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We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant
improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in
the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a
wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted
in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the
supply voltage and the total power consumption are significantly reduced.The novel log-companding amplifier was designed using
a 0.18 𝜇m CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data.
The proposed amplifier operates from a 0.8V supply voltage, shows a 6.3𝜇A maximum output current range, and has a 6𝜇W
power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is
166.1 fA/√Hz. This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.

1. Introduction

In recent years, portable and wearable personal healthcare
devices have become more and more popular in the world.
For these kinds of devices, the biomedical signal acquisition
is an important part. The analog amplifier is one of the key
building blocks to the signal acquisition unit. Therefore, sev-
eral requirements such as low power, low noise, low voltage,
high total harmonic distortion (THD), and high common-
mode rejection ratio (CMRR) are imposed on the amplifier in
the biomedical applications. The log-companding technique
[1, 2] is a new tool to reduce the amplifier’s supply voltage,
the internal voltage dynamic range (DR), and the power
consumptions. It is also a good method to solve the trade-off
between increasing the signal dynamic range and decreasing
the supply voltage [3]. This technique, indeed, provides a
practical solution for biomedical applications for its property

of low power consumption, especially for the portable and
wearable medical devices.

For the log-companding technique, the input signal firstly
needs to be compressed from the current domain to the
voltage domain by logarithmic (log) law. Then, a nonlinear
signal processing can be done in the voltage domain. Finally,
the processed signal is expanded back to the linear current
domain from voltage domain to realize an external linear
amplification. The log-companding technique is realized
with MOS transistors biased in the subthreshold region for
their exponential current versus voltage characteristics which
consume very low power.

However, this technique has its limitations. For example,
the output current range and the signal linearity are difficult
to improve because of the property of MOS transistor
operating in the weak inversion. To reduce the distortion,
the transistors are biased with low currents which will limit
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Figure 1: Diagram of log-companding technique.

the input and output current swings and reduce the signal-
to-noise ratio (SNR). Although the biased currents can be
improved by enhancing the widths of the transistors, it
will increase the power consumption and induce a large
parasitic capacitance. Because the differential operation of
the conventional differential log-companding amplifier is
operating in the current domain [4–7], it is not very effective
in improving CMRR and THD for the log-companding
technique.

In this paper, a novel method is proposed to improve the
performance in linearity, CMRR, and low power of the log-
companding amplifier by exploiting a nonlinear function and
introducing a new differential stage.This method realizes the
differential operation between the input signals in the log
and linear domains, which is more effective in eliminating
the common-mode input signal. A novel nonlinear function
is employed to improve the system linearity and extend
the output linear range. This paper is organized as follows:
the log-companding design technique will be introduced in
Section 2. In Section 3, the novel log-companding amplifier
will be presented. The simulation results will be listed in
Section 4, and Section 5 includes the conclusion.

2. Log-Companding Design Techniques

2.1. Basics of Log-Companding Techniques. For the expanding
technique, the input signal in current domain is firstly
compressed to voltage domain. Then, a nonlinear process
is performed in the voltage domain. Finally, the processed
signal is expanded back to the current domain to ensure
an external linear function with the input signal. The block
diagram of log-companding technique is shown in Figure 1
[8].

As shown in Figure 1, the log-companding technique
includes three basic building blocks: I-V compressor 𝐹−1,
nonlinear function, and V-I expander 𝐹. Compressor 𝐹−1
and expander 𝐹 are used to perform log-compression and
log-expansion, respectively, by using aMOS transistor biased
in weak inversion region which exactly gives the logarithmic
function.

According to the EKV model [9], I-V function of a
NMOS transistor can be expressed as follows:
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(1)

where 𝐼
𝑆

, 𝑛, 𝛽, 𝑉TON, and 𝑈𝑡 stand for the specific current,
subthreshold slope, current factor, threshold voltage, and
thermal potential, respectively.𝑉GB,𝑉DB, and𝑉SB are the gate-
bulk, drain-bulk, and source-bulk voltage difference, respec-
tively. MOS transistors can operate in three main operating
regions which are called weak inversion, moderate inversion,
and strong inversion, respectively. Each operating region can
be further categorized into three saturation regions which
can be called conduction, forward, and reverse saturation,
respectively. Under these conditions, I-V (1) can be simplified
as follows:
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(in weak inversion and forward saturation) and
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(in moderate inversion and conduction saturation).

