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This paper is concerned with an efficient global optimization algorithm for solving a kind of fractional program problem (P),
whose objective and constraints functions are all defined as the sum of ratios generalized polynomial functions. The proposed
algorithm is a combination of the branch-and-bound search and two reduction operations, based on an equivalent monotonic
optimization problem of (P). The proposed reduction operations specially offer a possibility to cut away a large part of the currently
investigated region in which the global optimal solution of (P) does not exist, which can be seen as an accelerating device for
the solution algorithm of (P). Furthermore, numerical results show that the computational efficiency is improved by using these
operations in the number of iterations and the overall execution time of the algorithm, compared with other methods. Additionally,
the convergence of the algorithm is presented, and the computational issues that arise in implementing the algorithm are discussed.
Preliminary indications are that the algorithm can be expected to provide a practical approach for solving problem (P) provided
that the number of variables is not too large.

1. Introduction

Consider the following generalized polynomial fractional
programs:

Loni(y)
n;
min C;
; 'd;(y)
P)iqst. g.(y)<0, m=12,...,M,, ey
yeyY = {y|0<yl<y,<y1<00,
z—l,...,no},
where

.p (2

G (y) = thﬁ]—[y”""

and ¢, « Kits ¥ juio Vitio and yj, are all arbitrary real

it o>
number

Problem (P) is worth studying because it frequently
appears in many applications, including financial optimiza-
tion, portfolio optimization, engineering design, manufac-
turing, chemical equilibrium (see, e.g., [1-8]), etc. On the
other hand, many other nonlinear problems, such as quad-
ratic program, linear (or quadratic, polynomial) fractional
program [9-13], linear multiplication program [14-16], poly-
nomial program, and generalized geometric program [17-
20], can be all put into this form.

The problem (P) is obviously multiextremal, for its special
cases such as quadratic program, linear fractional program,
and linear multiplication program are multiextremal, which
are known to be NP-hard problems [21], and it, therefore, falls
into the domain of global optimization problems.

In the last decades, many solution algorithms have been
developed to globally solve special cases of problem (P)
(see, e.g., [9-14, 17-19, 22, 23]), but the global optimization
algorithms for the general form of (P) are scarce. Recently, by
using the linear relaxation methods, Wang and Zhang [24],
Shen and Yuan [25], and Jiao et al. [26] gave the correspond-
ing global optimization algorithms for finding the global
minimum of (P), respectively. Also, Fang et al. [27] presented


https://core.ac.uk/display/193451133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a canonical dual approach for minimizing the sum of a
quadratic function and the ratio of two quadratic functions.

In this paper, we will suggest an efficient algorithm for
solving globally problem (P). The goal of this research is
fourfold. First, by introducing variables and by using a
transformation, the original problem (P) is equivalently refor-
mulated as a monotonic optimization problem (Q) based on
the characteristics of problem (P). That is to say, the objective
function is increasing and all the constrained functions can be
denoted as the difference of two increasing functions in (Q).
Second, in order to present an efficient algorithm for solving
problem (Q), the two reduction operations are incorporated
into the branch-and-bound framework to suppress the rapid
growth of the branching trees so that the solution procedure
is enhanced. The proposed reduction cut operation especially
does not appear in other branch-and-bound methods (see
[24, 25]) and is more easily implementable than the one in
[28], because the latter (see (2.4) and (2.5) in [28]) is com-
puted by solving the nonlinear nonconvex programming, but
the former is involved in solving the roots of several equations
in a single variable and with strict monotonicity. Third, by
utilizing directly the proposed algorithm, one also can obtain
the essential upper and lower bounds of denominator of each
ratio in the objective function to problem (P), where these
bounds are tighter than the ones given by Bernstein algorithm
(see [24, 25]), and so the assumption 1 in [24, 25] is not nec-
essary in this paper. Finally, numerical results show that the
proposed algorithm is feasible and effective.

The paper is organized as follows. In Section 2, an equiv-
alent reformulation of the original problem is given. Next,
Section 3 presents and discusses the algorithm basis process
for globally solving problem (P). The algorithm is presented
and its convergence is shown in Section 4. In Section 5, the
computational results are presented.

2. Equivalent Monotonic Reformulation

For the convenience of the following discussion, assume that
there exist positive scalars L ;,U; such that 0 < L;< dj(y) <
Ujandn;(y) > Oforall y € Y, foreach j = 1,2,..., p. Infact,
L;, U; can be obtained by the algorithm to be proposed in
this paper (see Section 5); define, therefore, the set

<U;, j=1,...,p}. 3)

Without loss of generality, assume that ¢; > 0, j =
kandc¢; <0,j=k+1,k+2,...,p. Byintroducing
variables s 7 j=1,..., p,the problem (P) is then equivalent to

S= {seRp|L <s;j

the following problem:
min £ (y,s) ch n;
(ﬁ); Ist. s;-d; (y )<0 j=1...,k (@)
d; (y)—s <0, j=k+1,...,p
m( )go m=1,...,M,,
yeyY, seS.

Theorem 1. If (y*,s") is a global optimal solution for problem
(P), then s; = di(y*), j = L,2,...,p, and y" is a global
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optimal solution for problem (P). Conversely, if y* is a global

optimal solution for problem (P), then (y*,s") is a global

optimal solution for problem (P), where si=d;(y)j =
2,...,p.

