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A general criterion for the global convergence of the nonlinear conjugate gradient method is established, based on which the
global convergence of a newmodified three-parameter nonlinear conjugate gradientmethod is proved under somemild conditions.
A large amount of numerical experiments is executed and reported, which show that the proposed method is competitive and
alternative. Finally, one engineering example has been analyzed for illustrative purposes.

1. Introduction

Unconstrained optimization methods are widely used in the
fields of nonlinear dynamic systems and engineering compu-
tation to obtain the numerical solution of the optimal control
problem [1–4]. In this paper, we consider the unconstrained
optimization problem:

min 𝑓 (𝑥) , 𝑥 ∈ 𝑅𝑛, (1)

where 𝑓 : 𝑅𝑛 → 𝑅 is a continuously differentiable function.
The nonlinear conjugate gradient (CG) method is highly
useful for solving this kind of problems because of its
simplicity and its very low memory requirement [1]. The
iterative formula of the CG methods is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, (2)

where 𝛼𝑘 > 0 is step length which is obtained by carrying
out some linear search, such as exact or inexact line search.
In practical computation, exact line search is consumption
time and the workload is very large, so we usually take the
following inexact line search (see [5–7]). Usually, a major
inexact line search is the strongWolfe-Powell line search.The

strong Wolfe-Powell line search is to find the step-length 𝛼𝑘
in (2) satisfying

𝑓 (𝑥𝑘 + 𝛼𝑘𝑑𝑘) − 𝑓 (𝑥𝑘) ≤ 𝛿𝛼𝑘𝑔𝑇𝑘 𝑑𝑘, (3)

𝜎𝑔𝑇𝑘 𝑑𝑘 ≤ 𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇 𝑑𝑘 ≤ −𝜎𝑔𝑇𝑘 𝑑𝑘, (4)

where 0 < 𝛿 < 1/2 and 𝛿 < 𝜎 < 1. In this paper, the following
modified Wolfe-Powell line search is to find the step-length
𝛼𝑘 in (2) satisfying (3) and the following:

𝜎𝑔𝑇𝑘 𝑑𝑘 ≤ 𝑔 (𝑥𝑘 + 𝛼𝑘𝑑𝑘)
𝑇 𝑑𝑘 ≤ 0, (5)

and 𝑑𝑘 is the search direction defined by

𝑑𝑘 =
{
{
{

−𝑔1 𝑘 = 1
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 𝑘 ≥ 2,

(6)

where 𝑔𝑘 denotes the gradient ∇𝑓(𝑥𝑘), 𝛽𝑘 is scalar, and 𝛽𝑘 is
chosen so that 𝑑𝑘 becomes the 𝑘th conjugate direction.There
have been many well-known formulae for the scalar 𝛽𝑘, for
example,

𝛽FR𝑘 =
𝑔𝑘

2

𝑔𝑘−1

2

(7)
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(Fletcher-Reeves [8], 1964),

𝛽PRP𝑘 = 𝑔
𝑇
𝑘𝑦𝑘−1
𝑔𝑘−1


2 (8)

(Polak-Ribiere-Polyak [9], 1969),

𝛽DY𝑘 =
𝑔𝑘

2

𝑑𝑇
𝑘−1
𝑦𝑘−1

(9)

(Dai-Yuan [10], 1999), and other formulae (e.g., [11–13]),
where ‖ ⋅ ‖ is the Euclidean norm of vectors, 𝑦𝑘−1 = 𝑔𝑘 −𝑔𝑘−1,
and “𝑇” stand for the transpose.These methods are generally
regarded as very efficient conjugate gradient methods in
practical computation.

In recent decades, in order to obtain the CG method
which has not only good convergence property but also
excellent computation,many researchers have studied theCG
method extensively and obtained some improved methods
with good properties [14–20]. Li and Feng [21] gave the
modified CG method which generates a sufficient descent
direction and showed its global convergence property under
the strong Wolfe-Powell conditions. Dai and Wen [22] gave
a scaled conjugate gradient method. They proved its global
convergence property under the strong Wolfe-Powell con-
ditions. Al-Baali [23] proved that the FR method satisfies
the sufficient descent condition and converges globally for
general objective functions if the strong Wolfe-Powell line
search is used. Dai and Yuan [24] also introduced a formula
for 𝛽𝑘:

𝛽𝑘

= (1 − 𝜆𝑘) 𝑔𝑘

2 + 𝜆𝑘𝑔𝑇𝑘𝑦𝑘−1

(1 − 𝜇𝑘 − 𝜔𝑘) 𝑔𝑘−1

2 + 𝜇𝑘𝑑𝑇𝑘−1𝑦𝑘−1 − 𝜔𝑘𝑑𝑇𝑘−1𝑔𝑘−1

,
(10)

where 0 ≤ 𝜆𝑘 ≤ 1, 0 ≤ 𝜇𝑘 ≤ 1, and 0 ≤ 𝜔𝑘 ≤ 1 − 𝜇𝑘. Because

𝑔𝑇𝑘𝑦𝑘−1 = 𝑔𝑘

2 − 𝑔𝑇𝑘𝑔𝑘−1,

𝑔𝑇𝑘−1𝑑𝑘−1 = − 𝑔𝑘−1

2 + 𝛽𝑘−1𝑔𝑇𝑘−1𝑑𝑘−2,

(11)

we can rewrite (10) as

𝛽∗𝑘 =
𝑔𝑘

2 − 𝜆𝑘𝑔𝑇𝑘𝑔𝑘−1

𝑔𝑘−1

2 + 𝜇𝑘𝑑𝑇𝑘−1𝑔𝑘 − 𝜔𝑘𝛽𝑘−1𝑔𝑇𝑘−1𝑑𝑘−2

. (12)

This formula includes the above three classes of CG method
as an extreme case, and global convergence of three param-
eters of CG method was proved under strong Wolfe-Powell
line search. If 𝜔𝑘 = 0, then the family reduces to the two-
parameter family of conjugate gradient methods in [25].
Further, if 𝜆𝑘 = 0, 𝜇𝑘 = 𝜇, and 𝜔𝑘 = 0, then the family
reduces to the one-parameter family in [26]. Therefore, the
three-parameter family has the one-parameter family in [26]
and the two-parameter family in [25] as its subfamilies.
In addition, some hybrid methods can also be regarded as
special cases of the three-parameter family [24]. Above many

modified CG methods, global convergence was obtained
under strongWolfe-Powell line search; however, in this paper,
we further study the CG method, and our main aim is to
improve the numerical performance of the CGmethod while
keeping its global convergence with modified Wolfe-Powell
line search.

This paper is organized as follows. We first present a
criterion for the global convergence of CG method in the
next section. In Section 3, we propose a new modified three-
parameter conjugate gradient method and establish global
convergence results for relative algorithm under modified
Wolfe-Powell line search. The preliminary numerical results
are contained in Section 4. One engineering example is
analyzed for illustration in Section 5. Finally, conclusions
appear in Section 6.

