
Retraction
Retracted: Analysis of Pull-In Instability of Geometrically
Nonlinear Microbeam Using Radial Basis Artificial Neural
Network Based on Couple Stress Theory

Computational Intelligence and Neuroscience

Received 17 February 2018; Accepted 17 February 2018; Published 2 May 2018

Copyright © 2018 Computational Intelligence and Neuroscience. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Computational Intelligence and Neuroscience has retracted
the article titled “Analysis of Pull-In Instability of Geomet-
rically Nonlinear Microbeam Using Radial Basis Artificial
Neural Network Based on Couple Stress Theory” [1]. The
article was found to contain a substantial amount of material
from the following published article: Mohammad Heidari,
Yaghoub Tadi Beni, and Hadi Homaei, “Estimation of Static
Pull-In Instability Voltage of Geometrically Nonlinear Euler-
Bernoulli Microbeam Based on Modified Couple Stress
Theory by Artificial Neural Network Model,” Advances in
Artificial Neural Systems, vol. 2013, Article ID 741896, 10
pages, 2013. doi:10.1155/2013/741896 [2]. In addition, Figures
17 and 18 in [1] are similar to Figures 9 and 11 in [2]. Dr.
Mohammad Heidari did not agree with this retraction, while
Drs. Ali Heidari and Hadi Homaei were not reachable.
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The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering
cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source
of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified
couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width,
thickness, gaps, and size effect, we identify the static pull-in instability voltage. AMAPLE package is employed to solve the nonlinear
differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural
network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has
four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the
output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model
have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with
numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial
basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further
analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling
with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach.
The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

1. Introduction

Microelectromechanical systems (MEMS) are widely being
used in today’s technology. So investigating the problems
referring to MEMS owns a great importance. One of the
significant fields of study is the stability analysis of the
parametrically excited systems. Parametrically excitedmicro-
electromechanical devices are ever increasingly being used
in radio, computer, and laser engineering [1]. Parametric
excitation occurs in a wide range of mechanics, due to time-
dependent excitations, especially periodic ones; some exam-
ples are columns made of nonlinear elastic material, beams
with a harmonically variable length, parametrically excited

pendulums, and so forth. Investigating stability analysis on
parametrically excited MEM systems is of great importance.
In 1995 Gasparini et al. [2] studied the transition between
the stability and instability of a cantilevered beam exposed
to a partially follower load. Applying voltage difference
between an electrode and ground causes the electrode to
deflect towards the ground. At a critical voltage, which is
known as pull-in voltage, the electrode becomes unstable and
pulls in onto the substrate. The pull-in behavior of MEMS
actuators has been studied for over two decades without
considering the casimir force [3–5]. Osterberg et al. [3, 4]
investigated the pull-in parameters of the beam-type and
circular MEMS actuators using the distributed parameter
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models. Sadeghian et al. [5] applied the generalized differen-
tial quadrature method to investigate the pull-in phenomena
of microswitches. A comprehensive literature review on
investigating MEMS actuators can be found in [6]. Further
information about modeling pull-in instability of MEMS has
been presented in [7, 8]. The classical continuum mechanics
theories are not capable of prediction and explanation of
the size-dependent behaviors which occur in micron- and
sub-micron-scale structures. However, some nonclassical
continuum theories such as higher-order gradient theories
and the couple stress theory have been developed such that
they are acceptably able to interpret the size dependencies.
In 1960s some researchers such as Koiter [9], Mindlin and
Tiersten [10], and Toupin [11] introduced the couple stress
elasticity theory as a nonclassic theory capable of predicting
the size effects with appearance of two higher-order material
constants in the corresponding constitutive equations. In
this theory, beside the classical stress components acting
on elements of materials, the couple stress components,
as higher-order stresses, are also available which tend to
rotate the elements. Utilizing the couple stress theory, some
researchers investigated the size effects in some problems
[12]. Employing the equilibrium equation of moments of
couples beside the classical equilibrium equations of forces
and moments of forces, a modified couple stress theory
was introduced by Yang et al. [13], with one higher-order
material constant in the constitutive equations. Recently,
size-dependent nonlinear Euler-Bernoulli and Timoshenko
beams modeled on the basis of the modified couple stress
theory have been developed by Xia et al. [14] and Asghari
et al. [15], respectively. Rong et al. [16] present an analytical
method for pull-in analysis of clamped-clamped multilayer
beam. Their method is Rayleigh-Ritz method and assumes
one deflection shape function.They derive the two governing
equations by enforcing the pull-in conditions that the first
and second order derivatives of the system energy functional
are zero. In their model, the pull-in voltage and displacement
are coupled in the two governing equations.

