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Birandom portfolio selection problems have been well developed and widely applied in recent years. To solve these problems
better, this paper designs a new hybrid intelligent algorithm which combines the improved LGMS-FOA algorithm with birandom
simulation. Since all the existing algorithms solving these problems are based on genetic algorithm and birandom simulation, some
comparisons between the new hybrid intelligent algorithm and the existing algorithms are given in terms of numerical experiments,
which demonstrate that the new hybrid intelligent algorithm is more effective and precise when the numbers of the objective
function computations are the same.

1. Introduction

Portfolio theory was initially put forward by Markowitz [1]
and has received great development since then. The main
content of it is to study how to allocate one’s capital to a large
number of securities and the study mainly focuses on three
aspects: the first is how to estimate the security return; the
second is how to build portfolio models; the third is how
to design efficient algorithms to solve these models. Many
scholars have made great contributions in this field.

In the early literatures, security return was assumed to
obey normal distribution. However, the following researches
manifested that the assumption of normal distribution did
not accord with the facts. Therefore, a lot of new distri-
butions were used to describe the security return [2–9].
Among them, birandom distribution received great attention
and development by some scholars [7–9] and literature [9]
demonstrated that birandom distribution could reflect the
features of securities’ technical patterns and the investors’
heterogeneity.

When the security return followed birandom distribu-
tion, the existing literatures established several birandom
portfolio models and designed the corresponding hybrid
intelligent algorithms [7–9]. However, all these algorithms
were based on genetic algorithm (GA) and existed some

common shortcomings, such as low accuracy and inferior
local search ability. To solve these birandom portfolio models
effectively, this paper designs a new hybrid intelligent algo-
rithm which integrates the improved LGMS-FOA algorithm
and birandom simulation.The experimental results show that
the new algorithm is more efficient.

The rest of this paper is organized as follows: Section 2
recalls some basic concepts about birandom theory; Section 3
provides an overview of birandom portfolio models;
Section 4 presents a new hybrid intelligent algorithm
which integrates the improved LGMS-FOA algorithm and
birandom simulation; Section 5 provides numerical examples
to test the effectiveness of the new hybrid intelligent
algorithm; finally, a brief summary about this paper is given.

2. Birandom Theory

Definition 1. A birandom variable 𝜀 is a mapping from
a probability space (Ω, 𝐴,Pr) to a collection of random
variables such that, for any 𝐵𝑜𝑟𝑒𝑙 subset 𝐵 of the real line 𝑅,
the induced function Pr(𝜀(𝑤) ∈ 𝐵) is a measurable function
with respect to 𝑤 [7].

Example 2. Let Ω = (𝜔
1
, 𝜔
2
) (𝜔
1
represents security rising

and 𝜔
2
represents security falling) and Pr(𝜔

1
) = 𝑎 and
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Pr(𝜔
2
) = 𝑏. Assume that 𝜀 is a function on (Ω, 𝐴,Pr) as

follows:

𝜀 (𝜔) = {

𝜀
1

if 𝜔 = 𝜔
1

𝜀
2

if 𝜔 = 𝜔
2
,

(1)

where 𝜀
1
and 𝜀

2
follow uniform distribution; then 𝜀 is a

birandom variable according to Definition 1.

Definition 3. Let 𝜀 = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
) be a birandom vector on

(Ω, 𝐴,Pr), and let 𝑓 : 𝑅
𝑛

→ 𝑅
𝑚 be a vector-valued 𝐵𝑜𝑟𝑒𝑙

measurable function.Then the primitive chance of birandom
event characterized by 𝑓(𝜀) ≤ 0 is a function from (0, 1] to
[0, 1], defined as [8]

Ch {𝑓 (𝜀) ≤ 0} (𝛼)

= sup {𝛽 | Pr {𝜔 ∈ Ω | Pr {𝑓 (𝜀 (𝜔)) ≤ 0} ≥ 𝛽} ≥ 𝛼} .