2. A Criterion for the Global Convergence of
CG Method

In this section, first, we adopt the following assumption used
commonly in the research literatures.

Assumption 1. The function 𝑓 is 𝐿𝐶 in a neighborhood𝑁 of
the level set Ω fl {𝑥 ∈ 𝑅𝑛 | 𝑓(𝑥) ≤ 𝑓(𝑥1)} and Ω is bounded.
Here, by 𝐿𝐶, we mean that the gradient ∇𝑓(𝑥𝑘) is Lipschitz
continuous with modulus 𝐿; that is, there exists 𝐿 > 0 such
that

𝑔 (𝑥) − 𝑔 (𝑦)
 ≤ 𝐿

𝑥 − 𝑦
 for any 𝑥, 𝑦 ∈ 𝑁. (13)

Lemma2 (Zoutendijk condition [27]). Suppose that Assump-
tion 1 holds, 𝑥𝑘 is given by (2) and (6), and 𝛼𝑘 is obtained by the
modifiedWolfe-Powell line search ((3), (5)), while the direction
𝑑𝑘 satisfies 𝑔𝑇𝑘 𝑑𝑘 < 0. Then,

∞

∑
𝑘=1

(𝑔𝑇𝑘 𝑑𝑘)
2

𝑑𝑘

2
< +∞. (14)

Lemma3 (see [28]). Suppose that𝜆𝑘(>0) and𝐶 are constants;
if {𝑎𝑖} satisfy ∑𝑘𝑖=1 𝑎𝑖 ≥ 𝜆𝑘 + 𝐶, then ∑𝑖≥1(𝑎2𝑖 /𝑖) = +∞ and
∑𝑘≥1(𝑎2𝑘/∑𝑘𝑖=1 𝑎𝑖) = +∞.

Theorem 4. Suppose that the objective function satisfies
Assumption 1 and that 𝑥𝑘 is given by (2) and (6), where 𝛼𝑘
satisfies the modified Wolfe-Powell (3) and (5), and |𝛽𝑘| ≤
‖𝑔𝑘‖2/‖𝑔𝑘−1‖2; then, either 𝑔𝑘 = 0 holds for certain 𝑘 or

lim inf
𝑘→∞

𝑔𝑘
 = 0. (15)

Proof. Suppose, by contradiction, that the stated conclusion
is not true. Then, in view of ‖𝑔𝑘‖ > 0, there exits a constant
𝜀 > 0, such that

𝑔𝑘

2 ≥ 𝜀, 𝑘 = 1, 2, . . . . (16)

From (6), we have

𝑑𝑘 + 𝑔𝑘 = 𝛽𝑘𝑑𝑘−1, 𝑘 = 2, 3, . . . . (17)
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By multiplying 𝑑𝑘 + 𝑔𝑘 on both sides of (17), then we have

𝑑𝑘

2 = − 𝑔𝑘


2 − 2𝑔𝑇𝑘 𝑑𝑘 + (𝛽𝑘)

2 𝑑𝑘−1

2 . (18)

Let 𝑡𝑘 = ‖𝑑𝑘‖2/‖𝑔𝑘‖4 and 𝑟𝑘 = −𝑔𝑇𝑘 𝑑𝑘/‖𝑔𝑘‖2; then,

𝑡𝑘 = −
1

𝑔𝑘

2
− 2𝑔
𝑇
𝑘 𝑑𝑘

𝑔𝑘

4
+ (𝛽𝑘)2

𝑑𝑘−1

2

𝑔𝑘

4
. (19)

Thus, from (19) and |𝛽𝑘| ≤ ‖𝑔𝑘‖2/‖𝑔𝑘−1‖2, we get

𝑡𝑘 ≤ −
1

𝑔𝑘

2
+ 2𝑟𝑘
𝑔𝑘

2
+
𝑔𝑘

4

𝑔𝑘−1

4
⋅
𝑑𝑘−1


2

𝑔𝑘

4

= 𝑡𝑘−1 −
1

𝑔𝑘

2
+ 2𝑟𝑘
𝑔𝑘

2
.

(20)

Note that 𝑡1 = 1/‖𝑔1‖2 and 𝑟1 = 1; then, it follows from (20)
that

𝑡𝑘 ≤ −
𝑘

∑
𝑖=1

1
𝑔𝑖

2
+ 2
𝑘

∑
𝑖=1

𝑟𝑖
𝑔𝑖

2
. (21)

From Assumption 1, it follows that there exists constant
𝑀(>0), such that

𝑔 (𝑥)

2 ≤ 𝑀, ∀𝑥 ∈ Ω, (22)

and from (16), (21), and (22), we get

𝑡𝑘 ≤ −
𝑘
𝑀 + 2𝜀

𝑘

∑
𝑖=1

𝑟𝑖
 . (23)

From the above, it is obvious that

𝑡𝑘 ≤
2
𝜀
𝑘

∑
𝑖=1

𝑟𝑖
 . (24)

From the other side, for 𝑡𝑘 ≥ 0 from (23), it follows that

𝑘

∑
𝑖=1

𝑟𝑖
 ≥

𝑘𝜀
2𝑀. (25)

From (24) and (25) and Lemma 3, we have

∑
𝑘≥1

(𝑔𝑇𝑘 𝑑𝑘)
2

𝑑𝑘

2
= ∑
𝑘≥1

𝑟2𝑘
𝑡𝑘
≥ 𝜀2∑
𝑘≥1

𝑟2𝑘
∑𝑘≥1 𝑟𝑖

= +∞, (26)

what contradicts Lemma 2.Therefore, the global convergence
is proved.

3. The Global Convergence for the New
Formula and Algorithm Frame

3.1. The New Formula and the Corresponding Properties.
Based on formula (10), we put forward a new formula of 𝛽𝑘:

𝛽new𝑘 =
max {0,min {(1 − 𝜆𝑘) 𝑔𝑘


2 , 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1)}}

(1 − 𝜇𝑘 − 𝜔𝑘) 𝑔𝑘−1

2 + 𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1 − (1 − 𝜆𝑘 + 𝜇𝑘 + 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1

, (27)

where 1/2 < 𝜆𝑘 ≤ 1, 0 ≤ 𝜇𝑘 ≤ 1, 0 ≤ 𝜔𝑘 ≤ 1, and 𝜆𝑘 ≥ 𝜇𝑘+𝜔𝑘.
Because of possible negative values of

min {(1 − 𝜆𝑘) 𝑔𝑘

2 , 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1)} , (28)

we use the maximum function to truncate zero and

min {(1 − 𝜆𝑘) 𝑔𝑘

2 , 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1)} . (29)

Using the equality

𝑔𝑇𝑘−1𝑑𝑘−1 = − 𝑔𝑘−1

2 + 𝛽𝑘−1𝑔𝑇𝑘−1𝑑𝑘−2, (30)

we can rewrite the denominator of (27) as

𝑔𝑘−1

2 + 𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1 − 𝜔𝑘𝛽𝑘−1𝑔𝑇𝑘−1𝑑𝑘−2

+ (1 − 𝜆𝑘) 𝑔𝑘−1

2 − (1 − 𝜇𝑘 + 𝜔𝑘) 𝛽𝑘−1𝑔𝑇𝑘−1𝑑𝑘−2.