Proof. See Theorem 1 in [24]; it is omitted here. O

In what follows, we show that problem (P) can be trans-
formed into a monotonic optimization problem such that the
objective function is increasing and all the constrained func-
tions are the difference of two increasing functions. To see
how such a reformulation is possible, we first consider each
constraint of (P). Let

7 = min {7, 0} [ £ = 1,.... T3},

j=L...,p
i=1,...,np
~ o _ (5)
Ymi:mln{)/mtilt: 1,...,Tm},
m=1,..., M,
i=1,...,n

Forany y € Y, s € S, it follows from each constraint of (P)

that ”
(5=, ) [ ™
i=1

d. el .”o i(’i}ji)
oo

j
Y Hyyﬂ, P ‘SJH% T,
t=1

j :k+ L...,p
"o T, "o
(_Pvmi) — P~ Vnti Vi
G )T 17 = Y @] [T,
i=1 =1 =l
m=1,...,M,.
By using the above notation, one can thus convert (P) into the
form
min £ (y,s) Zc s;
"o ) A/' "o
s.t. sjl—[yi Vi) — Z(xﬁnyirf” <0,
i=1 =1 =l
j=1..k
(P1) : 1 T, n noo (7)
Y] = s[ [ <o,
t=1 =1 i=1
j=k+1,...,p,
Ty "o
Z&mt yzrmn <0, m=1, ’M0>
=1 =1
yeY, seS,
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wherer,; = y;;—y;; 2 0forj=1,..., pand v, = Vpui= Vi 2
0 for m = 1,..., M,. Note that all the exponents are positive
in the constraints of problem (P1). Thus, by applying the
following exponent transformation

yi=exp(n;), i=L....,n,
(8)

s;=exp(&), i=1,...,p,

to the formulation (P1), letting N = ny, + pand z = (,&) €
R", and by changing the notation, an equivalent problem of
problem (P1) can be then given by

[ min D, (2)

st. D,(2)<0, m=1,...,p+ M,
(P2) : A 9)

zeZO:{z: 74 <z <z,

Vi=1,...,N},

where

T, N
D, (z) = Z‘th exp (Zymﬁzi> , m=0,...
t=1 i=1

(10)

Next, we turn to consider the objective function of (P2).
For convenience, for each m = 0,1,..., p + M,, we assume,
without loss of generality, that «,,,, > O fort = 1,...,],, and
& < O0fort =], +1,...,T,. In addition, some notations
are introduced as follows:

I'={ilyy; >0, i=1,...,N},

I ={ily <0, i=1,...,N},

I
L= Z)’oaz?) U= ZYOtizi’ t=1....)o (1)

iel; iel;

1
lt:ZVOtizi’ ”:=ZV0t,~Z?, t=J,+1,...,T,.

= ot
i€l] i€l]

3
Then, by introducing an additional vector w =
(wl,...,wTo)T € R%, we can convert the problem (P2)
into
Jo
min Z“or exp Zyoﬁzi + w;
t=1 iel}
Ty
+ Z Oo €XPp Z)’orizi_wt
t=Jp+1 iEIt_
T 1y
s. t. Zamt exp (Zymtizi>
=1 i=1
T, g
(P3) : 1 + Z Oyt €XP (Z)’mﬁzi) <0, 12)
t=J,,+1 i=1
m=1,...,p+ M,
wt_ZyOtiziZO, tzl,...,]o,
i€l
w; + Zyoﬁz,» >0, t=J+1,....,T
iel}
L<w,<U, t=1,...,],
—u, <w, <, t=]+1,....,T
zeZ",

where Z° is defined in (P2).

Note that the objective function of (P3) is increasing and
each constrained function is the difference of two increasing
functions. The key equivalent result for problems (P2) and
(P3) is given by the following Theorem 2.

Theorem 2. z* is a global optimal solution for problem (P2)
if and only if (2%, w") is a global optimal solution for problem
(P3), where

w, = Z)’on‘zi*’ t=1,...,]p
i€l
(13)
W = _ZYOtizi , t=Jy+1,...,T,.

feTt
i€l]

Proof. The proof of this theorem follows easily from the
definitions of problems (P2) and (P3); therefore, it is omitted
here. O

From Theorem 2, for solving problem (P2), we may solve
problem (P3) instead. In addition, it is easy to see that the
global optimal values of problems (P2) and (P3) are equal.
Let x = (z,w) € RN with z € RN and w € R™ and let

n=N+T, M=p+M,+Ty (14)
then, without loss of generality, by changing the notation,
problem (P3) can be rewritten as the following form:

(Q) : min{F, (x) | F,, (x) = F} (x) - F, (x) <0, )
15
m=1,...,M, xe€X},



where

Jo
Fy (x) = Z%t exp < Z)’on’xi + xN+t>

t=1 el

TU
+ Z Qo €Xp ZYOtixi_xN+t >

t=Jy+1 i€l

(T N
Z(th €xp ZYmtixi 4
t=1 i=1

E (x) =
:p+M()a

m=1,...