This paper investigates the pull-in instability of
microbeams with a curved ground electrode under action
of electric field force within the framework of von-Karman
nonlinearity and the Euler-Bernoulli beam theory. The static
pull-in voltage instability of clamped-clamped and cantilever
microbeam is obtained by using MAPLE commercial
software. The effects of geometric parameters such as beam
lengths, width, thickness, gaps, and size effect are discussed
in detail through a numerical study. The objective of this
paper is to establish neural network model for estimation
of the pull-in instability voltage of cantilever beams.
More specifically, radial basis function (RBF) is used to
construct the pull-in instability voltage. Effective parameters
influencing pull-in voltage and their levels for training were
selected through preliminary calculations carried out on
instability pull-in voltage of microbeam. Networks trained by
the same numerical data are then verified by some numerical
calculations different from those used in training phase, and
the best model was selected based on the criterion of having
the least average values of verification errors. To the best
of authors’ knowledge, no previous studies which cover all

these issues are available. To the authors’ best knowledge, no
previous studies which cover all these issues are available.

2. Preliminaries

In the modified couple stress theory, the strain energy
density 𝑢 for a linear elastic isotropicmaterial in infinitesimal
deformation is written as [17]

𝑢 =

1

2

(𝜎
𝑖𝑗
𝜀
𝑖𝑗
+ 𝑚
𝑖𝑗
𝜒
𝑖𝑗
) (𝑖, 𝑗 = 1, 2, 3) , (1)

where

𝜎
𝑖𝑗
= 𝜆𝜀
𝑚𝑚
𝛿
𝑖𝑗
+ 2𝜇𝜀
𝑖𝑗 (2)

𝜀
𝑖𝑗
=

1

2

((∇𝑢)𝑖𝑗
+ (∇𝑢)

𝑇

𝑖𝑗
) (3)

𝑚
𝑖𝑗
= 2𝑙
2
𝜇𝜒
𝑖𝑗

(4)

𝜒
𝑖𝑗
=

1

2

((∇𝜃)𝑖𝑗
+ (∇𝜃)

𝑇

𝑖𝑗
) , (5)

in which 𝜎
𝑖𝑗
, 𝜀
𝑖𝑗
, 𝑚
𝑖𝑗
, and 𝜒

𝑖𝑗
denote the components of

the symmetric part of stress tensor 𝜎, the strain tensor
𝜀, the deviatoric part of the couple stress tensor 𝑚, and
the symmetric part of the curvature tensor 𝜒, respectively.
Also, 𝑢 and 𝜃 are the displacement vector and the rotation
vector. The two Lame constants and the material length scale
parameter are represented by 𝜆, 𝜇, and 𝑙, respectively. The
Lame constants are written in terms of Young’s modulus 𝐸
and Poisson’s ratio ] as 𝜆 = ]𝐸/(1+])(1−2]) and 𝜇 = 𝐸/2(1+
]). The components of the infinitesimal rotation vector 𝜃

𝑖
are

related to the components of the displacement vector field 𝑢
𝑖

as [18]

𝜃
𝑖
=

1

2

(curl (𝑢))𝑖. (6)

For an Euler-Bernoulli beam, the displacement field can be
expressed as

𝑢
𝑥
= 𝑢 (𝑥, 𝑡) − 𝑧

𝜕𝑤 (𝑥, 𝑡)

𝜕𝑥

, 𝑢
𝑦
= 0,

𝑢
𝑧
= 𝑤 (𝑥, 𝑡) ,

(7)

where 𝑢 is the axial displacement of the centroid of sections
and 𝑤 denotes the lateral deflection of the beam.The param-
eter 𝜕𝑤/𝜕𝑥 stands for the angle of rotation (about the 𝑦-axis)
of the beam cross-sections. Assuming the above displacement
field, after deformation, the cross- sections remain plane and
always perpendicular to the center line, without any change
in their shapes. It is noted that parameter 𝑧 represents the
distance of a point on the section with respect to the axis
parallel to 𝑦-direction passing through the centroid.

3. Governing Equation of Motion

In this section, the governing equation and corresponding
classical and nonclassical boundary conditions of a nonlinear
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Figure 1: An Euler-Bernoulli, loading, and coordinate system.

microbeam modeled on the basis of the couple stress theory
are derived. The coordinate system and loading of an Euler-
Bernoulli beam have been depicted in Figure 1. In this figure,
𝐹(𝑥, 𝑡) and 𝐺(𝑥, 𝑡) refer to the intensity of the transverse
distributed force and the axial body force, respectively, both
as force per unit length.