In the conventional log-companding amplifier, all MOS
transistors are biased inweak forward inversion such as in the
blocks of compressor 𝐹−1 and expander 𝐹 shown in Figure 1,
since it exactly gives the logarithmic function. Moreover,
the compressor and expander functions are two reciprocal
functions to ensure external linear amplification.

For the PMOS operating in moderate conduction and
weak forward inversion, I-V functions are depicted as fol-
lows:
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(in moderate inversion and conduction saturation)
and
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(in weak inversion and forward saturation).

2.2. Conventional Log-Companding Amplifiers. The main
purpose of every amplifier is to obtain a linearly scaled copy
of the input signal at the output port. In other words, the
input signal is multiplied by a gain factor to yield the output
signal. For the log-companding amplifier, however, this step
is accomplished by adding a gain factor to the compression
signal in the log region that is translated from the input signal
by the log law, which corresponds to the part of nonlinear
function in Figure 1. The general CMOS implementation of
the log-companding amplifier topology is shown in Figure 2
[3].

3. Novel Log-Companding Amplifier

The proposed differential log-companding amplifier consists
of four main parts including a compressor, a differentiator, a
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processor, and an expander [10].The compressor is employed
to logarithmically compress the input current signal into
voltage signal. The differentiator is used to compare the
difference between the two input current signals in voltage
domain; the processer will process the nonlinear signal to
improve the CMRR and THD. The expander will convert
the voltage signal back to the current signal using log law to
maintain external linear amplification.

3.1. Compressor. The compressor is shown in Figure 3, where
𝑖
1

and 𝑖
2

are the input current. All of the MOS transistors in
this schematic are biased in weak forward saturation. From
(2) and Figure 4, we can get the following:
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Figure 4: The diagram of differentiator.
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Therefore,
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where 𝐼
𝑏

is the quiescent operating current which will fix the
input circuit operating point and control the amplifier’s gain
by tuning its value.

3.2. Differentiator. As shown in Figure 4, 𝑉ref is a biased
voltage that is provided by the biased circuit (it is not shown in
this paper) to bias theMOS𝑃1,𝑃7 in weak forward inversion.
𝑉dm is the output of differentiator.

Suppose that the MOS transistors are biased in weak
forward inversion; recalling (2) and (5), we can get

𝑉
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= 𝑉dm − 𝑉ref (8)
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Thedifferentiator plays an important role in getting a high
CMRR since the differential operation in the voltage domain.
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3.3. Nonlinear Convertor and Expander. The basic nonlinear
processor is shown in Figure 6.The circuit converts the input
signal 𝑉dm from voltage domain to current domain by MOS
𝑃7 for conveniently tuning the signal. The current mirror
involves two pairs of composite MOS transistors 𝑁12 and
𝑁13, respectively. MOS transistors 𝑃8, 𝑃9, and 𝑁16 expand
the current signal back to voltage domain and complete signal
𝑉dm nonlinear conversion to ensure linear amplification.

Suppose that 𝑃8 operates in weak forward saturation and
the others in Figure 5 operate in weak inversion; according to
(5), the drain current of 𝑃7 can be written as
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where
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According to (4) and (5) and assuming that the supply
voltage is enough to saturate transistor 𝑃9, the current and
voltage expressions of 𝑃8 and 𝑃9 can be given by
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Multiply 𝑒𝑉ref/𝑛𝑈𝑡 by both sides of (14), rearranged to give
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Equation (15) can be written as
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Then, let us take a look at the following function:
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Solving (18) for 𝑓, this yields
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In most practical cases, the second term of the right hand
of (19) is much less than the first. For example, if 𝑛 = 1.2,
𝑈
𝑡
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From (2) and (22), the output current is given by
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Recalling (16) and (21), the biasing current can be
expressed as
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where 𝐼bias is implemented as shown in Figure 6.
Although the derivation of (23) is based on the assump-

tion that all MOS transistors operate in weak forward
inversion, it can also keep the performance of the proposed
amplifier when𝑃7,𝑃8, and𝑃9 operate inmoderate inversion.