X

L “Vm>

§ e[S
i=1

t=],,+1

m=p+M,+1,....,M,

m=1,...,p+ M,

Xm+N-p-M, ~ z Yo(m-p-My)i%io

Fr; (.X) = 9 IEI;"*P*MO

m=p+My+1,....,p+My+ ],

Xm+N-p-M, T Z Yo(m-p-My)i%io
ieTt

lEIm_p_MO

m=p+My+Jy+1,....,. M,

X’ = {xERnlxﬁgxin?, i=1,..n}

i=N+1,...,N+]J,

i=N+Jy+1,...,n,
(16)

Based on the above discussion, to globally solve problem
(P), the algorithm to be presented concentrates on solving
the problem (Q); then a bound-reduction-bound (BRB)
algorithm to be presented will be considered for the problem

(Q.

3. Basic Operations

In order to solve globally the problem (Q), the main idea
of (BRB) approach to be proposed consists of several basic
operations: successively refined partitioning of the feasible
set; estimation of lower bound for the optimal value of the
objective function over each subset generated by the parti-
tions; and the reduction operations by reducing the size of
each partition subset without losing any feasible solution
currently still of interest. Next, we begin the establishment
of the approach with the basic operations needed in a branch
and bound scheme.
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Let X =[a,b] ={x | a; < x; <b, i=1,...,n} denote the
rectangle or subrectangle of X° generated by the algorithm.
Consider the following subproblem:

Q(X) : min {F, (x) | E,, (x) = F, (x) - F,, (x) <0, W)
17
m=1,...,.M, x € X}.

3.1 Partition Rule. The critical element in guaranteeing con-
vergence to a minimum of (Q) is the choice of a suitable parti-
tion strategy. In this paper, we choose the standard branching
rule. This method is sufficient to ensure convergence since
it derives all the intervals to a singleton for all the variables
that are associated with the term that yields the greatest dis-
crepancy in the employed approximation along any infinite
branch of the branch-and-bound tree.

Consider any node subproblem identified by rectangle X.
The procedure for dividing X into two subrectangles X, and
X _ can be described as follows.

(i) Let
T=argmax{b—a|i=1,...,n},
(. +b,) 1)
= —
2
(ii) Let
X,={xla<x;<b,i=1,...,n,
i1, m,<x,<b},
(19)
X_={xla<x;<b,i=1,...,n,

i+1, a, < x, <7}

Through this branching rule, the rectangle X is parti-
tioned into two subrectangles X, and X _.

3.2. Lower Bound. For each rectangle X, we intend to com-
pute a lower bound LB(X) of the optimal value of (Q) over X;
that is, compute a number LB(X) such that

LB (X) < min{F, (x) | F,, (x) <0,

(20)
m=1,...,.M, x € X}.

To ensure convergence, this lower bound must be consis-
tent in the sense that, for any infinite nested sequence of boxes

X shrinking to a single point x*,

lim LB(X")=F, (x"). (21)

k — 400

Clearly, a lower bound is Fj(a), and any bound such that
LB (X) > F, (a) (22)

will satisty (21) since F,(x) is increasing.

Although the bound F,(a) (for a box X = [a,b]) is suffi-
cient for guaranteeing convergence, for a better performance
of the lower bound procedure, tighter bounds are often
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necessary to achieve reasonable efficiency. For instance, the
following procedure may give a better bound.

Consider the subproblem Q(X) and denote the optimal
value of problem Q(X) by V[Q(X)]. Our main method for
computing a valid lower bound LB(X) of V[Q(X)] over X <
X° is to solve the relaxation linear programming RLP(X)
of Q(X) by using a linearization technique. This technique
can be realized by underestimating every function F,(x) and
F, (x) and by overestimating every function F, (x), for each
m = 1,...,p + M,. All the details of this linearization
technique for generating the linear relaxation will be given
in what follows. For this purpose, let us denote

z}’on'xi + XNyt t=1,...,Jp
iel}
Xot =

Z)’on‘xi — XN+t t=Jo+1,...., T

iel; (23)
N

Kot = Zymtixi’ t=1,....,T,;

i=1

then we have X, € [X! XpJand X, € [x!

0t mt>

box X = [a, b], where

X ] for any

ZYOtiai T anie t=1... )]())
1 ielf
X = < !
* Z)’oabi—wa t=Jo+1,..., T
Li€l;
(24)
Z)’on'bi +bys =100
Xu _ iGIt*
o Z)’on'ai —any  t=Jo+ L., T,
Li€l,
and foreachm =1,..., p + M,,
1 J ol
Kot = Zymtiai’ X:lnt = ZYmtibi’
i=1 i=1 (25)
t=1,...,T,.

Additionally, let

exp(x4,) ~exp(x1,)
" X?nt - Xint

>

Almt (x) = A, (th - Xint) + exp (Xint) — €Xp (th) >

Azmt (x) = €xp (th) - Amt (th - lnAmt + 1) >

(26)
wherem =0,1,...,p+ My, t=1,...,T,,.
Thus, from Theorem 1 in [20], it follows that
Amt (th - lnAmt + 1) < exp (th)
(27)

< Amt (th - Xf’nt) +exp (Xint)

and that Almt(x) and Azmt(x) satisfy

1 2
max A , (x) = maxA°  (x
xeX mi ( ) xeX mi ( )

= exp (X)) (1= Wy + W, InW,,)  (28)

— 0 asw, —0,

where

— eXp (wmt) - 1 (29)

u 1
Wy = X — X
m mt

mt> mt
mt

Next, we will give the relaxation linear functions of F,(x),
F!(x),and F, (x) over X. Based on the above discussion, it is
obvious that we have, for all x € X,

Jo

Fy(x) 2 Z‘Xor (Age (Xor —In Ay, +1))
t=1

Ty
+ z Kot (Amt (th - Xint) + exXp (Xint))

t=Jy+1

2 LF, (x),

T
Fl () 2 ) 0t (A (X —In A, + 1)) 2 LE, (x),

t=1

Tm
F (x)< - Z Xt (Amt (th - Xint) + exp (Xint))
t=],+1
£ UF,, (x),
(30)
wherem =1,..., p + M,.