By assuming small slopes in the beam after deformation,
the axial strain, that is, the ratio of the elongation of amaterial
line element initially in the axial direction to its initial length,
can be approximately expressed by the von-Karman strain as

𝜀
𝑥𝑥
=

𝜕𝑢
𝑥

𝜕𝑥

+

1

2

(

𝜕𝑤

𝜕𝑥

)

2

=

𝜕𝑢

𝜕𝑥

− 𝑧

𝜕
2
𝑤

𝜕𝑥
2
+

1

2

(

𝜕𝑤

𝜕𝑥

)

2

. (8)

It is noted that finite deflection 𝑤 is permissible and only
it is needed that the slopes be very small. Hereafter, we use
(8) for the axial strain, instead of the infinitesimal definition
presented in (3). Substitution of (7) and (8) into (3)–(5) yields
the nonzero components.

Also, combination of (6) and (7) gives [19]

𝜃
𝑦
= −

𝜕𝑤

𝜕𝑥

, 𝜃
𝑥
= 𝜃
𝑧
= 0. (9)

Substitution of (9) into (5) yields the following expression
for the only nonzero component of the symmetric curvature
tensor:

𝜒
𝑥𝑦
= 𝜒
𝑦𝑥
= −

1

2

𝜕
2
𝑤

𝜕𝑥
2
. (10)

It is assumed that the components of strains, rotations,
and their gradients are sufficiently small. By neglecting
Poisson’s effect, substitution of (8) into (2) gives the following
expressions for the main components of the symmetric part
of the stress tensor in terms of the kinematic parameters:

𝜎
𝑥𝑥
= 𝐸𝜀
𝑥𝑥
= 𝐸(

𝜕𝑢

𝜕𝑥

− 𝑧

𝜕
2
𝑤

𝜕𝑥
2
+

1

2

(

𝜕𝑤

𝜕𝑥

)

2

) ,

all other 𝜎
𝑖𝑗
= 0,

(11)

where 𝐸 denotes the elastic modulus. In order to write the
nonzero components of the deviatoric part of the couple
stress tensor in terms of the kinematic parameters, one can
substitute (10) into (4) to get

𝑚
𝑥𝑦
= −𝜇𝑙

2 𝜕
2
𝑤

𝜕𝑥
2
, (12)

where 𝜇 and 𝑙 are shearmodulus and thematerial length scale
parameter, respectively. To obtain the governing equations,
the kinetic energy of the beam 𝑇, the beam strain energy due
to bending and the change of the stretch with respect to the
initial configuration 𝑈

𝑏𝑠
, the increase in the stored energy

with respect to the initial configuration due to the existence
of initially axial load𝑈

𝑖𝑠
, and finally the total potential energy

𝑈 = 𝑈
𝑏𝑠
+ 𝑈
𝑖𝑠
are considered as follows:

𝑇 =

1

2

∫

𝐿

0

∫

𝐴

𝜌{(

𝜕𝑢

𝜕𝑡

− 𝑧

𝜕
2
𝑤

𝜕𝑡𝜕𝑥

)

2

+ (

𝜕𝑤

𝜕𝑡

)

2

}𝑑𝐴𝑑𝑥

(13a)

𝑈 =

1

2

∫

𝐿

0

{𝐸𝐼(

𝜕
2
𝑤

𝜕𝑥
2
)

2

+ 𝐸𝐴(

𝜕𝑢

𝜕𝑥

+

1

2

(

𝜕𝑤

𝜕𝑥

)

2

)

2

+𝑁
0
[2

𝜕𝑢

𝜕𝑥

+ (

𝜕𝑤

𝜕𝑥

)

2

] +

𝜇𝐴𝑙
2

2

(

𝜕
2
𝑤

𝜕𝑥
2
)}𝑑𝑥,

(13b)
where𝑁

0
, 𝐼, and𝜌 are the axial load, areamoment of inertia of

section about 𝑦-axis, and the mass density, respectively. The
work done by the external loads acting on the beam is also
expressed as

𝛿𝑊 = ∫

𝐿

0

𝐹 (𝑥, 𝑡) 𝛿𝑤𝑑𝑥 + ∫

𝐿

0

𝐺 (𝑥, 𝑡) 𝛿𝑢𝑑𝑥 + (𝑁̂𝛿𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑥=𝐿

𝑥=0

+ (𝑉̂𝛿𝑤)

󵄨
󵄨
󵄨
󵄨
󵄨

𝑥=𝐿

𝑥=0
+ (𝑀̂𝛿(

𝜕𝑤

𝜕𝑥

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥=𝐿

𝑥=0

+ (𝑃̂
ℎ
𝛿(

𝜕𝑢

𝜕𝑥

+

1

2

(

𝜕𝑤

𝜕𝑥

)