(31)

When

(1 − 𝜆𝑘) 𝑔𝑘−1

2 = (1 − 𝜇𝑘 + 𝜔𝑘) 𝛽𝑘−1𝑔𝑇𝑘−1𝑑𝑘−2, (32)

then the denominator of 𝛽new𝑘 given by (27) reduces to the
denominator of 𝛽∗𝑘 . On the other hand, when

0 < 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1) < (1 − 𝜆𝑘) 𝑔𝑘

2 , (33)

the numerator of (27) reduces to

𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1) . (34)

When

𝑑𝑘−1 =
1
𝜆𝑘
𝑔𝑘, (35)

then

𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1) = 𝑔𝑘

2 − 𝜆𝑘𝑔𝑇𝑘𝑔𝑘−1. (36)

Now, the numerator of 𝛽new𝑘 (27) reduces to the numera-
tor of 𝛽∗𝑘 . From the above analysis, we can see that (27)
indeed is an extension of (10). Due to the existence of the
parameters 𝜆𝑘, 𝜇𝑘, and 𝜔𝑘, it would be more flexible to call
methods (2), (6), and (27) by this paper of conjugate gra-
dient methods. Numerical experiments results in Section 4
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demonstrate the influence of these parameters versus formula
(27).

Lemma 5. Suppose that Assumption 1 holds and that 𝑥𝑘 is
given by (2) and (6), where 𝛼𝑘 satisfies the modified Wolfe-
Powell conditions (3) and (5), while 𝛽𝑘 is computed by (27).
Then, one has

𝑔𝑇𝑘 𝑑𝑘
𝑔𝑘

2
< 0 ∀𝑘 ≥ 1. (37)

Proof. When 𝑘 = 1, we have

𝑔𝑇1 𝑑1 = − 𝑔1

2 ,

𝑔𝑇1 𝑑1
𝑔1

2
= −1 < 0.

(38)

Suppose 𝑔𝑇𝑘−1𝑑𝑘−1 < 0 hold, 𝛽𝑘 = 𝛽new𝑘 in formula (27), and
the conclusion holds.

If 𝛽𝑘 = 𝛽new𝑘 , we have

𝑔𝑇𝑘 𝑑𝑘 = − 𝑔𝑘

2 + 𝛽𝑘𝑔𝑇𝑘 𝑑𝑘−1,

𝑔𝑇𝑘 𝑑𝑘
𝑔𝑘

2
= −1 + 𝑙𝑘

(1 − 𝜇𝑘 − 𝜔𝑘) 𝑔𝑘−1

2 + 𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1 − (1 − 𝜆𝑘 + 𝜇𝑘 + 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1

⋅ 𝑔
𝑇
𝑘 𝑑𝑘−1
𝑔𝑘

2
,

(39)

where 𝑙𝑘 = max{0,min{(1−𝜆𝑘)‖𝑔𝑘‖2, 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 −𝑑𝑘−1)}}; by
formulas (3) and (5), we have 𝑔𝑇𝑘 𝑑𝑘−1 < 0. Hence,

𝑔𝑇𝑘 𝑑𝑘−1
𝑔𝑘

2
< 0,

𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1 − (1 − 𝜆𝑘 + 𝜇𝑘 + 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1
≥ 𝜇𝑘𝜎𝑔𝑇𝑘−1𝑑𝑘−1 − (1 − 𝜆𝑘 + 𝜇𝑘 + 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1
= (𝜇𝑘𝜎 − 1 + 𝜆𝑘 − 𝜇𝑘 − 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1.

(40)

When 𝜇𝑘𝜎−𝜇𝑘 < 0, −1+𝜆𝑘 ≤ 0, and 𝑔𝑇𝑘−1𝑑𝑘−1 < 0, we obtain

𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1 − (1 − 𝜆𝑘 + 𝜇𝑘 + 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1 > 0. (41)

Due to (1−𝜇𝑘 −𝜔𝑘)‖𝑔𝑘−1‖2 > 0 and 𝑙𝑘 ≥ 0, through the above
analysis, we have

𝑙𝑘
(1 − 𝜇𝑘 − 𝜔𝑘) 𝑔𝑘−1


2 + 𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1 − (1 − 𝜆𝑘 + 𝜇𝑘 + 𝜔𝑘) 𝑔𝑇𝑘−1𝑑𝑘−1

⋅ 𝑔
𝑇
𝑘 𝑑𝑘−1
𝑔𝑘

2
< 0.

(42)

Hence, 𝑔𝑇𝑘 𝑑𝑘/‖𝑔𝑘‖2 < 0.

The result shows that the search direction satisfies descent
condition (𝑔𝑇𝑘 𝑑𝑘 < 0); this condition may be crucial for
convergence analysis of any conjugate gradient method.

Lemma 6. Suppose that Assumption 1 holds and that {𝑥𝑘} is
given by (2) and (6), where 𝛼𝑘 satisfies the modified Wolfe-
Powell conditions (3) and (5), while 𝛽𝑘 is computed by (27).
Then, one has

𝛽𝑘
 ≤

𝑔𝑘

2

𝑔𝑘−1

2
. (43)

Proof. Let𝛽𝑘 = 𝛽new𝑘 ; when (1−𝜆𝑘)‖𝑔𝑘‖2 ≤ 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1−𝑑𝑘−1),
then 𝑙𝑘 = (1 − 𝜆𝑘)‖𝑔𝑘‖2; when (1 − 𝜆𝑘)‖𝑔𝑘‖2 > 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 −
𝑑𝑘−1), if 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1) < 0, then 𝑙𝑘 = 0; if 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 −
𝑑𝑘−1) > 0, 𝑙𝑘 = 𝜆𝑘𝑔𝑇𝑘 (𝑔𝑘−1 − 𝑑𝑘−1).

By Lemma 5, then 𝜇𝑘𝑔𝑇𝑘 𝑑𝑘−1−(1−𝜆𝑘+𝜇𝑘+𝜔𝑘)𝑔𝑇𝑘−1𝑑𝑘−1 >
0.

To sum up, |𝛽𝑘| ≤ (1−𝜆𝑘)‖𝑔𝑘‖2/(1−𝜇𝑘 −𝜔𝑘)‖𝑔𝑘−1‖2, and
by 𝜆𝑘 > 𝜇𝑘+𝜔𝑘, we have (1−𝜆𝑘)/(1−𝜇𝑘−𝜔𝑘) < 1, and hence
|𝛽𝑘| ≤ ‖𝑔𝑘‖2/‖𝑔𝑘−1‖2.