Consequently, we obtain the following linear program-
ming RLP(X) as a linear relaxation of Q(X) over the partition
set X:

min LF; (x)
RLP(X): yst. LF,(x)<0 m=1,...,M, (31)
x € X,

where
LE; (x) - UF, (x),
LE,, (x) =

F, (x)-F,(x),

m=1,...,p+ M,

m=p+M,+1,...,M.
(32)

An important property of RLP(X) is that its optimal value
V[RLP(X)] satisfies

V[RLP (X)] <V [Q((X)]. (33)

Thus, from (33), the optimal value V[RLP(X)] of RLP(X)
provides a valid lower bound for the optimal value V[Q(X)]
of Q(X) over X ¢ X°.



Based on the above result, for any rectangle X ¢ X°, in
order to obtain a lower bound LB(X) of the optimal value
VIQ(X)] to subproblem Q(X), we may compute LB(X) such
that

LB (X) = max {V [RLP (X)], F, (a)}, (34)

where V[RLP(X)] is the optimal value of the problem
RLP(X).
Clearly, LB(X) defined in (34) satisfies

Fy(a) < LB (X) < V[Q(X)] (35)

and is consistent. It can provide a valid lower bound and
guarantee convergence.

3.3. Reduction Operations. Clearly, the smaller the rectangle
X is, the tighter the lower bound LB(X) of Q(X) will be and,
therefore, the closer the feasible solution of (Q) will be to the
corresponding optimal solution. To show this, the next results
give two reduction operations, including the reduction cut
and the deleting technique, to reduce the size of the par-
titioned rectangle without losing any feasible solution cur-
rently still of interest.

(1) Reduction Cut. At a given stage of the branch and bound
algorithm for (Q), for a rectangle [a, b] generated during the
partitioning procedure and still of interest, let UB be the
objective function value of the best so far feasible solution to
problem (Q). Given an ¢ > 0, we want to find a feasible
solution x € X of (Q) such that F;(x) < UB—¢ or else establish
that no such x exists. So, the search for such x can then be
restricted to the set # (] [a, b], where

F={x|Fy(x)<UB-¢ F,(x)<0, m=1,...,M}.
(36)

The reduction cut is based on the monotonic structure
of the problem (Q). The reduction cut aims at replacing the
rectangle [a,b] with a smaller rectangle [d,b'] < [a,b]
without losing any point x € % [)[a,b], that is, such that
FNla',b'] = Fla, b]. The rectangle [a’, b'] satisfying this
condition is denoted by red,[a, b] with v = UB — ¢. To illus-
trate how red,[a,b] = [a',b'] is deduced by reduction cut,
we first define the following functions.

Definition 3. Given two boxes [a, b] and [a', b'] with [a',b'] €
[a,b], for i = 1,...,n, the functions goi(oc) and wi(ﬂ)
[0,1] — R" are defined by
¢ (@ =b-alb-a)e,
, 4 (37)
V' (B)=d' +B(b-a)e,

where €' is a unit vector with 1 at the ith position and 0 every-
whereelse,i=1,...,n.

From the functions F, (x), F,. (x), and Fy(x), we have the
following result.
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Theorem 4. Let € > 0 be given and let v = UB — ¢. If Fy(a) >
vor Fi(a) — F_(b) > 0 for some m € {l,...,M}, then
red,la,b] = [a',b'] = 0. Otherwise, red,la,b] = [a',b'] are
given by

(38)

satisfying

i
%

if F, (¢' (1)) 2 F}, (a)

1>
B {oc with F,, ((pi (oc)) =F; (a), otherwise,

B
_[v if Fy,(v' (1) <E,, (®)
~|p with E} (1// (ﬁ)) =F, (b), otherwise.

(39)

Proof. (i) By the increasing property of Fy(x), F, (x), and
F, (x), if Fy(a) > v, then Fy(x) > Fy(a) > v for every x €
[a,b]. If there exists m € {1,..., M} such that F, (a)—F, (b) >
0, then F,,(x) = F, (x) - F, (x) > F, (a) - F, (b) > 0 for every
x € [a,b). In both cases, (] [a,b] = 0.

(ii) Given any point x € [a, b] satisfying

Fy(x)<v F.(x)-F, (x)<0, m=1,...,M, (40)

we will show that x € [a’,b']. Let
ocin, :min{(xin | m= 1,...,M},
' A (41)
B =min{B,, [m=0,1,...,M}.

m

Firstly, we will show that x > a'. If x # @', then there
exists index 7 such that

x;<a =b-ada, (b-a), ie,
‘ (42)
x;=b-a(b—a) witha,, <a<l.

We consider the following two cases.

Case 1. If (xin, = 1, then, from (42), we have x; < ai' =b -
o« (b, — a;) = a;, conflicting with x € [a, b]; that is, x; > a;.