2

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥=𝐿

𝑥=0

+ (𝑄
ℎ
𝛿(

𝜕
2
𝑤

𝜕𝑥
2
))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥=𝐿

𝑥=0

,

(13c)

where 𝑁̂ and 𝑉̂ represent the resultant axial and transverse
forces in a section caused by the classical stress components
acting on the section. The resultant axial and transverse
forces are work conjugate to 𝑢 and 𝑤, respectively. Also, 𝑃̂ℎ

and 𝑄ℎ are the higher-order resultants in a section, caused
by higher-order stresses acting on the section. These two
higher-order resultants are work conjugate to 𝜀

𝑥𝑥
= 𝜕𝑢/𝜕𝑥 +

1/2(𝜕𝑤/𝜕𝑥)
2and 𝜕2𝑤/𝜕𝑥2, respectively. The parameter 𝑀̂ is

the resultant moment in a section caused by the classical and
higher-order stress components.Now, theHamilton principle
can be applied to determine the governing equation:

∫

𝑡
2

𝑡
1

(𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊) 𝑑𝑡 = 0, (14)
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where 𝛿 denotes the variation symbol. By applying (13a),
(13b), (13c), and (14), the governing equilibrium microbeam
is derived as

𝑆

𝜕
4
𝑤

𝜕𝑥
4
− 𝑁

𝜕
2
𝑤

𝜕𝑥
2
+ 𝜌𝐴

𝜕
2
𝑤

𝜕𝑡
2
= 𝐹 (𝑥, 𝑡) , (15)

where

𝑁 = 𝑁
0
+

𝐸𝐴

2𝐿

∫

𝐿

0

(

𝜕𝑤

𝜕𝑥

)

2

𝑑𝑥

𝑆 = 𝐸𝐼 + 𝜇𝐴𝑙
2
.

(16)

If, in (15), 𝑁 = 0, then the model of beam is called the
linear equation (linearmodel) without the effect of geometric
nonlinearity. The cross-sectional area and length of beam are
𝐴 and 𝐿, respectively. 𝐹(𝑥, 𝑡) is the electrostatic force per unit
length of the beam.The electrostatic force enhancedwith first
order fringing correction can be presented in the following
equation [20]:

𝐹elec (𝑥, 𝑡) =
𝜀
0
𝐵𝑉
2

2(𝑔 − 𝑤)
2
[1 + 0.65

(𝑔 − 𝑤)

𝐵

] , (17)

where 𝜀
0
= 8.854 × 10

−12 C2 N−1 m−2 is the permittivity of
vacuum, 𝑉 is the applied voltage, 𝑔 is the initial gap between
the movable and the ground electrode, and 𝐵 is width of
beam. For clamped-clamped beam, the boundary conditions
at the ends are

𝑤 (0) = 0,

𝑑𝑤 (0)

𝑑𝑥

= 0;

𝑤 (𝐿) = 0,

𝑑𝑤 (𝐿)

𝑑𝑥

= 0.

(18)

For cantilever beam, the boundary conditions at the ends are

𝑤 (0) = 0,

𝑑𝑤 (0)

𝑑𝑥

= 0;

𝑑
2
𝑤 (𝐿)

𝑑𝑥
2

= 0,

𝑑
3
𝑤 (𝐿)

𝑑𝑥
3

= 0.

(19)

Table 1 shows the geometrical parameters and material prop-
erties of microbeam.

In the static case, we have 𝜕/𝜕𝜏 = 0 and 𝜕/𝜕𝑥 = 𝑑/𝑑𝑥.
Hence, (15) is reduced to

(𝐸𝐼 + 𝜇𝐴𝑙
2
)

𝑑
4
𝑤

𝑑𝑥
4
− [𝑁
0
+

𝐸𝐴

2𝐿

∫

𝐿

0

(

𝑑𝑤

𝑑𝑥

)

2

𝑑𝑥]

𝑑
2
𝑤

𝑑𝑥
2

=

𝜀
0
𝐵𝑉
2

2(𝑔 − 𝑤)
2
[1 + 0.65

(𝑔 − 𝑤)

𝐵

] .

(20)

A uniform microbeam has a rectangular cross-section with
height ℎ and width 𝐵, subjected to a given electrostatic force
per unit length. Let us consider the following dimensionless
parameters:

𝛼 =

𝐴𝐿
2

2𝐼

, 𝛽 =

𝜀
0
𝐵𝑉
2
𝐿
4

2𝑔
3
𝐸𝐼

, 𝛾 = 0.65

𝑔

𝐵

,

𝛿 =

𝜇𝐴𝑙
2

𝐸𝐼

, 𝑤 =

𝑤

𝑔

, 𝑥 =

𝑥

𝐿

, Γ =

𝑁
0
𝐿
2

𝐸𝐼

.

