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This contribution reports the development of a time domain model of a three-phase voltage source converter (VSC) that can be
used in the transient and steady state analysis of nonlinear power systems including their associated closed-loop control schemes.
With this proposed model, the original discontinuous nonlinear power system can be transformed into a continuous system, while
keeping the underlying harmonic nature of the VSC and avoiding typical and undesirable numerical problems associated with the
large derivatives during the switching transitions. The development of this model was based on the dynamic Fourier series of the
switching functions under a sinusoidal PWM modulation scheme, which require the calculation of the switching instants at each
integration step; the switching instants and the dynamic Fourier series coefficients are calculated by explicit mathematical formulas.
The proposed model of the VSC is suitable for the fast computation of the periodic steady state solution through the application of
Newton method. Simulations were carried out in order to illustrate the benefits of the proposed VSC model.

1. Introduction

This contribution describes a time domain model of the
voltage source converter (VSC) that can be used in the
transient and steady state analysis of nonlinear power sys-
tems including linear or nonlinear control schemes. With
the proposed model, the original discontinuous nonlinear
power system can be transformed into a continuous system
while keeping the underlying discontinuous nature of the
VSC and avoiding undesirable numerical problems associ-
ated with the large derivatives during the switching transi-
tions. Additionally, the computation of the periodic steady
state solution is obtained with a Newton method; in this
paper, an enhanced numerical differentiation method is used
[1].

The VSC is the heart of many components in industrial
applications due to its modular design, controllability, and
the ability to build some multilevel topologies for low and
high power applications [2, 3], high voltage direct current
(HVDC) transmission system [4], electric motor speed
drives, interconnection of wind energy systems, and flexible
AC transmission systems (FACTS) [5], among others. For
these reasons, the three-phase VSC is the common building
block in FACTS technologies, custom power equipment,
active filters, variable speed drives, PWM rectifiers, HVDC
links, and power electronic interfaces for interconnection of
renewable energy sources. However, the analyses of electric
networks including VSC-based components still represent
important challenges, since the VSC-based components are
in general nonlinear and incorporate both continuous and
discontinuous time dynamics and discrete time events.
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Figure 1: VSC circuit with ideal switches.

Several models have been presented in order to describe
more accurately the VSC: in [6] two mathematical repre-
sentations of the three-phase VSC for transient and steady
state solutions of nonlinear electric systems are proposed.
The three-phase VSC models in 𝑎𝑏𝑐-frame proposed in
[7] can be used in a Newton-Raphson formulation for
the fast computation of the periodic steady state solution
and stability assessment of power systems with nonlinear
loads and control systems, as demonstrated in [8–12]. In
a previous contribution, an exact model for VSC in 𝛼𝛽-
frame is presented in [13]. Reference [14] presents a direct
harmonicmethod in the 𝛼𝛽-frame for the computation of the
characteristic and uncharacteristic harmonic components of
the VSC. In [15], an iterative method based on a hybrid
time/frequency-domain approach is proposed to compute
the steady state of a PWM VSC in the 𝛼𝛽-frame with a
closed-loop controller. In these previous contributions [13–
15], the models are only limited to linear switched networks
and also present some drawbacks for VSC with closed-loop
control; that is, the quadratic convergence characteristics of
the Newton-Raphson method for the fast computation of the
periodic steady state solution are degraded. Reference [16]
deals with a time domain method using a modified Newton
method for only one VSC with dq control; however, the size
of the resulting system increases with the switching frequency
and this approach does not address the stability problem.

This contribution deals with a powerful model of the VSC
based on the Fourier series for time domain simulation of
nonlinear power systems including VSC-based components
considering large time steps. This model will be described in
detail in the following sections.

2. Algebraic Model of the VSC

For reference, Figure 1 shows the circuit representation of the
well-known three-phase two-level VSC. This VSC contains
six bidirectional switches; each bidirectional switch is an
arrangement of an IGBT (GTO or MOSFET) in antiparallel
with a diode. In power system analysis, the engineers use the
ideal switch model to represent semiconductors [17]. Using
the ideal switch model, the original continuous nonlinear
dynamic system that represents the VSC becomes a set
of linear algebraic equations. The bidirectional switching
function is identified by 𝑆

𝑥
and 𝑆

󸀠

𝑥
for each phase (𝑥 =

𝑎, 𝑏, 𝑐), which can be on or off, 𝑟 is the switch-on state
resistance, and 𝑆

𝑥
is 1 or 0, corresponding to the on and off

states of the switch, respectively. In addition, 𝑆
𝑥
and 𝑆

󸀠

𝑥
are

complementary; that is, 𝑆
𝑥
+ 𝑆
󸀠

𝑥
= 1.