Case 2.1f0 < o, < 1, the function ! ,(a) = F,,(¢' () -
F',(a) must be strictly decreasing in single variable « over the
interval [0, 1]. If the function CDin, (@) is not strictly decreasing

in single variable «, we get that <Din, () must be a constant
over the interval [0, 1]. In this case, we have

@, ()=, (0)=F,, (b)-F (a)=0.  (43)

It follows from the definition of (xin, that (xin, = 1, contradict-
ingwith0 <« , < 1.
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Since the function d)in, (o) is strictly decreasing, it follows,
from (42) and the definition of ain, that F_,(b - (b, - xi)ei) -
E'(a) =@, () < D), (a),) = 0.Hence, F,,(b—(b—x;)e’) <
F;, (@). In addition, since F, ,(x) is an increasing function in
n-dimension variable x and x < b — (b; — x;)é’, we have

Fy(x)<Ey(b=(b-x)¢)<Fp(@),  (44)

conflicting with F,(x) = F,(x) = F. (a).

Based on the above discussion, we have x > a'; that is,
x € [d',b] in either case.

Secondly, we also can show from x € [a',b] that x < b';
that is, x € [a',b']. Supposing that x ¢ b', then there exists
some i such that

x;>b =a + B (b-a); (45)
that is, there exists f3 such that
xizai’+ﬁ(bi—ai'), Binu<ﬁgl. (46)

By the definition of 3 ,, there are the following two cases to
consider.

Case 1. If ﬁin,, = 1, then, from (45), we have x; > b/ = a/ +
(b, - a}) = b, conflicting with x € [a',b]; that is, x; < b,

Case 2. If0 < 3, < 1, the function ¥’ ,(B) = E\.(v'(B)) -
F, (b) is strictly increasing in single variable j3. If \I’in,, (B) is
not strictly increasing in f, we get that ¥/ , () must be a
constant over [0, 1]. In this case, we have

Fy(a')-v<0 (47)
or
\P:nn (1) = \‘Prinu (0) = F;:LII (al) - Fl;l" (b) < 0. (48)

It follows from the definition of ﬁin,, that ﬁin,, =1, whichisa
contradiction with 0 < /)’in,, <1

Since the function ‘I’in,, () is strictly increasing, from (46)
and the definition of ﬁfnu, it implies that

Fo(‘//i(ﬁ))_”>Fo(‘//i(ﬁ(i)))_”zo (49)

or
Ep (¢ (B)) = Epr (0) = ¥, (B) > ¥y (Br) = 0. (50)
Assume that (49) holds; we can derive, from (46), that
B+ (x-d)e) =R (' (B)>n. D
It follows from x > a’ + (x; — ai')ei and F,(x) that
Fy(x) =2 F, (a' + (xi - ai') ei) >, (52)

conflicting with Fy(x) < ».

If (50) holds, we obtain, from (46), that
Ely (a' + (xl- - ai’) ei) =F, (1// (ﬁ)) >F (). (53)
Since x > a’ + (x; — ai' )e' and F;l,, (x) is increasing, we have
Ely(x)>F, . (a' + (xl- - al.') ei) >F, »(b). (54)

It is a contradiction with F,(x) < F,_.(x) < F,_,(b).
From the above results, we must have x < b'; that is, x €
[a',b'] in both cases and this ends the proof. ]

Remark 5. o and ! given in Theorem 4 must exist and be
unique, since the functions F,(x), F;l(x), and F, (x) are all
continuous and increasing.

Remark 6. In order to obtain red,[a, b], the computation of
of and 3} is more easily implementable than that of (2.4) and
(2.5) in [28]. This is because the latter is computed by solving
the nonlinear nonconvex programming problem, but the
former is involved in solving the single variable equation with
monotonicity.

(2) Deleting Technique. For any x € X = (X;),, with X; =
[a;,b] (i = 1,...,n), without loss of generality, we assume
that the relaxation linear problem RLP(X) can be rewritten
as

n
min z/\o,xi + Uy

i=1

n
Z/\jixi+(4jS0, j:1>-~-)M)

i=1

RLP (X) : (55)

xeXcX°

and let UB be a known upper bound of the optimum of
Q(X°). Define

n
RL; = Y min{A;a,A b} +u, j=0,1,...,M, (56)

i=1

_ UB - RL; + min {Aa;, A;b}

pi = Wlth AOi ?‘30, (57)
Ao
-RL: + min A ;.a;, A ;b
= — P16 with A, #0,
Aji (58)
ji=1,..,M,
wherei=1,...,n.

Theorem 7. For any X = (X,),; € X°, if RL, > UB, then
there exists no optimal solution of the problem Q(X°) over X.
Otherwise, if Ay, > 0 and p, < by, for some h € {1,...,n},
then there is no optimal solution of the problem P4(X°) over
the subrectangle X ,; conversely, if Ay, < 0 and p, > ay, for



some h € {1,...,n}, then there does not exist optimal solution
of P4(X") over X, where

X, = (Xa),y € X° with

¥ - {Xi, if i+h,
“ (Ph>bh]ﬂxh’ if i#h,
(59)
Xy, = (Xpi),pq € X° with
7 o p) (X if i#h.