(2)

Definition 4. Let 𝜀 be a birandom variable defined on the
probability space (Ω, 𝐴,Pr). Then the expected value of
birandom variable 𝜀 is defined as

𝐸 (𝜀) = ∫

∞

0

Pr {𝜔 ∈ Ω | 𝐸 [𝜀 (𝜔)] ≥ 𝑡} 𝑑𝑡

− ∫

0

−∞

Pr {𝜔 ∈ Ω | 𝐸 [𝜀 (𝜔)] ≤ 𝑡} 𝑑𝑡,

(3)

provided that at least one of the above two integrals is finite
[8].

3. Birandom Portfolio Models

In this section, we provide an overview of birandom port-
folio models. Let 𝑥

𝑖
represent the investment proportion in

security 𝑖 and let 𝑘
𝑖
denote the return of the 𝑖th security

for 𝑖 = 1, 2, . . . , 𝑛, respectively. In particular, 𝑘
𝑖
follows

birandom distribution for 𝑖 = 1, 2, . . . , 𝑛. Depending on
different measures of investment profit and risk, birandom
portfolio models are divided into different types.

3.1. Birandom Safety-First Model. For each portfolio 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), the chance that return of total asset (RTA) is

no less than a disaster level is used to represent investment
risk, which is given by

Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
≥ 𝑚} (𝛽

1
) ≥ 𝑎. (4)

The chance that RTA is no less than some value is
regarded to measure investment profit, which is represented
by

Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
≥ 𝑡} (𝛽

2
) , (5)

where 𝑚 and 𝑡 represent the disaster level and profit, respec-
tively. 𝛽

1
, 𝛽
2
, and 𝑎 represent the corresponding confidence

level.

Using (4) and (5), we obtained the following Birandom
safety-first model, which was proposed in [9]:

max Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
≥ 𝑡} (𝛽

2
)

s.t. Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
≥ 𝑚} (𝛽

1
) ≥ 𝑎

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0 𝑖 = 1, 2, . . . , 𝑛.

(6)

3.2. Birandom Expected Value Model. In this model, invest-
ment risk was represented by (4) and the expect value of RTA
was used to measure investment profit which was given by

𝐸 [𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
] . (7)

Based on (4) and (7), Birandom expect value model was
proposed in [8], which was formulated as follows:

max 𝐸 [𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
]

s.t. Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
≥ 𝑚} (𝛽

1
) ≥ 𝑎

𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0 𝑖 = 1, 2, . . . , 𝑛.

(8)

3.3. BirandomChance-ConstrainedModel. Literature [7] pro-
posed birandom chance-constrainedmodel, which was listed
as below:

max Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
≥ 𝑡} (𝛽

2
)

s.t.
𝑛

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0 𝑖 = 1, 2, . . . , 𝑛.

(9)

Remark 5. Theparameters ofmodels (6), (8), and (9) have the
same economic meaning.

Remark 6. For more details on these models, please refer to
the corresponding literatures.

4. Hybrid Intelligent Algorithm

In this section, a new hybrid intelligent algorithm is designed
to solve models (6), (8), and (9), where the improved LGMS-
FOA algorithm and birandom simulation are used.

4.1. Birandom Simulation. Because of the uncertainty of
birandom variable, we should use birandom simulation [10]
to solve equations (4), (5), and (7).
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Algorithm 1 (birandom simulation for (4)).

Step 1. Set 𝑙 = 1.

Step 2. Generate 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
from Ω according to the

probability Pr. Consider
𝑤
𝑖
= {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
} , 𝑖 = 1, 2, . . . , 𝑁. (10)

Step 3. Compute the probability

𝛿
𝑖
= Pr {𝑥

1
𝑘
1
(𝑦
1
) + 𝑥
2
𝑘
2
(𝑦
2
) + ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
(𝑦
𝑛
) ≥ 𝑚 } ,

𝑖 = 1, 2, . . . , 𝑁,

(11)

by stochastic simulation.

Step 4. Set𝑁∗ as the integer part of 𝛽
1
𝑁.

Step 5. Return the𝑁∗th largest element 𝛿∗ in {𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑁
}.

Step 6. If 𝛿∗ ≥ 𝑎, then 𝑙 = 𝑙 ∗ 1; else 𝑙 = 𝑙 ∗ 0.

