have to let
d-1-20-2y>-1,
which, together with (170), implies

d -2« d
<l<-—.
2 2

If y <0, then

2 1/2
L, < <J rd_ldr)
0
2
x(l r”flj | rt’ |da dr)
0 N

=< £z

. 1/2
L, < <j r_ddr>
2

1/2

(170)

171)

(172)

(173)

(o) 1/2
x (J 2172y, nl J | rE’ | da dr)
2 Sn 1

=< |£1z

d-y-1/2

Proposition 16 is proved.

Proof of Theorem 14. Denote

(t,)]) = ™ cosh (t\/l - |£|2a>

my (1, ]8]) = ¢ :
1- IEI ‘
It is not hard to verify that
g (6 [ED] <1,y (8 ED] < (14 €)™

V(&) e RT xR".

(174)

(175)

(176)
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Since
u(t,x) =my (t,D) f (x) + m, (t,D) f (x) + m, (t,D) g (x)
=w(t,D) f (x) +m, (t,D) g (x),
177)
Theorem 14 will be proved if we can show, ast — 07,
my (£,D)g(x) — 0, ae xeR" (178)
forg e LZS_“(R”) and
w(t,D) f(x) — f(x), ae xeR" 179)

for f € Li(R”). The proof of the two limits is similar and
we will only show the second convergence. Note that the
above convergence always holds for Schwarz function f.So a
further boundedness on the maximal function

w' f(x) = sup |w (¢, D) f (x)] (180)

that

" 1
lw f(x)an(dx/lxld) =< ”f"Lﬁ(IR”)’ $2 5 (181)

is enough to imply Theorem 14.
Next we will prove (181). By (176) and Proposition 16,

* 1
3y £ G| 2y < ||f||L§(Rn)’ vl>d- 5 (182)

Fixs > 1/2. Taking 1 <d < s+ 1/2andclosetod — 1/2, we
have ] < s and thus

;£ GO 2ty < 2(RM)" (183)

Applying Proposition 16 withy = «and 1 < d < 1 + 2, we
have

||m2f(x)||Lz (dx/|x) = ”f"LZ (R™)

1/2

e (184)
Since
w' f (x) <my f (x)+m; f(x), (185)

we proved (181) when n > 2 (note that Proposition 16 was
proved only when n > 2).
For n = 1, instead of (181), we will show

% 1
lw f(x)"Lz([—N,N]) = N1/2||f|lL§(R)’ s> > (186)
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which is also enough to obtain the pointwise convergence.
Taking h(x) € L*([-N, N1), we have

N
J w(t(x),D) f (x)h (x) dx

J j w(t(x),8) T ©) D den (x) dx

J I w (t (%), E) €SO (x) dx dE
R -

(187)
([ i)
1/2
"f_lj\] w(t(x),&) O h (x) alx‘2
X J oG dé .
R (1 +¢ )
Noting that
w(t(x),8) =m (t(x),8) +m,(t(x),5) <1, V(x5)),
(188)
we have

N ) 2
J w(t(x), DV h(x)dx| < NIl yny  (189)
-N

Therefore

N
| w@.D)f h e dx < N - Valhag sy

(190)
and by duality
1
w0, DY o nony < NI f iz 5> 5> OOD
from which (186) follows. O
Appendix
We study the Cauchy problem
Uy (£, %) + 2bu, (t, x) + (=A)*u (t, x) =
(t,x) € [0,00) x R", (A1)

u(0,x) = f (x),

We claim that the solution, in the Fourier transform side, is
given by

(&) = e cosh (t\lbz - |f|2‘x> f®

s (),
\B? - [

u, (0,x) = g (x).

(A.2)

vt

(bf©+3©®).
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To verify this fact, we write the solution as

u(t,x)=A@L) f(x)+T(t,L)g(x), (A.3)

where

inh
T(tL)=e" my \s;/z),
sinh (t \/I)
VL

L=b"-(-A)"

(A4)

A(t,L) = be ¥ +e ¥ cosh (t\/z) ,

Take derivative,

inh (¢ VL
U == (bzebt myy \stf\/_)
x f - be " cosh (t\/z) f+ ¢ " VLsinh (t\/z) f

_p; Sinh (t\/f)
L g

_ 2 pSinh (+vI) b - (- A"

=-be N AR N nh (tVL) f

smh (t\/f)
VL 9.

—be ™ cosh (t\/f))

+ e cosh (t\/f) g

b cosh(t\/_)
(A.5)

Thus

u, = e_bt_(\_/%)“ sinh (t\/f) f+ e cosh (t\/f) g

e Sinh (t\/z)
Y

u, =be ™ (_\/Af)“ sinh (t \/f) f - be ™ cosh (t \/Z) g

inh
+ bze_bth — e ""(=A)* cosh (t\/f) f

+e "\/Lsinh (t\/f) g- be " cosh (t\/f) g.

(A.6)

Therefore,

Zbebtut = Zb_(\_/%)“ sinh (t\/z) f +2bcosh (t\/z) g

sinh (t\/f)
i ¢

—2b*
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¢ (=2)* .
uy, = bT sinh (t\/f) f —2bcosh (t\/f) g
, sinh (t \/I) e
+b i g — (A)” cosh (t\/f)f
+ VLsinh (t\/z) g
(A7)
Thus,
e?uy, + 2be"u,
—(=A)" inh
= —(\/%) b sinh (t\/f) f-b myyy \(/;/I)g
(AN bz - (_A)lx .
(=A)” cosh (t\/f) f+ A sinh (t\/f) g
= _(\_/%)ab sinh (¢t VL) f = (-A)* cosh (£ VL) f
- (_\/Af)“ sinh (t \/z) g
N sinh (t\/f)
= —(-A) {cosh (t\/f)f + i (bf + g)]» .
(A.8)
Thus,

Uy + 2bu, = —(=A)" (u)
~ AN bsinh (t\/f)
= —(_ ) T
o sinh (t\/f)
vi 7

+ cosh (t\/f)) f

- (=4)
(A.9)

This shows the claim.
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