(21)

Table 1: Geometrical parameters and material properties of
microbeam.

Material properties Geometrical dimensions
𝐸 (GPa) V 𝐿 (𝜇m) 𝐵 (𝜇m) ℎ (𝜇m) 𝑔 (𝜇m)
77 0.33 100–500 0.5–50 0.5–4 0–30

In the above equations, the nondimensional parameter, 𝛿, is
defined as the size effect parameter. Also,𝛽 is nondimensional
voltage parameter. The normalized nonlinear governing
equation of motion of the beam can be written as [21]

(1 + 𝛿)

𝑑
4
𝑤

𝑑𝑥

− {Γ + 𝛼∫

1

0

(

𝑑𝑤

𝑑𝑥

)

2

𝑑𝑥}

𝑑
2
𝑤

𝑑𝑥
2

=

𝛽

(1 − 𝑤)
2
+

𝛾𝛽

(1 − 𝑤)

.

(22)

4. Overview of Neural Networks

A neural network is a massive parallel system comprised
of highly interconnected, interacting processing elements or
nodes. Neural networks process through the interactions of
a large number of simple processing elements or nodes, also
known as neurons. Knowledge is not stored within individual
processing elements, rather represented by the strengths of
the connections between elements. Each piece of knowledge
is a pattern of activity spread among many processing
elements, and each processing element can be involved in
the partial representation of many pieces of information. In
recent years, neural networks have become a very useful tool
in the modeling of complicated systems because they have an
excellent ability to learn and to generalize (interpolate) the
complicated relationships between input and output variables
[22]. Also, the ANNs behave as model-free estimators; that is,
they can capture and model complex input-output relations
without the help of a mathematical model [23]. In other
words, training neural networks, for example, eliminates the
need for explicit mathematical modeling or similar system
analysis.

4.1. Artificial Neural Network Models of Static Pull-In Instabil-
ity of Beam. In this research radial basis function (RBF) neu-
ral network has been used for modeling the pull-in instability
voltage of microcantilever beams. The radial basis network
has some additional advantages such as rapid learning and
low error. In particular, most RBFNs involve fixed basis
functions with linearly unknown parameters in the output
layer. In practice, the number of parameters in RBFN starts
becoming unmanageably large only when the number of
input features increases beyond 10 or 20, which is not the
case in our study. Hence, the use of RBFN was practically
possible in this research. In this paper, MATLAB Neural
Network Toolbox (NNET) was used as a platform to create
the networks [24].

4.1.1. Radial Basis Function (RBF) Neural Network. The con-
struction of a radial basis function (RBF) neural network in
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Figure 2: Radial basis function neural network.
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Figure 3: Radial basis neuron.

its most basic form involves three entirely different layers.
A typical RBFN with 𝑁 input and 𝑀 output is shown in
Figure 2.The input layer is made up of source nodes (sensory
units). The second layer is a single hidden layer of high
enough dimension, which serves a different purpose in a
feedforward network. The output layer supplies the response
of the network to the activation patterns applied to the
input layer. The input units are fully connected though unit-
weighed links to the hidden neurons, and the hidden neurons
are fully connected by weighed links to the output neurons.
Each hidden neuron receives input vector X and compares it
with the position of the center ofGaussian activation function
with regard to distance. Finally, the output of the 𝑗th-hidden
neuron can be written as

𝐴
𝑗
= exp(−

󵄩
󵄩
󵄩
󵄩
󵄩
X
𝑖
− C
𝑗

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑆
2

) , (23)

where X
𝑖
is an 𝑁-dimensional input vector, 𝐶

𝑗
is the vector

representing the position of the center of the 𝑗th hidden
neuron in the input space, and 𝑆 is the standard deviation or
spread factor of Gaussian activation function. The structure
of a radial basis neuron in the hidden layer can be seen in
Figure 3.Output neurons have linear activation functions and

form a weighted linear combination of the outputs from the
hidden layer:

𝑌
𝑘
=

𝐻

∑

𝑗=1

𝑤
𝑘𝑗
𝐴
𝑗
, (24)

where𝑌
𝑘
is the output of neuron 𝑘,𝐻 is the number of hidden

neurons, and 𝑤
𝑘𝑗

is the weight value from the 𝑗th hidden
neuron to the 𝑘th output neuron. Basically, the RBFN has the
properties of rapid learning, easy convergence, and low error,
generally possessing the following characteristics.

(1) It may require more neurons than the standard
feedforward BP networks.

(2) It can be designed in a fraction of the time that it takes
to train the BP network.

(3) It has excellent capability of representing nonlinear
functions.