Theorem 7. Suppose the objective function 𝑓(𝑥) satisfies
Assumption 1; consider methods (2) and (6), where 𝛽𝑘 is given
by (27) and 𝛼𝑘 satisfies the modified Wolfe-Powell line search
condition. Then, either 𝑔𝑘 = 0 holds for certain 𝑘 or

lim inf
𝑘→∞

𝑔𝑘
 = 0. (44)

Proof. ByTheorem4 and Lemma 6,Theorem 7 is proved.

The result shows that the proposed algorithm with the
modified Wolfe-Powell line search possesses global conver-
gence.

3.2. Algorithm A. Based on the discussed above, now we can
describe the algorithm frame for solving the unconstrained
optimization problems (1) as follows.

Step 0. Choose an initial point 𝑥0 ∈ 𝑅𝑛, given constants 𝜀0 >
0, 𝛿 ∈ (0, 1), 𝜎 ∈ (𝛿, 1) and 𝜆𝑘 ∈ (1/2, 1], 𝜇𝑘 ∈ [0, 1], and
𝜔𝑘 ∈ [0, 1], subject to 𝜆𝑘 ≥ 𝜇𝑘 +𝜔𝑘, set 𝑑0 = 𝑔0, and let 𝑘 fl 0.

Step 1. If a stopping criterion ‖𝑔𝑘‖ < 𝜀0 is satisfied, then stop;
otherwise, go to Step 2.

Step 2. Determine a step size 𝛼𝑘 by line searches (3) and (5).

Step 3. Let 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘; compute 𝛽𝑘 and 𝑑𝑘 by (27) and
(6).

Step 4. Set 𝑘 fl 𝑘 + 1 and go to Step 1.
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4. Numerical Experiments and Results

In this section, in order to show the performance of the given
algorithm, we test our proposed algorithm (algorithm A)
and DY algorithm (given by formula (10)) via unconstrained
optimization problems from Andrei [29] as follow. These
testing functions are often used in engineering field:

(1) Sphere function 𝑓Sph(𝑥) = ∑100𝑖=1 𝑥2𝑖 , 𝑥𝑖 ∈ [−5.12, 5.12],
𝑥∗ = (0, 0, . . . , 0), 𝑓Sph(𝑥∗) = 0.

(2) Rastrigin function 𝑓Ras(𝑥) = 100 + ∑10𝑖=1(𝑥2𝑖 −
10 cos(2𝜋𝑥𝑖)), 𝑥𝑖 ∈ [−5.12, 5.12], 𝑥∗ = (0, 0, . . . , 0),
𝑓Ras(𝑥∗) = 0.

(3) Freudenstein and Roth function (Froth) 𝑓Froth(𝑥) =
(−13 + 𝑥1 + ((5 − 𝑥2)𝑥2 − 2)𝑥2)2 + (−29 + 𝑥1 + ((𝑥2 +
1)𝑥2 − 14)𝑥2)2, 𝑥∗ = (5, 4), 𝑓Froth(𝑥∗) = 0.

(4) Perturbed Quadratic diagonal function (Pqd)𝑓Pqd(𝑥)
= (∑5𝑖=1 𝑥𝑖)2 + ∑5𝑖=1(𝑖/100)𝑥2𝑖 , 𝑥∗ = (0, 0, . . . , 0),
𝑓Pqd(𝑥∗) = 0.

(5) Extended White & Holst function (Ewh) 𝑓Ewh(𝑥) =
∑5𝑖=1[100(𝑥2𝑖−𝑥32𝑖−1)2+(1−𝑥2𝑖−1)2], 𝑥∗ = (1, 1, . . . , 1),
𝑓Ewh(𝑥∗) = 0.

(6) Raydan 1 function𝑓Ray1(𝑥) = ∑2𝑖=1(𝑖/10)(exp(𝑥𝑖)−𝑥𝑖),
𝑥∗ = (0, 0), 𝑓Ray1(𝑥∗) = 0.3.

(7) Raydan 2 function𝑓Ray2(𝑥) = ∑500𝑖=1 (exp(𝑥𝑖)−𝑥𝑖), 𝑥∗ =
(0, 0, . . . , 0), 𝑓Ray2(𝑥∗) = 500.

(8) Extended Trigonometric function (Etri) 𝑓Etri(𝑥) =
∑10𝑖=1[(𝑛 − ∑10𝑗=1 cos𝑥𝑗) + 𝑖(1 − cos𝑥𝑖) − sin𝑥𝑖]2, 𝑥∗ =
(0, 0, . . . , 0), 𝑓Etri(𝑥∗) = 0.

(9) Extended Powell function (Epow) 𝑓Epow(𝑥) = (𝑥3 +
10𝑥2)2 + 5(𝑥3 − 𝑥2)2 + (𝑥2 − 2𝑥3)4 + 10(𝑥1 − 𝑥4)4,
𝑥∗ = (0, 0, . . . , 0), 𝑓Epow(𝑥∗) = 0.

(10) Wood function𝑓Wood(𝑥) = 100(𝑥2−𝑥21)2+(1−𝑥1)2+
(1−𝑥3)2+90(𝑥4−𝑥23)2+10(𝑥2+𝑥4−2)2+0.1(𝑥2−𝑥24)2,
𝑥∗ = (1, 1, . . . , 1), 𝑓Wood(𝑥∗) = 0.

(11) Extended Wood function (Ewood) 𝑓Ewood(𝑥) =
100(𝑥21 − 𝑥2)2 + (𝑥1 − 1)2 + (1 − 𝑥3)2 + 90(𝑥23 − 𝑥4)2 +
10.1{(𝑥2 − 1)2 + (𝑥4 − 1)2} + 19.8(𝑥2 − 1)(𝑥4 − 1),
𝑥∗ = (1, 1, . . . , 1), 𝑓Ewood(𝑥∗) = 0.

(12) Perturbed Quadratic function (Perq) 𝑓Perq(𝑥) =
∑3𝑖=1 𝑖𝑥2𝑖 + (1/100)(∑𝑛𝑖=1 𝑥𝑖)2, 𝑥∗ = (0, 0, . . . , 0),
𝑓Perq(𝑥∗) = 0.

(13) Extended Tridiagonal 1 function (Etri1) 𝑓Etri1(𝑥) =
∑500𝑖=1 [(𝑥2𝑖−1 + 𝑥2𝑖 − 3)2 + (𝑥2𝑖−1 − 𝑥2𝑖 + 1)4], 𝑥∗ = (1, 2,
1, 2, . . . , 1, 2), 𝑓Etri1(𝑥∗) = 0.