Proof. The proof is similar to Theorem 2 in [27]; it is omitted
here. O

Theorem 8. For any X = (X,),,q € X°, if RL;(x) > 0, for
some j € {1,..., M}, then there exists no feasible solution of
problem P4(X°) over X. Otherwise, consider the following two
cases: if there exists some indexh € {1,...,n} satisfying A j, > 0
and Ty, < by, for some j € {1,..., M}, then there is no feasible
solution of the problem P4(X°) over X _; conversely, ifAj, <0
andrjh > ay, for some j € {1,...,M}and h € {1,...,n}, then
there exists no feasible solution of the problem P4(X°) over
X4, where

X, =(Xy),q X with
¥ - {X,., if i+h,
T (] (X ifi=h,
(60)
Xg=(Xgi)q €X° with
di = [ah, le’l) ﬂXl’l’ lf i= h

Proof. The proof is similar to Theorem 3 in [27]; it is omitted
here. O

By Theorems 7 and 8, we can give a new deleting tech-
nique to reject some regions in which the globally optimal
solution of Q(X°) does not exist. Let X = (X)q with X; =
[a;,b] (i =1,...,n) be any subrectangle of X", The content
of deleting technique is summarized as follows.

(S1) Optimality Rule. Compute RL; in (56). If RL, > UB, let
X = 0; otherwise,computep; (i=1,...,n)in(57).IfAy, >0
and p, < by, for some h € {1,...,n}, thenleth, = p,and X =
(X)) With X; = [a;,b] (i=1,...,n).1f Ay < 0and p, >
ay,, for some h € {1,...,n}, thenlet a, = p, and X = (X;),4
with X; = [a;, 4] (i=1,...,n).

(82) Feasibility Rule. For any j = 1,..., M, compute RL; in
(56). If RL; > 0, for some j € {1,..., M}, then let X = 0;
otherwise, compute Tj; in 58)(G=1,....,.M,i=1,...,n).
If)tjh > 0 and Tjp < by, for some j € {1,...,M} and h €
{L,...,n}, then let b, = 7j, and X = (X)), with X; =
[a,b] (i = 1,...,n). If Aj, < Oand 7 > a, for some
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jed{l,...,M}and h € {1,...
X = (X)) With X; = [a;, 5] (i=1,...,n).

This deleting technique provides a possibility to cut away
all or a large part of the subrectangle X which is currently
investigated by the algorithm procedure.

»n}, then let @, = 7, and

4. Algorithm and Its Convergence

Now, a branch-reduce-bound (BRB) algorithm is developed
to solve the problem (Q) based on the former discussion. This
method needs to solve a sequence of (RLP) problems over
partitioned subsets of X°.

The BRB algorithm is based on partitioning the rectan-
gle X° into subrectangles, each concerned with a node of
the branch-and-bound tree. Hence, at any stage k of the
algorithm, suppose that we have a collection of active nodes
denoted by 7, where each node is associated with a
rectangle X € X° and VX € J. For each such node X =
[a, b], we will compute a lower bound LB(X) of the optimal
objective function value of (P4) via the optimal value of the
RLP(X) and F,(a), so the lower bound of the optimal value
of (P4) at stage k is given by min{LB(X),VX € I }. We now
select an active node to subdivide its associated rectangle into
two subrectangles according to branch rule described in the
Section 3.1. For each new node, reduce it and then compute
the lower bound as before. At the same time, if necessary,
we will update the upper bound UBy. Upon fathoming any
nonimproving node, we obtain a collection of active nodes for
the next stage, and this process is repeated until convergence
is obtained.

4.1. Algorithm Statement

Step 1 (initialization). Choose the convergence tolerance € >
0. Let %, = {X°} and Ty = {X°}. If some feasible solutions
are available, add them to & and let UB; = min{F,(x) |
x € F}; otherwise, let # = @ and UB,, = +00. Set k = 0.

Step 2 (reduction). (i) Apply the reduction cut described in
Section 3.3 to each box [a,b] € P. Let 9’,'( = {red,[a,b] |
[a, b] (S gjk} with v = UBk —&.

(ii) If 9312 + 0, for each box [a, b] € 9912, we use the deleting
techr},ique in Section 3.3 to cut away X and denote the left still
as &P

Step 3 (bounding). If 9, 0, begin to do, for each X =
[a,b] € 9"]’(’, the following.

(i) Solve the problem RLP(X) to obtain the optimal
solution x(X) and the optimal value V[RLP(X)].
If x(X) is feasible to problem (Q), then set ¥ =
F J{x(X)}. Let LB(X) = max{V[RLP(X)], F,(a)}.

(ii) If F,(a) < 0 for every m = 1,..., M, then set ¥ =
F | Jal.

(iii) If & #0, define the new upper bound UB, =
min{F,(x) | x € &}, and the best known feasible
point is denoted by X = arg min{Fy(x) | xe F}
Set Ty = (T \ XU 2.
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Step 4 (convergence checking). Set 7, = 7 \{X|LB(X) >
UB, —& X € T,

If 7., = 0, then stop; if UB, = +00, the problem is
infeasible; otherwise, UBy, is the optimal value and x* is the
optimal solution. Otherwise, select an active node Xk =
arg min{LB(X) | X € J,,} for further consideration and
let LB,,, = LB(X*™).

Step 5 (branching). Divide X**! into two new subrectangles
using the branching rule and let %, be the collection of
these two subrectangles. Set k = k + 1 and return to Step 2.