RBFN is being used for an increasing number of applications,
proportioning a very helpful modeling tool [25].

5. Results and Discussion

5.1. Static Pull-In Instability Analysis. When the applied
voltage between the two electrodes increases beyond a crit-
ical value, the electric field force cannot be balanced by
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Figure 4: Comparison of linear and nonlinear geometry model
results for a fixed-fixed beam with a gap of 0.5 𝜇m.
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Figure 5: Comparison of linear and nonlinear geometry model
results for a fixed-fixed beam with a gap of 2 𝜇m.

the elastic restoring force of the movable electrode and the
system collapses onto the ground electrode. The voltage and
deflection at this state are known as the pull-in voltage and
pull-in deflection, which are of utmost importance in the
design ofMEMSdevices.The pull-in voltage of cantilever and
fixed-fixed beams is an important variable for analysis and
design of microswitches and other microdevices. Typically,
the pull-in voltage is a function of geometry variable such
as length, width, and thickness of the beam and the gap
between the beam and ground plane. To study the instability
of the nanoactuator, (22) is solved numerically and simulated.
To highlight the differences between linear and nonlinear
geometry model results of Euler-Bernoulli microbeam, we
first compare the pull-in voltage for fixed-fixed and cantilever
beams with a length of 100 𝜇m, a width of 50 𝜇m, a thickness
of 1 𝜇m, and two gap lengths. For a small gap length of 0.5 𝜇m
(shown in Figure 4), we observe that linear and nonlinear
geometry model give identical results. However, for a large
gap length of 2𝜇m (shown in Figure 5), we observe that pull-
in voltage for fixed-fixed beam is significantly different. As
shown in Figure 6, the difference in the pull-in voltage is
even larger when a gap length of 4.5𝜇m is considered. In
Figures 7, 8, and 9, pull-in voltages of fixed-free beams are
shown. It is evident that pull-in voltage of fixed-fixed beam
is larger than fixed-free beam. More extensive studies for
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Figure 6: Comparison of linear and nonlinear geometry model
results for a fixed-fixed beam with a gap of 4.5 𝜇m.
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Figure 7: Comparison of linear and nonlinear geometry model
results for a fixed-free beam with a gap of 0.5 𝜇m.

the cantilever beam with lengths varying from 100 to 500 𝜇m
and thicknesses varying from 1 to 4𝜇m are shown in Figures
10 and 11. The gap lengths used vary from 5 to 30 𝜇m. For
gaps smaller than 15 𝜇m and lengths larger than 350 𝜇m, we
observe that the pull-in voltages obtained with linear and
nonlinear geometry model are very close. However, for large
gaps (such as the 15 𝜇m case) and for short beams (such as
the 100 𝜇m case), we observe that the difference in the pull-in
voltage obtained with linear and nonlinear geometry model
is not negligible. In Figures 12 and 13, we investigate the fixed-
fixed beam example with lengths varying from 100 to 500 𝜇m
and thicknesses varying from 0.5 to 2𝜇m. We observe that,
for all cases, the pull-in voltages obtained with linear model
are with significant error (larger than 5.5%) compared to the
pull-in voltages obtained with nonlinear geometry model.
When the gap increases, the error in pull-in voltage with
linearmodel increases significantly. Furthermore, contrary to
the case of cantilever beams, the thickness has a significant
effect on the error in pull-in voltages. The thinner the beam,
the larger the error. Another observation is that the length of
the beam has little effect on the error in pull-in voltage. This
observation is also different from the case of cantilever beams.
From the results, it is clear the linear model is generally not
valid for the fixed-fixed beams case, except when the gap is
very small, such as the 0.5𝜇m case as shown in Figure 4.
Effect of the size effect on the pull-in voltage of fixed-fixed and
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Figure 8: Comparison of linear and nonlinear geometry model
results for a fixed-free beam with a gap of 2𝜇m.

Pull-in voltage (V)

Linear
Nonlinear

4.5
4

3.5
3

2.5
2

1.5
1

0.5
0
0 1 2 3 4 5 6 7 8 9

G
ap

 (𝜇
m

)

Figure 9: Comparison of linear and nonlinear geometry model
results for a fixed-free beam with a gap of 4.5 𝜇m.

fixed-free beam is illustrated in Figures 12 and 13, respectively.
These figures represent that the size effect increases the pull-
in voltage of the nanoactuators. Figures 14 and 15 shows the
pull-in voltage versus size effect for fixed-fixed beam and
cantilever beam respectively.