(14) Extended Miele & Cantrell function (Emic)
𝑓Emic(𝑥) = ∑2𝑖=1[(exp(𝑥4𝑖−3) − 𝑥4𝑖−2)2 + 100(𝑥4𝑖−2
−𝑥4𝑖−1)6 + {tan(𝑥4𝑖−1 − 𝑥4𝑖)}4 + 𝑥84𝑖−3], 𝑥∗ = (0, 1,
1, 1, 0, 1, 1, 1, . . . , 0, 1, 1, 1), 𝑓Emic(𝑥∗) = 0.

(15) Extended Rosenbrock function (Erosen) 𝑓Erosen(𝑥) =
∑10𝑖=1[100(𝑥2𝑖 − 𝑥22𝑖−1)2 + (1 − 𝑥2𝑖−1)2], 𝑥∗ = (1, 1, . . . ,
1, 1), 𝑓Erosen(𝑥∗) = 0.

(16) Generalized Rosenbrock function (Grosen)
𝑓Grosen(𝑥) = ∑1999𝑖=1 [100(𝑥𝑖+1 − 𝑥2𝑖 )2 + (1 − 𝑥𝑖)2],
𝑥∗ = (1, 1, . . . , 1, 1), 𝑓Grosen(𝑥∗) = 0.

(17) QUARTC function 𝑓QUAR(𝑥) = ∑20𝑖=1(𝑥𝑖 − 1)4, 𝑥∗ =
(1, 1, . . . , 1, 1), 𝑓QUAR(𝑥∗) = 0.

(18) LIARWHD function 𝑓LIAR(𝑥) = ∑100𝑖=1 4(𝑥2𝑖 − 𝑥1)2 +
∑100𝑖=1 (𝑥𝑖 − 1)2, 𝑥∗ = (1, 1, . . . , 1, 1), 𝑓LIAR(𝑥∗) = 0.

(19) Staircase 1 function 𝑓Stai1(𝑥) = ∑4𝑖=1(∑𝑖𝑗=1 𝑥𝑗)2, 𝑥∗ =
(0, 0, . . . , 0, 0), 𝑓Stai1(𝑥∗) = 0.

(20) Staircase 2 function 𝑓Stai2(𝑥) = ∑300𝑖=1 [(∑𝑖𝑗=1 𝑥𝑗) − 𝑖]2,
𝑥∗ = (1, 1, . . . , 1, 1), 𝑓Stai2(𝑥∗) = 0.

(21) POWER function 𝑓POWER(𝑥) = ∑1000𝑖=1 (𝑖𝑥𝑖)2, 𝑥∗ =
(0, 0, . . . , 0, 0), 𝑓POWER(𝑥∗) = 0.

(22) Diagonal 4 function 𝑓Dia4(𝑥) = ∑2𝑖=1(1/2)(𝑥22𝑖−1 +
100𝑥22𝑖), 𝑥∗ = (0, 0, . . . , 0, 0), 𝑓Dia4(𝑥∗) = 0.

(23) Extended BD1 function (EBD1) 𝑓EBD1(𝑥) =
∑5000𝑖=1 [(exp(𝑥2𝑖−1) − 𝑥2𝑖)2 + (𝑥22𝑖−1 + 𝑥22𝑖 − 2)2,
𝑥∗ = (1, 1, . . . , 1, 1), 𝑓EBD1(𝑥∗) = 0.

(24) CUBE function 𝑓CUBE(𝑥) = (𝑥1 − 1)2 + ∑300𝑖=2 100(𝑥𝑖 −
𝑥3𝑖−1)2, 𝑥∗ = (1, 1, . . . , 1, 1), 𝑓CUBE(𝑥∗) = 0.

Here, 𝑥∗ and 𝑓(𝑥∗) are the optimal solution and the
function value at the optimal solution, respectively. For each
algorithm, the parameters are chosen as 𝛿 = 0.04 and 𝜎 = 0.5.
All codes were written in MATLAB 7.5 and run on Lenovo
with 1.90GHz CPU processor, 2.43GB RAM memory, and
Windows XP operating system. The stop criterion of the
iteration is one of the following conditions: (1) ‖𝑔𝑘‖ ≤ 𝜀0 =
10−4 and (2) the number of iterations Itr > 5000. If condition
(2) occurs, the method is deemed to fail for solving the
corresponding test problem, and denote it by “𝐹.” For the
first three test problems, we present experimental results to
observe the behavior of the proposed and DY (given by
formula (10)) conjugate gradient algorithm for different 𝜆𝑘,
different 𝜇𝑘, and different 𝜔𝑘. Details of the schemes for
parameters set are given in Table 1. Numerical results of test
problems are listed in Tables 2, 3, 4, 5, 6, 7, and 8, respectively.
Table 9 shows numerical results of other test problems. Here,
𝑥0 denotes the initial point of the test problems and 𝑥 and
𝑓(𝑥) are iteration value and the function value at the final
iteration, respectively.

Based on Table 1’s sixteen kinds of scheme (different
parameters set), we compared algorithm A with DY (given
by formula (10)) conjugate gradient algorithm based on
different initial point for three test problems. It is easy
to see that the two algorithms based on different scheme
(different parameters set) are successful for the first and
the second test problems listed in Tables 2, 3, and 4. From
Tables 5, 6, 7, 8, and 9, we can see that algorithm A is
more successful than DY (given by formula (10)) conjugate
gradient algorithm. For example, for the first three test
problems based on different scheme (different parameters
set), algorithm A based on different initial point all achieved
satisfied iteration value and the function value at the final
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Figure 1: Performance profile on the absolute errors of 𝑓(𝑥) versus 𝑓(𝑥∗) (algorithm A versus DY).

Table 1: Several schemes for the parameters set.

Parameters set Scheme number
𝜆𝑘 = 1.0, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.1 [1]
𝜆𝑘 = 0.8, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.1 [2]
𝜆𝑘 = 0.7, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.1 [3]
𝜆𝑘 = 0.6, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.1 [4]
𝜆𝑘 = 1.0, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.8 [5]
𝜆𝑘 = 1.0, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.6 [6]
𝜆𝑘 = 1.0, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.4 [7]
𝜆𝑘 = 1.0, 𝜇𝑘 = 0.1, 𝜔𝑘 = 0.2 [8]
𝜆𝑘 = 0.9, 𝜇𝑘 = 0.3, 𝜔𝑘 = 0.5 [9]
𝜆𝑘 = 0.9, 𝜇𝑘 = 0.3, 𝜔𝑘 = 0.4 [10]
𝜆𝑘 = 0.9, 𝜇𝑘 = 0.3, 𝜔𝑘 = 0.3 [11]
𝜆𝑘 = 0.9, 𝜇𝑘 = 0.3, 𝜔𝑘 = 0.1 [12]
𝜆𝑘 = 0.7, 𝜇𝑘 = 0.2, 𝜔𝑘 = 0.1 [13]
𝜆𝑘 = 0.7, 𝜇𝑘 = 0.3, 𝜔𝑘 = 0.1 [14]
𝜆𝑘 = 0.7, 𝜇𝑘 = 0.4, 𝜔𝑘 = 0.1 [15]
𝜆𝑘 = 0.7, 𝜇𝑘 = 0.5, 𝜔𝑘 = 0.1 [16]