4.2. Convergence Analysis. In this subsection, we give the
convergence of the proposed algorithm.

Theorem 9. If the presented algorithm finishes at finite step,
when it stops, x* must be a global optimum solution of the
problem (Q). Otherwise, for any infinite branch of initial rect-
angle domain, an infinite partitioned rectangle sequence X* will
be produced and any accumulation point of which must be a
global optimal solution of the initial problem (Q).

Proof. Assume that this algorithm terminates finitely at some
stage k, k > 0. Thus, when the algorithm terminates, it follows
that UB; — LB, < e. By Steps 2 and 4 of the investigated algo-
rithm, there exists a feasible solution x; of the problem (Q)
satistying F;(x;) = UB,, which implies that Fo(xk) - LB, <
e. Let F; be the optimal value of the problem (Q); then, by the
structure of this algorithm, we have LB, < F;. Since x* is a
feasible solution of the problem (Q), F; < Fo(xk ). Connecting
the above inequalities, we have F; < Fy(x*) < LB +e < F, +&
thatis, Fj < F, («") < Fy +¢. Thus, x*isan e-global optimum
solution of the problem (Q).

If the algorithm is infinite, it generates an infinite
sequence {X*} such that a subsequence (XM} of {X*} satisfies
Xk ¢ Xk for 1 = 1,2, ... Thus, it follows from [28, 29] that
this rectangle subdivision is exhaustive. Hence, for every iter-
ationk =0, 1,2,..., by design of the algorithm, there is at least
an infinite subsequence {LBy } of {LB,} such that

XM e arg min LB (X),

LB, < minF, (x
ki = ex 0( ) XeTy,

(61)
K= x(xM) e xh e x°.

Since {LB; } is a nondecreasing sequence bounded above by
min, . F,(x), where D is the feasible set to problem (Q), this
guarantees the existence of the limit lim; _, wolBi, = LB and
LB < min,F,(x). Since {xf1} is an infinite sequence on a
compact set X°, there exists a convergent subsequence {x} of
{x"} satisfyinglim, _, ,,x? = % x? € X?and LB, = LB(X?) =
LF,(x7), where {X} is a subsequence of {xk1. By using
Theorem 1 and Lemma 1 of [25], we see that the linear
subfunctions LF,, (im = 0,1,..., M) used in the problem
RLP(X) are strongly consistent on X°. Thus, lim, _, ,, LB, =
limq_,ooLFO(xq) = LFO(limq_,ooxq) = LFy(x) = LB. All that
remains is to show that £ € D. Since X° is a closed set,

TaBLE 1: The numerical results for upper and lower bounds of d,(y).

Example Reference L, U, L, U,
Example 1 BRB 2 3.25 4 13
[25] 2 4 4 16
Example 2 BRB 2 3 4 12.38
[25] 2 4 4 16
BRB 3 17.337 2 4.67
Example 3
[25] 2 149.2961 3 601
Example 4 BRB 2 3 4 12.38
Example 5 BRB 2 4.67 3 17.337

it follows that ¥ € X°. Suppose that ¥ ¢ D. Then there
exists some Fj, j € {1,..., M}, such that Fj(fc) =40 > 0.
Since LF; is continuous, by Theorem 1 and Lemma 1 of [25],
we have LF;(x?) — F;(X)asq — oo, that is, 3g5 such
that |LFj(xq) - F,®)| < das g > q; and so when g > g5,
LF j(xq) > 0 implies that the problem RLP(X) is infeasible.
This contradicts the assumption that x? = x(X?) is the
optimal solution to RLP(X). Therefore, X € D; that is, LB =
Fy(X) = min,.pFy(x). O

5. Numerical Experiments

There are two computational issues that may arise in using
the suggested implementations of the global algorithm.

The first computational issue is concerned with the fact
that we need to obtain the positive scalars L ; and U such that
0<L;<d;(y) <U,forall y € Y before using the suggested
implementations of the algorithm (see Section 2). Actually,
L; and U; are available through solving the following two
problems:

min d;(y)
(PP1): 1st.  g,(y)<0, m=12,...,M,,
0<y <y <yi<co, i=12...,n,
max dj(y)
(PP2): 1st. g, () <0, m=12,...,M,,
0<yfsyisy?<oo, i=12,...,n.
(62)

The problems (PP1) and (PP2) are special cases of the original
problem (P), by using the proposed algorithm; therefore,
the values of L; and U; can be obtained directly without
requiring other special procedure (see [24, 25]). Furthermore,
the interval [L ;, U;] obtained is tighter than one by making
use of Bernstein algorithm in [24, 25] (see Table 1) so that the
convergence of the algorithm may be improved.

The second computational issue concerns the lower
bound computing process. From Section 3, each lower bound
in the algorithm is computed by solving a relaxation linear
programming of the form of problem (RLP). Here, we adopt
the simplex algorithm to solve the relaxation linear program-
ming. So the implement of the proposed global algorithm will
depend upon the simplex algorithm.
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TABLE 2: The numerical results for Examples 1-5.