The voltage to ground at the ac side of the VSC is given by

V
𝑡𝑎
= 𝑟𝑖
𝑎
+ Vdc𝑆𝑎 −

Vdc (𝑆𝑎 + 𝑆
𝑏
+ 𝑆
𝑐
)

3
,

V
𝑡𝑏
= 𝑟𝑖
𝑏
+ Vdc𝑆𝑏 −

Vdc (𝑆𝑎 + 𝑆
𝑏
+ 𝑆
𝑐
)

3
,

V
𝑡𝑐
= 𝑟𝑖
𝑐
+ Vdc𝑆𝑐 −

Vdc (𝑆𝑎 + 𝑆
𝑏
+ 𝑆
𝑐
)

3
.

(1)

The switching functions 𝑆
𝑎
, 𝑆
𝑏
, and 𝑆

𝑐
are square wave-

forms and take values of 0 for some intervals of time every
fundamental period and values of 1 for the rest of the funda-
mental period. The time instants when the switching func-
tions change from 1 to 0 and vice versa are named switching
times. Please notice in (1) that the relationship between the dc
side and the ac side of the VSC is purely algebraic; thus, the
voltage variations in one side are instantaneously seen for the
other side and vice versa. The mathematical representation
(1) allows anymodulation technique. In this contribution, the
proposed model is focused on the Sinusoidal Pulse Width
Modulation (SPWM) technique.The switching functions can
be written in terms of the complex Fourier series, as follows:

𝑆
𝑎
= 0.5+ 2

𝑛max

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑎⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
cos (𝑘𝜔

0
𝑡 + ∠𝑐
𝑎⟨𝑘⟩

) ,

𝑆
𝑏
= 0.5+ 2

𝑛max

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑏⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
cos (𝑘𝜔

0
𝑡 + ∠𝑐
𝑏⟨𝑘⟩

) ,

𝑆
𝑐
= 0.5+ 2

𝑛max

∑

𝑘=1

󵄨
󵄨
󵄨
󵄨
𝑐
𝑐⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
cos (𝑘𝜔

0
𝑡 + ∠𝑐
𝑐⟨𝑘⟩

) ,

(2)

where 𝑛max is the highest harmonic order.
The complex Fourier series coefficients of the switching

functions (𝑐
𝑎⟨𝑘⟩

, 𝑐
𝑏⟨𝑘⟩

, and 𝑐
𝑐⟨𝑘⟩

) strictly depend on the switch-
ing times; therefore, the switching functions can be described
analytically if the switching times are also described by
analytical and explicit expressions in terms of themodulation
parameters of the VSC. According to this idea, the next
step toward the proposed model is to develop analytical and
explicit equations for the computation of the switching times.

3. Symbolic and Explicit Equations for
the Computation of the Switching Times

The desired voltages at the terminals of the VSC are

Vref
𝑡𝑎

= |𝑉| cos (𝜔0𝑡 − 𝜃) , (3a)

Vref
𝑡𝑏

= |𝑉| cos (𝜔0𝑡 − 𝜑) , (3b)

Vref
𝑡𝑐

= |𝑉| cos (𝜔0𝑡 − 𝜙) . (3c)

In particular, for the balanced case, 𝜑 = 𝜃 + 2𝜋/3, 𝜙 =

𝜃 − 2𝜋/3. The switching times can be computed as follows:
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𝑡
𝑎⟨𝑘⟩

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑎
⟨𝑘⟩

+

cos (𝑎
⟨𝑘⟩
𝜔0 − 𝜃)

sin (𝑎
⟨𝑘⟩
𝜔0 − 𝜃) 𝜔0 + (−1)𝑘 (𝑚

𝑝
/𝑚
𝑎
)

; 𝜃 ∈ (

𝜋

2
,

3𝜋
2
) ,

𝑎
⟨𝑘+1⟩ +

cos (𝑎
⟨𝑘+1⟩𝜔0 − 𝜃)

sin (𝑎
⟨𝑘+1⟩𝜔0 − 𝜃) 𝜔0 + (−1)𝑘+1 (𝑚

𝑝
/𝑚
𝑎
)