iteration. Nevertheless, under some scheme (parameters set),
DY (given by formula (10)) conjugate gradient algorithm
cannot search satisfied iteration solution and the function
value at the final iteration. From Tables 5–9, we can also see
that DY (given by formula (10)) conjugate gradient algorithm
sometimes is failed based on some scheme (parameters set);
however, our algorithm is failed only one time.These indicate
that the influence of parameters value’s changing in formula
(27) on the algorithm is not big. We presented the Dolan
and Moré [30] performance profiles for the algorithm A and
DY method. Note that the performance ratio 𝑝(𝜏) is the
probability for a solver 𝑠 for the tested problems with the

factor 𝜏 of the smallest cost. As we can see from Figure 1,
algorithm A is superior to DYmethod for the absolute errors
of 𝑓(𝑥) versus 𝑓(𝑥∗). Hence, compared with the DY (given
by formula (10)) conjugate gradient algorithm, algorithm A
has higher stability and adaptability. Therefore, algorithm A
yields a better numerical performance than the DY (given by
formula (10)) conjugate gradient algorithm. From the above
analysis, we can conclude that algorithm A is competitive for
solving unconstrained optimization problems.

5. Application to Engineering

In this section, we present a real example to illustrate
application of the algorithm proposed in this article. The
example is the results of tests on endurance of deep groove
ball bearings. For illustrating the purposes, we applied the real
dataset of 23 observed failure times that was initially reported
in Lieblein and Zelen [31] and later by a number of authors
including Abouammoh and Alshingiti [32] and Krishna and
Kumar [33]. The following dataset represents the number of
millions of revolutions before failure for each of the 23 ball
bearings in a life test: 17.88, 28.92, 33.0, 41.52, 42.12, 45.60,
48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88,
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, and 173.4.
Dey and Pradhan [34] indicated thatWeibull distribution fits
this dataset better than the exponential, inverted exponential,
and gamma distribution. A random variable 𝑋 follows the
Weibull distribution with probability density function (pdf)
being that

𝑓 (𝑥; 𝛼, 𝜆) = 𝛼𝜆𝑒−𝜆𝑥𝛼𝑥𝛼−1, 𝑥 > 0, (45)

where 𝛼 > 0 and 𝜆 > 0 are the shape and scale parameters,
respectively. Let 𝑛 denote the number of observed failures
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Table 2: The numerical results of sphere function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Sphere

𝑥0 (−1, −2, −3, −4, −5, 1, 2, 3, 4, 5, −1, −2, . . . , 1, 2, 3, 4, 5) (−1, −2, −3, −4, −5, 1, 2, 3, 4, 5, −1, −2, . . . , 1, 2, 3, 4, 5)
1 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
2 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
3 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
4 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
5 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
6 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11

Scheme

7 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
8 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
9 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
10 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
11 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11
12 𝑥/2.9098𝑒 − 11 𝑥/2.9098𝑒 − 11

Note: 𝑥 = 1.0𝑒 − 5 ∗ (0.0512, 0.1024, 0.1536, 0.2048, 0.2560, −0.0512, −0.1024, −0.1536, −0.2048, −0.2560, 0.0512, 0.1024, 0.1536, 0.2048, 0.2560, . . . , −0.0512,
−0.1024, −0.1536, −0.2048, −0.2560).

Table 3: The numerical results of sphere function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Sphere

𝑥0 (3, 3, . . . , 3) (3, 3, . . . , 3)
1 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
2 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
3 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
4 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
5 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
6 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11

Scheme

7 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
8 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
9 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
10 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
11 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11
12 1.0𝑒 − 5 ∗ (−0.1536, −0.1536, . . . , −0.1536)/2.5952𝑒 − 11 1.0𝑒 − 5 ∗ (0.2556, 0.2556, . . . , 0.2556)/7.1845𝑒 − 11

Table 4: The numerical results of Rastrigin function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Rastrigin

𝑥0 (0.5, 0.5, . . . , 0.5) (0.5, 0.5, . . . , 0.5)
1 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12
2 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12
3 1.0𝑒 − 7 ∗ (0.3504, 0.3504, . . . , 0.3504)/7.3008𝑒 − 13 1.0𝑒 − 7 ∗ (0.3504, 0.3504, . . . , 0.3504)/7.3008𝑒 − 13
4 −1.0𝑒 − 7 ∗ (0.6856, 0.6856, . . . , 0.6856)/2.7978𝑒 − 12 −1.0𝑒 − 7 ∗ (0.6856, 0.6856, . . . , 0.6856)/2.7978𝑒 − 12
5 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12
6 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12

Scheme

7 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12
8 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12 1.0𝑒 − 7 ∗ (0.6520, 0.6520, . . . , 0.6520)/2.5260𝑒 − 12
13 −1.0𝑒 − 7 ∗ (0.7804, 0.7804, . . . , 0.7804)/3.6238𝑒 − 12 −1.0𝑒 − 7 ∗ (0.7804, 0.7804, . . . , 0.7804)/3.6238𝑒 − 12
14 1.0𝑒 − 7 ∗ (0.6697, 0.6697, . . . , 0.6697)/2.6699𝑒 − 12 1.0𝑒 − 7 ∗ (0.6697, 0.6697, . . . , 0.6697)/2.6699𝑒 − 12
15 −1.0𝑒 − 7 ∗ (0.7222, 0.7222, . . . , 0.7222)/3.1015𝑒 − 12 −1.0𝑒 − 7 ∗ (0.7222, 0.7222, . . . , 0.7222)/3.1015𝑒 − 12
16 1.0𝑒 − 7 ∗ (0.5194, 0.5194, . . . , 0.5194)/1.6094𝑒 − 12 1.0𝑒 − 7 ∗ (0.5194, 0.5194, . . . , 0.5194)/1.6094𝑒 − 12
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Table 5: The numerical results of Rastrigin function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Rastrigin

𝑥0 (0.5, 0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.1) (0.5, 0.5, 0.5, 0.5, 0.5, 0.1, 0.1, 0.1, 0.1, 0.1)