5.2. Modeling of Static Pull-In Instability of Microcantilever
Beam Using Neural Networks. Modeling of pull-in instabil-
ity of microbeam with RBF neural network is composed
of two stages: training and testing of the networks with
numerical data. The training data consisted of values for
beam length (𝐿), gap (𝑔), width of beams (𝑏) and (ℎ/𝑙), and
the corresponding static pull-in instability voltage (𝑉PI). A
total of 120 such data sets were used, of which 110 were
selected randomly and used for training purposes whilst the
remaining 10 data sets were presented to the trained networks
as new application data for verification (testing) purposes.
Thus, the networks were evaluated using data that had not
been used for training. Training/testing pattern vectors are
formed, each formed with an input condition vector and the
corresponding target vector. We map each term to a value
between−1 and 1 using the following linearmapping formula:

𝑁 =

(𝑅 − 𝑅min) ∗ (𝑁max − 𝑁min)

(𝑅max − 𝑅min)
+ 𝑁min, (25)
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Figure 10: Gap versus pull-in voltage for cantilever beams with a
thickness of 1𝜇m. For length that equals 100 𝜇m, the difference in
pull-in voltage between linear and nonlinear geometry model is
significant when the gap is larger than 15 𝜇m. For a length larger
than 350 𝜇m, the pull-in voltages obtained with linear and nonlinear
geometry model are identical.
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significant when the gap is larger than 15 𝜇m. For a length larger
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geometry model are identical.
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Figure 14: Pull-in voltage versus size effect for fixed-fixed beamwith
gap of 2.5 𝜇m, a thickness of 1𝜇m, length of 300 𝜇m, and width of
0.5 𝜇m, for nonlinear geometry model.

where 𝑁 is normalized value of the real variable; 𝑁min =

−1 and 𝑁max = 1 are minimum and maximum values of
normalization, respectively; 𝑅 is real value of the variable;
𝑅min and 𝑅max are minimum and maximum values of the
real variable, respectively. These normalized data were used
as the inputs and output to train the ANN. In other words,
the network has four inputs of beam length (𝐿), gap (𝑔), width
of beams (𝑏) and (ℎ/𝑙) ratio, and one output of static pull-in
voltage (𝑉PI). Figure 16 shows the general network topology
for modeling the process.

Table 2 shows 10 numerical data sets, which have been
used for verifying or testing network capabilities in modeling
the process.

Therefore, the general network structure is supposed to
be 4-n-1, which implies 4 neurons in the input layer, n
neurons in the hidden layer, and 1 neuron in the output layer.
Then, by varying the number of hidden neurons, different
network configurations are trained, and their performances
are checked. For training problem, equal learning rate and
momentum constant of 𝜂 = 𝛼 = 0.9 were used [26]. Also,
error stopping criterion was set at 𝐸 = 0.01, which means
training epochs continued until the mean square error fell
beneath this value.
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gap of 2.5 𝜇m, a thickness of 1𝜇m, length of 300 𝜇m, and width of
0.5 𝜇m, for linear and nonlinear geometry model.
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Figure 16: General ANN topology.

Table 2: Beamgeometry andpull-in voltage for verification analysis.

Test number 𝐿 (𝜇m) 𝑏 (𝜇m) ℎ/𝑙 𝑔 (𝜇m) 𝑉PI (volt)
1 75 0.5 4 0.5 0.179
2 100 5 6 1 2.44
3 125 10 8 1.5 7.31
4 150 20 10 2 16.82
5 175 25 12 2.5 26.78
6 200 30 14 3 40.27
7 225 35 16 3.5 53.84
8 250 40 18 4 68.01
9 275 45 20 4.5 84.53
10 300 50 22 5 103.62

5.2.1. RBFNeural NetworkModel (RBFNN). Spread factor (𝑆)
value of Gaussian activation functions in the hidden layer
of RBFNN is the parameter that should be determined by
trial and error when using MATLAB neural network toolbox
for designing RBF networks. It has to be larger than the
distance between adjacent input vectors, so as to get good
generalization, but smaller than the distance across the whole
input space.Therefore, in order to have a networkmodel with
good generalization capabilities, the spread factor should be
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Table 3: The effects of different number of hidden neurons on the
RBF network performance (𝑆 = 3).