Step 7. 𝑙 = 1 means that the solution is feasible; 𝑙 = 0 means
that the solution is infeasible.

Algorithm 2 (birandom simulation for (5)).

Step 1. Generate 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
from Ω according to the

probability Pr. Consider
𝑤
𝑖
= {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
} , 𝑖 = 1, 2, . . . , 𝑁. (12)

Step 2. Compute the probability

𝛿
𝑖
= Pr {𝑥

1
𝑘
1
(𝑦
1
) + 𝑥
2
𝑘
2
(𝑦
2
) + ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
(𝑦
𝑛
) ≥ 𝑡} ,

𝑖 = 1, 2, . . . , 𝑁,

(13)

by stochastic simulation.

Step 3. Set𝑁∗ as the integer part of 𝛽
2
𝑁.

Step 4. Return the𝑁∗th largest element 𝛿∗ in {𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑁
}.

Algorithm 3 (birandom simulation for (7)).

Step 1. Set 𝑒 = 0.

Step 2. Generate 𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
from Ω according to the

probability Pr. Consider
𝑤
𝑖
= {𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
} , 𝑖 = 1, 2, . . . , 𝑁. (14)

Step 3. Compute the probability

𝛿
𝑖
= 𝐸 [𝑥

1
𝑘
1
(𝑦
1
) + 𝑥
2
𝑘
2
(𝑦
2
) + ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
(𝑦
𝑛
)] ,

𝑖 = 1, 2, . . . , 𝑁,

(15)

by stochastic simulation.

Food source

Fruit fly individual 2
Fruit fly individual 1

Fruit fly individual 3

Fruit fly swarm

(0,0)

Figure 1: Food finding process of fruit fly swarm.

Step 4. Consider

𝑒 ← 𝑒 + 𝐸 [𝑥
1
𝑘
1
(𝑦
1
) + 𝑥
2
𝑘
2
(𝑦
2
) + ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
(𝑦
𝑛
)] . (16)

Step 5. Repeat the second to the fourth steps for𝑁 times.

Step 6. Consider

𝐸 [𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
𝑘
𝑛
] =

𝑒

𝑁

. (17)

4.2. The Improved LGMS-FOA. Recently, optimization algo-
rithms are widely used in many fields [11–14]. Fruit fly
optimization algorithm (FOA) is a new stochastic optimiza-
tion technique proposed in 2012 [11] and has received rapid
developments in recent years. The principle of FOA is based
on the food finding behavior of fruit fly swarm. The food
finding process was shown in Figure 1 and has two steps: first,
it smells food and flies to that direction; then, it uses vision to
find food.

To enhance the search ability of FOA, LGMS-FOA was
proposed and had been proved to be an effective algorithm by
numerical testing [12]. However, LMGS-FOA in the literature
[12] is only applied to solve unconstrained optimization
problems. To solve birandom portfolio models, the improved
LGMS-FOA is proposed by means of combination of LGMS-
FOA with penalty function method. Without loss of general-
ity, we takemodel (6), for example, to introduce the improved
LGMS-FOA.The steps of it are listed as follows.

Algorithm 4 (the improved LGMS-FOA).

Step 1. Parameters initialization.
The parameters include the number of iteration

(maxgen), the population number (sizepop), the searching
scope (𝑟), the searching coefficient (𝑑), the primary weight
(𝑤
0
), and the weight adjustment coefficient (𝜌).

Step 2. Initial fruit fly swarm location.
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The fruit fly swarm location 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is

randomly generated in the interval [−𝑟, 𝑟] and the searching
scope becomes bigger with the increase of 𝑟.

Step 3. Give the random direction and distance for food
finding of an individual fruit fly. Consider

𝑥
𝑃
= 𝑥 + 𝑤 × 𝑑 × (2 × rand (1, 𝑛) − 1) ,

𝑃 = 1, 2, , . . . , sizepop;

𝑤 = 𝑤
0
× 𝜌

gen
.

(18)

Step 4. Generate fruit fly swarm that fits the constraint
∑
𝑛

𝑖=1
𝑦
𝑖
= 1.