; 𝜃 ∉ (

𝜋

2
,

3𝜋
2
) ,

(4a)

𝑡
𝑏⟨𝑘⟩

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑎
⟨𝑘⟩

+

cos (𝑎
⟨𝑘⟩
𝜔0 − 𝜃 − 2𝜋/3)

sin (𝑎
⟨𝑘⟩
𝜔0 − 𝜃 − 2𝜋/3) 𝜔0 + (−1)𝑘 (𝑚

𝑝
/𝑚
𝑎
)

; 𝜃 ∉ [

5𝜋
6
,

11𝜋
6

] ,

𝑎
⟨𝑘+1⟩ +

cos (𝑎
⟨𝑘+1⟩𝜔0 − 𝜃 − 2𝜋/3)

sin (𝑎
⟨𝑘+1⟩𝜔0 − 𝜃 − 2𝜋/3) 𝜔0 + (−1)𝑘+1 (𝑚

𝑝
/𝑚
𝑎
)

; 𝜃 ∈ [

5𝜋
6
,

11𝜋
6

] ,

(4b)

𝑡
𝑐⟨𝑘⟩

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑎
⟨𝑘⟩

+

cos (𝑎
⟨𝑘⟩
𝜔0 − 𝜃 + 2𝜋/3)

sin (𝑎
⟨𝑘⟩
𝜔0 − 𝜃 + 2𝜋/3) 𝜔0 + (−1)𝑘 (𝑚

𝑝
/𝑚
𝑎
)

; 𝜃 ∉ [

𝜋

6
,

7𝜋
6
] ,

𝑎
⟨𝑘+1⟩ +

cos (𝑎
⟨𝑘+1⟩𝜔0 − 𝜃 + 2𝜋/3)

sin (𝑎
⟨𝑘+1⟩𝜔0 − 𝜃 + 2𝜋/3) 𝜔0 + (−1)𝑘+1 (𝑚

𝑝
/𝑚
𝑎
)

; 𝜃 ∈ [

𝜋

6
,

7𝜋
6
] .

(4c)

Equations (4a)–(4c) can be transformed into a Newton
process in order to increase the precision of the switching
times:

𝑡
⟨𝑖+1⟩
𝑎⟨𝑘⟩

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑡
⟨𝑖⟩

𝑎⟨𝑘⟩
+

cos (𝑡⟨𝑖⟩
𝑎⟨𝑘⟩

𝜔0 − 𝜃) + (−1)𝑘 (𝑚
𝑝
/𝑚
𝑎
) (𝑎
⟨𝑘⟩

− 𝑡
⟨𝑖⟩

𝑎⟨𝑘⟩
)

sin (𝑡⟨𝑖⟩
𝑎⟨𝑘⟩

𝜔0 − 𝜃)𝜔0 + (−1)𝑘 (𝑚
𝑝
/𝑚
𝑎
)

; 𝜃 ∈ (

𝜋

2
,

3𝜋
2
) ,

𝑡
⟨𝑖⟩

𝑎⟨𝑘⟩
+

cos (𝑡⟨𝑖⟩
𝑎⟨𝑘⟩

𝜔0 − 𝜃) + (−1)𝑘+1 (𝑚
𝑝
/𝑚
𝑎
) (𝑎
⟨𝑘+1⟩ − 𝑡

⟨𝑖⟩

𝑎⟨𝑘⟩
)

sin (𝑡⟨𝑖⟩
𝑎⟨𝑘⟩

𝜔0 − 𝜃)𝜔0 + (−1)𝑘+1 (𝑚
𝑝
/𝑚
𝑎
)

; 𝜃 ∉ (

𝜋

2
,

3𝜋
2
) ,

(5a)

𝑡
⟨𝑖+1⟩
𝑏⟨𝑘⟩

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑡
⟨𝑖⟩

𝑏⟨𝑘⟩
+

cos (𝑡⟨𝑖⟩
𝑏⟨𝑘⟩

𝜔0 − 𝜃 − 2𝜋/3) + (−1)𝑘 (𝑚
𝑝
/𝑚
𝑎
) (𝑎
⟨𝑘⟩

− 𝑡
⟨𝑖⟩

𝑏⟨𝑘⟩
)

sin (𝑡⟨𝑖⟩
𝑏⟨𝑘⟩

𝜔0 − 𝜃 − 2𝜋/3) 𝜔0 + (−1)𝑘 (𝑚
𝑝
/𝑚
𝑎
)