Number of
hidden neurons

Average error (%) in
predicting 𝑉PI with
newrbe function

Average error (%) in
predicting 𝑉PI with
newrb function

16 8.87 7.3
18 9.66 10.77
20 4.55 6.08
22 12.32 14.71
24 12.89 15.16
26 13.78 16.24

selected between 0.5 and 5.34. For training the RBF network,
at first, a guess is made for the value of spread factor in the
obtained interval. Also, the number of radial basis neurons
is originally set as 1. At each iteration, the input vector that
results in lowering most network training errors is used to
create a radial basis neuron. Then, the error of the new
network is checked, and if it is low enough, the training
stopped.Otherwise, the next neuron is added.This procedure
is repeated until the error goal is achieved, or the maximum
number of neurons is reached [27, 28]. In the present case,
it was found by trial and error that 20 hidden neurons,
with the spread factor of 3, can give a model, which has
the best performance in the verification stage. Table 3 shows
the effect of the number of hidden neurons on the RBF
network performance. It is clear that although adding more
than 20 hidden neurons makes the mean square error (MSE)
training smaller, this deteriorates network’s generalization
capabilities with increasing the average verification errors
instead of decreasing them. Therefore, the optimum number
of radial basis neurons is 20. The selected network has the
average errors of 4.55% in response to the 10 input verification
calculations (Table 2) for 𝑉PI with newrbe function. Table 4
lists output values predicted by the RBF neural model and
calculated ones in verification (testing) phase. Two functions,
namely, newrbe and newrb, have been used for creating RBF
networks.

From Tables 2 and 3, it is concluded that RBFN model
has the total average error of 4.55%. Figure 17 compares
the pull-in voltages evaluated by the modified couple stress
theory with ℎ/𝑙 = 4, 𝑔 = 1.05 𝜇m, 𝑏 = 50 𝜇m, and ℎ =

2.94 𝜇m with the result of RBF neural network. The pull-
in voltages of the microcantilever versus parameter ℎ/𝑙 for
𝑏/𝑔 = 50 are depicted in Figure 18, with two RBF functions.
The correlation coefficients (𝑅) are 0.997 for RBF model in
simulating 𝑉PI.

6. Conclusions

The primary contributions of the paper are summarized as
follows.

(1) The RBF neural network is capable of constructing
model using only numerical data, describing the static
pull-in instability behavior.
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Figure 17: Comparing the theoretical and RBF neural networks
pull-in voltages for silicon 110.
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Figure 18: Comparing pull-in voltage of the microcantilever versus
parameter ℎ/𝑙 and 𝑏/𝑔 = 50 with RBF models.

(2) RBF neural network, which possesses the privileges
of rapid learning, easy convergence, and low error,
has good generalization power and is accurate for this
particular case. This selection was done according to
the results obtained in the verification phase.

(3) For cantilever beams, length has a significant effect
on the error in pull-in voltages, while for fixed-fixed
beams, the length has little effect on the error. On
the other hand, for fixed-fixed beams, thickness has
significant effect on the error in pull-in voltage, while
for cantilever beams it has little effect.

(4) The static pull-in instability voltages of clamped-
clamped and cantilever beam are compared. For both
clamped-clamped and cantilever beams, the pull-in
voltage in nonlinear geometry beam model is bigger
than in linear model.

(5) For both fixed-fixed and cantilever beams by increas-
ing of gap length, the pull-in voltage is significantly
increased.

(6) For both fixed-fixed and cantilever beams by increas-
ing of thickness of beams, the pull-in voltage is
significantly increased.
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Table 4: Comparison of 𝑉PI calculated and predicted by the RBF neural network model.

Test number 𝑉PI (volt) 𝑉PI (volt)
Calculated RBF model (newrbe) Error (%) Calculated RBF model (newrb) Error (%)

1 0.179 0.19 8.49 0.179 0.18 3.78
2 2.44 2.47 1.34 2.44 2.70 10.97
3 7.31 7.68 5.12 7.31 7.81 6.93
4 16.82 16.88 0.38 16.82 17.27 2.71
5 26.78 27.47 2.59 26.78 27.76 3.69
6 40.27 41.96 4.20 40.27 43.20 7.29
7 53.84 54.80 1.79 53.84 54.96 2.09
8 68.01 70.64 3.88 68.01 75.06 10.38
9 84.53 85.43 1.07 84.53 88.40 4.59
10 103.62 120.89 16.67 103.62 113.75 9.78

(7) For both fixed-fixed and cantilever beams by increas-
ing of length of beams, the pull-in voltage is signifi-
cantly decreased.

(8) By usingmodified couple stress theory, it is found that
the dimensionless pull-in voltage of MEMS increases
linearly due to the size effect. This emphasizes the
importance of size effect consideration in design and
analysis of MEMS.

(9) The results have demonstrated the applicability and
adaptability of the RBNN for analysis of instability
static pull-in voltage of cantilever beams; also the
newrbe function is more accurate and faster than
newrb function.

(10) When the ratio of ℎ/𝑙 increases, the pull-in voltage
predicted by modified couple stress theory and ANN
is constant approximately.

The conclusion above indicates that the geometry of beam
has significant influences on the electrostatic characteristics
of microbeams that can be designed to tailor for the desired
performance in different MEMS applications.
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