Step 4.1. A solution 𝑦
𝑝
= (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) is represented by the

individual fruit fly 𝑥
𝑝
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), where the relation

between 𝑦
𝑝
and 𝑥

𝑝
is formulated as follows:

𝑦
𝑖
=

𝑥
𝑖

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛

, 𝑖 = 1, 2, . . . , 𝑛, (19)

which ensures that ∑𝑛
𝑖=1

𝑦
𝑖
= 1.

Step 4.2. If the element of 𝑦
𝑝
is less than zero, repeat Step 4.1

until the number of individuals is 𝑠𝑖𝑧𝑒𝑝𝑜𝑝.

Step 5. Calculate the smell concentration by inputting 𝑦
𝑝
into

objective function.

Step 5.1. If 𝑦
𝑝
= (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) satisfies

Ch {𝑦
1
𝑘
1
+ 𝑦
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑛
𝑘
𝑛
≥ 𝑚} (𝛽

1
) ≥ 𝑎, (20)

then let

Smell
𝑖
= Ch {𝑦

1
𝑘
1
+ 𝑦
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑛
𝑘
𝑛
≥ 𝑡} (𝛽

2
) . (21)

Step 5.2. If 𝑦
𝑝
= (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) does not satisfy

Ch {𝑦
1
𝑘
1
+ 𝑦
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑛
𝑘
𝑛
≥ 𝑚} (𝛽

1
) ≥ 𝑎, (22)

then use penalty function method [13] and let

Smell
𝑖
= Ch {𝑦

1
𝑘
1
+ 𝑦
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑦

𝑛
𝑘
𝑛
≥ 𝑡} (𝛽

2
) − 𝑏, (23)

where 𝑏 is a given positive integer.

Step 6. Find out the optimal individual among fruit fly swarm.
Consider

[best smell best index] = max (Smell) . (24)

Step 7. Keep the optimal objective function value and the
corresponding 𝑥 coordinate; then the fruit fly swarm flies
towards that location:

Smell best = best smell

𝑥 = 𝑥 (best inedx) .
(25)

Step 8. Repeat Step 2 to Step 7 until termination condition is
satisfied.

4.3. Hybrid Intelligent Algorithm. Through integrating the
improved LGMS-FOA algorithm and birandom simulation,
a new hybrid intelligent algorithm is built and the steps are
listed as below.

Algorithm 5 (hybrid intelligent algorithm).

Step 1. Initialize 𝑁 fruit fly individuals that satisfy the
constraints.

Step 2. Calculate the objective function values for all fruit fly
individuals by birandom simulation.

Step 3. Find out the optimal objective value.

Step 4. Keep the optimal objective value and the correspond-
ing location of fruit fly individual.

Step 5. Repeat Step 2 to Step 5, until termination condition is
satisfied.

5. Numerical Experiments

To test the effectiveness of the new hybrid intelligent algo-
rithm, we compared it with the existing algorithm [7–9]
through numerical examples.

5.1. Experimental Setup. Assume that the investor selects
three securities represented by 𝑘

1
, 𝑘
2
, and 𝑘

3
. The security

return follows the birandom distribution in Example 2 and
the corresponding parameters of each security are shown in
Table 1. Besides, the investor takes 𝑡 = 0.04, 𝑚 = −0.06,
𝛽
1
= 0.7, 𝛽

2
= 0.5, and 𝑎 = 0.6; then, models (6), (8), and

(9) satisfying the above parameters are changed into

max Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ 𝑥
3
𝑘
3
≥ 0.04} (0.5)

s.t. Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ 𝑥
3
𝑘
3
≥ −0.06} (0.7) ≥ 0.6

𝑥
1
+ 𝑥
2
+ 𝑥
3
= 1

𝑥
𝑖
≥ 0 𝑖 = 1, 2, 3,

(26)

max 𝐸 [𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ 𝑥
3
𝑘
3
]

s.t. Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ 𝑥
3
𝑘
3
≥ −0.06} (0.7) ≥ 0.6

3

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0 𝑖 = 1, 2, 3,

(27)
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Table 1: The distributions of securities 𝑘
1
, 𝑘
2
, and 𝑘

3
.