4. Simulation Results

The differential log-companding amplifier is designed in
a standard 0.18 𝜇m CMOS technology. The supply voltage
is 0.8 V and the bias voltage 𝑉

𝑏

is 320mv. Note that the
amplifier’s gain can be controlled by voltage 𝑉

𝑏

. Because all
the aforementioned deductions are based on the EKVmodel,
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Table 1: The corner simulation results.

Typical Worst case Best case
MOS model Typical Fast Slow
Temperature (∘C) 27 0 80
Voltage supply (V) 0.8 0.8 0.8
Open loop gain (dB) 50 51.7 46.8
3 dB frequency (kHz) 510 340 850
Maximum input range (nApp) 20 10 46
Maximum output swing (𝜇App) 6.3 2.58 10
THD@maximum output swing (%) 0.028 0.056 0.03
CMRR (dB) 73 77.8 64.2

the design adopts the EKV model from the foundry in the
following simulations to verify the analytical conclusions.

The output current changes from 0.23 𝜇A to 13.6 𝜇Awhen
the input current varies from −20 nA to 20 nA as shown
in Figure 7. The transient response of the output current is
shown in Figure 8 with a sinusoidal input signal of 10 kHz
frequency and 20 nApp peak-to-peak amplitude. Figure 9
shows the frequency response of the amplifier. The CMRR of
log-companding amplifier is up to 73 dB using two stages of
the differential structures shown in Figures 3 and 4.The THD
of the proposed circuit is less than 0.03% at the maximum
output as illustrated in Figure 10.

Considering that THD and CMRR are influenced by the
device mismatch, the result of Monte Carlo simulation is
provided as shown in Figure 11. THD is more than 80 dB and
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Table 2: Performance comparison with other works.

This work [11] [4] [8]
Technology 0.18 𝜇m CMOS 0.18𝜇m CMOS 0.25 𝜇m CMOS —
Topology Current mode Current mode Current mode Current mode
Supply voltage (V) 0.8 1 0.6 1
Open gain (dB) 50 dB 44.5/50/55.9 −40 to 38 −40 to +40
Bandwidth (Hz) 510 k 0.3∼1 k∼10 k 200 k —
Input referred noise density (fA/sqrt (Hz)) 166.1 fA (@10 kHz) 153 fA (@10 kHz) — —
Maximum input current (nApp) 20 20 — —
Input dynamic range (dB) 92.9 53.29 — —
Power consumption (𝜇W) 6 13 3.16 25
CMRR (dB) 74 — 35.76 —
THD@maximum input (%) 0.0287@50 dB 1.03 0.55 0.6
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has a satisfactory result, CMRR is almost more than 72 dB
and a very few points degrade. Figure 12 gives the comparison
between the simulated gains and the predicted gain according
to (24). The figure shows a good estimation.

The corner simulation results are shown in Table 1, which
exhibit a good capability of operating in the real circum-
stance. Three corner simulations are different in temperature

and same in voltage supply. Open loop gains vary only 5 dB in
the range of different corners. 3 dB frequency has poor value
in the worst case but it is acceptable for biosignal sensing
application. They all have a good performance in THD and
CMRR.

Table 2 displays the performance comparison with other
design methods. They employed the same current-mode
topology andwork below the voltage supply 1 V.Thiswork has
the least power consumption only 6 𝜇W and the best input
dynamic range 92.9 dB. The proposed amplifier in this paper
shows the lowest THD and the highest CMRR. Furthermore,
it also shows excellent performance in low supply voltage and
low power consumption.

5. Conclusions

A novel high linearity, low power, and high CMRR differ-
ential log-companding amplifier is introduced in this work.
The amplifier is designed in a standard 0.18 𝜇m CMOS
technology with excellent linearity, high CMRR, and low
power consumption. With the new nonlinear function used
in the log-companding technology, the proposed amplifier
has a very small THD and simultaneously a wide output
current range. Furthermore, a differential structure with
conventionally symmetrical configuration has been adopted
in the novel method in order to obtain a high CMRR. The
voltage supply is 0.8 V, the power consumption is 6 𝜇W, and
the THD is less than 0.03% at the maximum input. The
CMRR of this circuit is 74 dB and the input referred current
noise density is 166.1 fA/√Hz. It can be used in biomedical
signal processing to decrease total power consumption, to
ensure the signal linearity, and to eliminate common-mode
noise. In conclusion, this technique can be used to design
log-companding amplifier for many portable and wearable
personal healthcare applications.
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