1 1.0𝑒 − 7 ∗ (0.0658, . . . , 0.0658, 0.1700, . . . ,
0.1700)/2.6645𝑒 − 14

1.0𝑒 − 7 ∗ (0.0658, . . . , 0.0658, 0.1700, . . . ,
0.1700)/2.6645𝑒 − 14

2 1.0𝑒 − 7 ∗ (0.2044, . . . , 0.2044, 0.5798, . . . ,
0.5798)/2.4514𝑒 − 13

1.0𝑒 − 7 ∗ (0.2044, . . . , 0.2044, 0.5798, . . . ,
0.5798)/2.4514𝑒 − 13

3 1.0𝑒 − 7 ∗ (0.2786, . . . , 0.2786, 0.8842, . . . ,
0.8842)/4.5830𝑒 − 13

1.0𝑒 − 7 ∗ (0.2786, . . . , 0.2786, 0.8842, . . . ,
0.8842)/4.5830𝑒 − 13

4 1.0𝑒 − 6 ∗ (0.0288, . . . , 0.0288, 0.1034, . . . ,
0.1034)/4.9027𝑒 − 13

1.0𝑒 − 6 ∗ (0.0288, . . . , 0.0288, 0.1034, . . . ,
0.1034)/4.9027𝑒 − 13

5 1.0𝑒 − 7 ∗ (0.0658, . . . , 0.0658, 0.1700, . . . ,
0.1700)/2.6645𝑒 − 14

(−0.9950, . . . , −0.9950, 13.9269, . . . ,
13.9269)/2.9849

6 1.0𝑒 − 7 ∗ (0.0658, . . . , 0.0658, 0.1700, . . . ,
0.1700)/2.6645𝑒 − 14

(0.0000, . . . , 0.0000, −8.9540, . . . ,
−8.9540)/4.6096𝑒 − 12

Scheme

7 1.0𝑒 − 7 ∗ (0.0658, . . . , 0.0658, 0.1700, . . .,
0.1700)/2.6645𝑒 − 14

(0.0000, . . . , 0.0000, 19.8909, . . . ,
19.8909)/1.6094𝑒 − 12

8 1.0𝑒 − 7 ∗ (0.0658, . . . , 0.0658, 0.1700, . . .,
0.1700)/2.6645𝑒 − 14

(0.9550, . . . , 0.9550, −20.8843, . . . ,
−20.8843)/2.9849

13 1.0𝑒 − 7 ∗ (0.2687, . . . , 0.2687, 0.8076, . . . ,
0.8076)/4.2633𝑒 − 13 F/F

14 1.0𝑒 − 7 ∗ (0.2558, . . . , 0.2558, 0.7716, . . . ,
0.7716)/3.8369𝑒 − 13 F/F

15 1.0𝑒 − 7 ∗ (0.2430, . . . , 0.2430, 0.7357, . . . ,
0.7357)/3.5172𝑒 − 13 F/F

16 1.0𝑒 − 7 ∗ (0.2303, . . . , 0.2303, 0.7000, . . . ,
0.7000)/3.1442𝑒 − 13 F/F

Table 6: The numerical results of Freudenstein and Roth function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Froth

𝑥0 (0.5, −2) (0.5, −2)
1 (4.9992, 4)/8.6900𝑒 − 7 (5.0000, 4.0000)/4.0440𝑒 − 10
2 (4.9992, 4)/8.6900𝑒 − 7 F/F
3 (4.9992, 4)/8.6900𝑒 − 7 (5.0000, 4.0000)/4.0440𝑒 − 10
4 (4.9992, 4)/8.6900𝑒 − 7 (11.4128, −0.8968)/48.9843
5 (4.9992, 4)/8.6900𝑒 − 7 (5.0000, 4.0000)/4.0440𝑒 − 10
6 (4.9992, 4)/8.6900𝑒 − 7 (5.0000, 4.0000)/4.0440𝑒 − 10

Scheme

7 (4.9992, 4)/8.6900𝑒 − 7 F/F
8 (4.9992, 4)/8.6900𝑒 − 7 (11.4128, −0.8968)/48.9843
9 (4.9992, 4)/8.6900𝑒 − 7 (11.4128, −0.8968)/48.9843
10 (4.9992, 4)/8.6900𝑒 − 7 (11.4128, −0.8968)/48.9843
11 (4.9992, 4)/8.6900𝑒 − 7 (11.4128, −0.8968)/48.9843
12 (4.9992, 4)/8.6900𝑒 − 7 F/F

and 𝑡1, . . . , 𝑡𝑛 denote the complete sample; the logarithm
likelihood function is

log 𝐿 (𝛼, 𝜆; data) = 𝑛 log (𝛼𝜆) − 𝜆
𝑛

∑
𝑖=1

𝑡𝛼𝑖

+ (𝛼 − 1)
𝑛

∑
𝑖=1

log (𝑡𝑖) .
(46)

The corresponding differential equations are

𝜕 log 𝐿
𝜕𝛼 = 𝑛𝛼 − 𝛼𝜆

𝑛

∑
𝑖=1

𝑡𝛼−1𝑖 +
𝑛

∑
𝑖=1

log (𝑡𝑖) = 0,

𝜕 log 𝐿
𝜕𝜆 = 𝑛𝛼 −

𝑛

∑
𝑖=1

𝑡𝛼𝑖 = 0.
(47)
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Table 7: The numerical results of Freudenstein and Roth function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Froth

𝑥0 (−0.5, 2) (−0.5, 2)
1 (4.9986, 4)/3.0289𝑒 − 6 F/F
2 (4.9986, 4)/3.0289𝑒 − 6 F/F
3 (4.9986, 4)/3.0289𝑒 − 6 (11.4128, −0.8968)/48.9843
4 (4.9986, 4)/3.0289𝑒 − 6 (4.9999, −4.0000)/1.0003𝑒 − 8
5 (4.9986, 4)/3.0289𝑒 − 6 F/F
6 (4.9986, 4)/3.0289𝑒 − 6 F/F

Scheme

7 (4.9986, 4)/3.0289𝑒 − 6 F/F
8 (4.9986, 4)/3.0289𝑒 − 6 F/F
9 (4.9986, 4)/3.0289𝑒 − 6 F/F
10 (4.9986, 4)/3.0289𝑒 − 6 F/F
11 (4.9986, 4)/3.0289𝑒 − 6 F/F
12 (4.9986, 4)/3.0289𝑒 − 6 F/F

Table 8: The numerical results of Freudenstein and Roth function for different scheme.

Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Froth

𝑥0 (−0.5, −2) (−0.5, −2)
1 (4.9989, 4.0000)/1.7488𝑒 − 6 (5.0000, 4.0000)/1.7660𝑒 − 10
2 (4.9989, 4.0000)/1.7488𝑒 − 6 (11.4128, −0.8968)/48.9843
3 (4.9989, 4.0000)/1.7488𝑒 − 6 F/F
4 (4.9989, 4.0000)/1.7488𝑒 − 6 F/F
5 (4.9989, 4.0000)/1.7488𝑒 − 6 F/F
6 (4.9989, 4.0000)/1.7488𝑒 − 6 (5.0000, 4.0000)/1.7404𝑒 − 10

Scheme

7 (4.9989, 4.0000)/1.7488𝑒 − 6 (11.4128, −0.8968)/48.9843
8 (4.9989, 4.0000)/1.7488𝑒 − 6 F/F
13 (4.9989, 4.0000)/1.7488𝑒 − 6 F/F
14 (4.9989, 4.0000)/1.7488𝑒 − 6 (5.0000, 4.0000)/2.6700𝑒 − 10
15 (4.9989, 4.0000)/1.7488𝑒 − 6 (11.4128, −0.8968)/48.9843
16 (4.9989, 4.0000)/1.7488𝑒 − 6 (11.4128, −0.8968)/48.9843

From (47), a closed-form solution of 𝛼 and 𝜆 does not
exist, so a numerical technique (minimization − log 𝐿) must
be used to find the maximum likelihood estimation (MLE)
of 𝛼 and 𝜆 for any given dataset. By using algorithm
A, We obtain �̂� = 3.183499 and �̂� = 7.0363𝑒 − 7.
Dey and Pradhan [34] obtained the MLE of the param-
eters as follows: (�̂�, �̂�) = (3.1835, 1.4329𝑒 − 6). From
the numerical results, we can see that our algorithm is
alternative for the above real unconstrained optimization
problem.

6. Conclusion

In this article, by modifying the scalar 𝛽𝑘, we have proposed
a three-parameter family of conjugate gradient method for
solving large-scale unconstrained optimization problems.
Global convergence of the proposedmethods undermodified

Wolfe-Powell line search and general criterion are estab-
lished, respectively. Numerical results show that our algo-
rithm is competitive for solving unconstrained optimization
problems. So, the proposed method is an alternative method
used in the reliability data.
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Table 9: The numerical results of different function for 𝜆𝑘 = 0.9, 𝜇𝑘 = 0.3, and 𝜔𝑘 = 0.1.

Functions 𝑥0
Algorithm A DY (given by formula (10)) algorithm
𝑥/𝑓(𝑥) 𝑥/𝑓(𝑥)

Pqd (0.5, −0.5, 0.5, 0.8, 0.9) (0.0081, 0.0081, . . . , −0.0182)/2.2226𝑒 − 4 (−0.0345, −0.0345, −0.0346, −0.0347,
−0.0612)/0.0401

Ewh (1, 2, 1, 2, . . . , 1, 2, 1, 2) (1.0028, 1.0083, . . . , 1.0028,
1.0083)/2.3050𝑒 − 5 (1, 1, . . . , 1, 1)/5.1174𝑒 − 11

Raydan1 (1, 1) 1.0𝑒 − 3 ∗ (0.9370, 0.0005)/0.3000 1.0𝑒 − 3 ∗ (0.9917, 0.0008)/0.3000
Raydan2 (1, 1, . . . , 1, 1) (0, 0, . . . , 0, 0)/500 (0, 0, . . . , 0, 0)/500
Etri (1, 1, . . . , 1, 1) 𝑎 𝑏
Epow (3, −1, 0, 1) (2.0000, 0, 0, 2.0000)/5.8875𝑒 − 11 F/F

Wood (−3, −1, −3, −1) (1.0002, 1.0004, 0.9998,
0.9996)/1.6386𝑒 − 7 F/F

Ewood (−3, 1.2, −3, 1.2) (1.0001, 1.0002, 0.9999,
0.9998)/2.0820𝑒 − 8 F/F

Perq (1, 2, 3) 1.0𝑒 − 4 ∗ (0.0973, −0.0020,
−0.1014)/4.0320𝑒 − 10

1.0𝑒 − 4 ∗ (0.0480, 0.0011,
0.1524)/7.2434𝑒 − 10

Etri1 (2, 2, . . . , 2) F/F (1.2, 1.2, . . . , 1.2)/6.5680𝑒 − 11
Emic (2, 2, . . . , 2) 𝑐 F/F
Erosen (−1.2, 1, . . . , −1.2, 1) (0.9999, 0.9999, . . . , 0.9999)/6.3141𝑒 − 9 (1, 1, . . . , 1)/3.2274𝑒 − 12
Grosen (2, 2, . . . , 2) (1, 1, . . . , 1)/5.8136𝑒 − 10 (1, 1, . . . , 1)/5.8136𝑒 − 10
QUARTC (2, 2, . . . , 2) (0.6338, 0.6338, . . . , 0.6338)/0.0899 (0.5278, 0.5278, . . . , 0.5278)/0.2487
LIARWHD (4, 4, . . . , 4) (1, 1, . . . , 1)/4.2649𝑒 − 10 (1, 1, . . . , 1)/7.5304𝑒 − 10
Staircase1 (2, 2, . . . , 2) 1.0𝑒 − 4 ∗ (0.0448, −0.1380, −0.0297,

−0.1576)/2.7012𝑒 − 10
1.0𝑒 − 4 ∗ (−0.2478, 0.7435, −0.8469,

0.5991)/4.9189𝑒 − 9
Staircase2 (0, 0, . . . , 0) (1, 1, . . . , 1)/5.1016𝑒 − 10 (1, 0.9999, . . . , 1, 0.9999)/4.1476𝑒 − 9
POWER (1, 1, . . . , 1, 1) −1.0𝑒 − 4 ∗ (0.1081, 0, 0, . . . , 0,

0.0214)/1.9507𝑒 − 9
−1.0𝑒 − 4 ∗ (0.1081, 0, 0, . . . , 0,

0.0214)/1.9507𝑒 − 9
Diagonal4 (2, 2, . . . , 2) 1.0𝑒 − 4 ∗ (−0.2394, 0.0062, −0.2394,

0.0062)/6.1191𝑒 − 10
1.0𝑒 − 4 ∗ (0.4352, 0.0055, 0.4352,

0.0055)/1.9247𝑒 − 9
EBD1 (0, 1, . . . , 0, 1) (1, 1, . . . , 1)/3.1321𝑒 − 10 (1, 1, . . . , 1)/3.1321𝑒 − 10
CUBE (−1.2, 1, . . . , −1.2, 1) (1, 1.0001, . . . , 1, 1.0001)/1.4082𝑒 − 9 (0.9693, 0.9108, . . . , 0.9693,

0.9108)/9.3983𝑒 − 4
𝑎 = 1.0𝑒3 ∗ (0.0009, 0.0258, −0.0314, 0.0067, 0.0817, 1.0242, 0.1885, −0.5213, −0.9109, −0.4524)/8.0025𝑒 − 11.
𝑏 = 1.0𝑒4 ∗ (0.0522, −0.1413, 0.0641, 0.0603, −0.2218, −0.5115, 0.2249, 0.7358, −1.3182, 0.3192)/4.0124𝑒 − 10.
𝑐 = (0.2140, 1.2386, 1.2810, 1.3032, −0.5016, 0.6837, 0.8063, 0.7930)/0.0105.
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