Parameters 𝑘
1

𝑘
2

𝑘
3

𝑎
𝑖
(𝑖 = 1, 2, 3) 3/4 1/2 1/3

𝑏
𝑖
(𝑖 = 1, 2, 3) 1/4 1/2 2/3

𝜀
𝑖1
(𝑖 = 1, 2, 3) 𝑈 [0, 7%] 𝑈 [0, 9%] 𝑈 [0, 11%]

𝜀
𝑖2
(𝑖 = 1, 2, 3) 𝑈 [−9%, 0] 𝑈 [−11%, 0] 𝑈 [−13%, 0]

Table 2: The optimal results of model (26).

Model Algorithm Optimal solution Objective
function

𝑥
1

𝑥
2

𝑥
3

Model (26) Algorithm 5 0.9996 0.0003 0.0001 0.4230
Model (26) Algorithm 6 0.6854 0.2304 0.0842 0.0425
Model (26) Algorithm 7 0.1562 0.6832 0.1606 0.0805

max Ch {𝑥
1
𝑘
1
+ 𝑥
2
𝑘
2
+ 𝑥
3
𝑘
3
≥ 0.04} (0.5)

s.t.
3

∑

𝑖=1

𝑥
𝑖
= 1

𝑥
𝑖
≥ 0 𝑖 = 1, 2, 3.

(28)

The parameters of Algorithm 5 are set up as follows.
(1) The parameter of birandom simulation is𝑁 = 2000.
(2) The parameters of the improved LGMS-FOA are

maxgen = 40, sizepop = 30, 𝑟 = 40, 𝑑 = 20, 𝑤
0
= 1,

and 𝜌 =0.8.
To show the efficiency of Algorithm 5, we choose two

sets of parameters and the corresponding hybrid intelligent
algorithms in [7, 8] which are named as Algorithms 6 and 7.

The parameters of Algorithm 6 are listed as below.
(1) The parameter of birandom simulation is𝑁 = 2000.
(2) The parameters of GA are as follows: the iteration

number is 40, the population is 30, the mutation
probability is 0.6, and the crossover probability is 0.1.

The parameters of Algorithm 7 are given as follows.
(1) The parameter of birandom simulation is𝑁 = 2000.
(2) The parameters of GA are as follows: the iteration

number is 40, the population is 30, the mutation
probability is 0.8, and the crossover probability is 0.05.

Remark 5. For Algorithms 5 to 7, the numbers of objective
function computations are the same and this can ensure the
fairness of comparisons.

5.2. Experimental Results. Computemodels from (26) to (28)
by using Algorithms from 5 to 7, respectively, and repeat the
experiments for 20 times. The average values of the optimal
results are shown in Tables 2, 3, and 4.

FromTables 2 to 4, it can be found that the final searching
quality of Algorithm 5 is better than Algorithms 6 and 7. So it
can be concluded that the new hybrid intelligent algorithm is
more efficient and precise than the existing algorithms when
the numbers of objective function computations are the same.

Table 3: The optimal results of model (27).

Model Algorithm Optimal solution Objective
function

𝑥
1

𝑥
2

𝑥
3

Model (27) Algorithm 5 0.9832 0.0043 0.0125 0.0159
Model (27) Algorithm 6 0.6818 0.2948 0.0234 0.0071
Model (27) Algorithm 7 0.6057 0.2634 0.1309 0.0062

Table 4: The optimal results of model (28).

Model Algorithm Optimal solution Objective
function

𝑥
1

𝑥
2

𝑥
3

Model (28) Algorithm 5 0.0005 0.9987 0.0008 0.5367
Model (28) Algorithm 6 0.0908 0.8339 0.0753 0.3382
Model (28) Algorithm 7 0.1221 0.8703 0.0076 0.4052

6. Conclusion

To solve birandom portfolio selection problems better, this
paper designs a new hybrid intelligent algorithm which inte-
grates the improved LGMS-FOA algorithm and birandom
simulation. Comparisons between the new hybrid intelligent
algorithm and the existing algorithms show that the new
hybrid intelligent algorithm is more effective and precise
when the numbers of the objective function computations are
the same.
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