Example Optimal solution Optimal value Iter Time €

BRB (1.0, 1.7438231783465) —4.060819175 1765 1.97 107®

Example 1 s
[25] (1.0, 1.743823132) —4.060819161 2638 16.23 10

BRB (1.618033989, 1.0) 1.16653785326 197 0.42 10°®

Example 2 8
[25] (1.618033989, 1.0) 1.166537841203 420 3.52 10

Example 3 BRB (2.698690689, 1.207585549) —2.33221836 5835 8.18 1077

[25] (2.698690670, 1.20758556) -1.96149893 15243 130.62 1077

BRB 1L1) 33333 64 01563 107

Example 4 5
[24] (1,1) 3.3333 262 2 10

-3

Example 5 BRB (L1 5.5167 149 0.2 1073
[24] a1,1) 5.5167 280 16 10

We now report our numerical experiments through five
test examples and some randomly produced problems to
demonstrate the performance of the proposed optimization
algorithm. The algorithm is coded in Compaq Visual Fortran,
and all test problems are implemented in an Athlon(tm) CPU
2.31 GHz with 960 MB RAM microcomputer. The numerical
results for all test problems are summarized in Tables 2 and 3.
Numerical results show that the proposed algorithm can
globally solve the problem (P) effectively.

In the following tables, the notations have been used for
column headers: Iter: number of algorithm iterations; Time:
execution time in seconds; and &: convergence tolerance. And
for row headers, BRB denotes the corresponding numerical
results in the proposed BRB algorithm.

Example I (see [25]). Consider

—xf +3x, — x% +3x,+3.5

min  h(x) = -
x +1
X% = 2x, + x5 — 8x, + 20
st 2x; +x, <6, (63)
3x; +x, <8,

X +x, 2 -1,
1<x, <3, 1<x,<3.
Example 2 (see [25]). Consider

2 2
—-x7 +3x; +2x5 +3x, + 3.5
min  h(x) =0.25—L ! 2 2

x +1

+1.75 X2

x2 —2x; + x5 — 8x, + 20
st 3x,+x, <8, (64)
-1
Xp =X, X <1,
2x1x;1 +x, <6,

I1<x; <3, 1<x,<3.

Example 3 (see [25]). Consider

2,05 -1, 2 -1
xX1%,7 —2x,x, +x5,—2.8x x,+7.5

min h(x) =-1.35
() xx5° + 1

x, +0.1

+12.99—— - 3 -

x7x, = 3x7 +2xx5 - 9x;,7 + 12
s.t. ZXI1 +x1%, < 4,
X, +3x] %, <5,

2 3
x]—3x, <2,

1<x, <3, 1<x,<3.
(65)
Example 4 (see [24]). Consider
—xf +3x; — xﬁ +3x, +3.5
min  h(x) =
x +1
)
x2 = 2x; + x5 — 8x, +20
st 3x,+x, <8, (66)
X, = xl_lx2 <1,

-1
2x1%, +x, <6,

1<x, <3 1<x,<3.

Example 5 (see [24]). Consider

2,05 -1_ 2 -1
. X X7 4 2x0x, — X5 +2.8X) x, +7.5
min  h(x) = G
x1x,7 + 1
x, +0.1

2,1 -1 2 -1
xX{xy, —3x] 4+ 2xx5 —9x," + 12
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-1
st 2x; +x;x, <4,

-1

X;+3x, X, <5
2 3

x]—3x,<2,

1<x, <3, 1<x,<3.

(67)

From Table 1, by using the proposed method, the upper
and lower bounds of d j( y) are better than other methods
[25]; that is, the values of L, and L, are all bigger than other
methods and the values of U, and U, are all smaller than other
methods.

From Table 2, numerical results show that the computa-
tional efliciency is obviously improved by using the proposed
algorithm in the number of iterations and the overall exe-
cution time of the algorithm, compared with other methods
(24, 25].

Additionally, we choose the following problem to test our
algorithm further, which is generated randomly:

1
. i= 1 pz HIENIX
min —;
o piZHieNzij
3
+ i= 1p1 H1€N3x
Problem 1) : < o 68
( ) i= 1 pz HlEN4x ( )
st. Ax<b,
n
Y x; =10,
i=1
0<x;<10, i=1,...,n

where g is an integer number (e.g., g is taken to be # in
Table 3), for each k = 1,2,3,4, p¥ € (1,2), NF c {1,2,...,n}
with 1 < IN:‘ | < 4, each element of le is randomly

generated from {1,2,...,n}, and ocs are randomly generated

from {1, 2, 3}. The elements of A and b with A € R™" and b ¢
R™ are generated by using random number in the intervals
(0, 1) and (0, 10), respectively.

For the above test problem, the convergence tolerance
parameter is set as ¢ = 107> and ¢ = 3. Numerical results
are summarized in Table 3, where the average number of iter-
ations, average number of list nodes, and average CPU times
(seconds) are obtained by running the BRB algorithm for 20
times to this problem.

It is seen from Table 3 that the size of n (the number of
variable) is the main factor affecting the performance of the
algorithm. This is mainly because we have to take much time
to compute the bound of introduced variables, which is
increased as the size of the number of variable increasing.
However, due to the constrained functions value in reduction
operation and linear relaxation, the CPU time also increases,
while 7 (the number of inequality constrained) is increasing
but not as sharply as n.

11
TABLE 3: The numerical results for the random problem.
n m Ave. Tter Ave. L Ave. CPU (s)
4 5 94 93 40.35
4 94 93 40.36
4 10 98 95 40.37
6 638 637 77.87
6 675 674 78.18
6 10 682 677 80.85
10 5 528 527 232.5
10 7 554 546 232.35
10 10 598 583 235.6
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