; 𝜃 ∉ [

5𝜋
6
,

11𝜋
6

] ,

𝑡
⟨𝑖⟩

𝑏⟨𝑘⟩
+

cos (𝑡⟨𝑖⟩
𝑏⟨𝑘⟩

𝜔 − 𝜔0 − 2𝜋/3) + (−1)𝑘+1 (𝑚
𝑝
/𝑚
𝑎
) (𝑎
⟨𝑘+1⟩ − 𝑡

⟨𝑖⟩

𝑏⟨𝑘⟩
)

sin (𝑡⟨𝑖⟩
𝑏⟨𝑘⟩

𝜔0 − 𝜃 − 2𝜋/3) 𝜔0 + (−1)𝑘+1 (𝑚
𝑝
/𝑚
𝑎
)

; 𝜃 ∈ [

5𝜋
6
,

11𝜋
6

] ,

(5b)

𝑡
⟨𝑖+1⟩
𝑐⟨𝑘⟩

=

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑡
⟨𝑖⟩

𝑐⟨𝑘⟩
+

cos (𝑡⟨𝑖⟩
𝑐⟨𝑘⟩

𝜔0 − 𝜃 + 2𝜋/3) + (−1)𝑘 (𝑚
𝑝
/𝑚
𝑎
) (𝑎
⟨𝑘⟩

− 𝑡
⟨𝑖⟩

𝑐⟨𝑘⟩
)

sin (𝑡⟨𝑖⟩
𝑐⟨𝑘⟩

𝜔0 − 𝜃 + 2𝜋/3) 𝜔0 + (−1)𝑘 (𝑚
𝑝
/𝑚
𝑎
)

; 𝜃 ∉ [

𝜋

6
,

7𝜋
6
] ,

𝑡
⟨𝑖⟩

𝑐⟨𝑘⟩
+

cos (𝑡⟨𝑖⟩
𝑐⟨𝑘⟩

𝜔0 − 𝜃 + 2𝜋/3) + (−1)𝑘+1 (𝑚
𝑝
/𝑚
𝑎
) (𝑎
⟨𝑘+1⟩ − 𝑡

⟨𝑖⟩

𝑐⟨𝑘⟩
)

sin (𝑡⟨𝑖⟩
𝑐⟨𝑘⟩

𝜔0 − 𝜃 + 2𝜋/3) 𝜔0 + (−1)𝑘+1 (𝑚
𝑝
/𝑚
𝑎
)

; 𝜃 ∈ [

𝜋

6
,

7𝜋
6
] .

(5c)

The initial guess for the iterative equations (5a)–(5c) is

𝑡
⟨0⟩
𝑎⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑎
⟨𝑘⟩
; 𝜃 ∈ (

𝜋

2
,

3𝜋
2
) ,

𝑎
⟨𝑘+1⟩; 𝜃 ∉ (

𝜋

2
,

3𝜋
2
) ,

(6a)

𝑡
⟨0⟩
𝑏⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑎
⟨𝑘⟩
; 𝜃 ∉ [

5𝜋
6
,

11𝜋
6

] ,

𝑎
⟨𝑘+1⟩; 𝜃 ∈ [

5𝜋
6
,

11𝜋
6

] ,

(6b)

𝑡
⟨0⟩
𝑐⟨𝑘⟩

=

{
{

{
{

{

𝑎
⟨𝑘⟩
; 𝜃 ∉ [

𝜋

6
,

7𝜋
6
] ,

𝑎
⟨𝑘+1⟩; 𝜃 ∈ [

𝜋

6
,

7𝜋
6
] .

(6c)

Once the switching instants have been calculated, the
switching functions are automatically obtained as follows:

𝑆
𝑎⟨𝑘⟩

=

{
{
{

{
{
{

{

1 + (−1)𝑘

2
; 𝜃 ∈ (

𝜋

2
,

3𝜋
2
) ; ∀𝑘 = 1, 2, . . . , 2𝑚

𝑓
+ 1,

1 + (−1)𝑘+1

2
; 𝜃 ∉ (

𝜋

2
,

3𝜋
2
) ; ∀𝑘 = 1, 2, . . . , 2𝑚

𝑓
+ 1,

(7a)
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𝑆
𝑏⟨𝑘⟩

=

{
{
{
{

{
{
{
{

{

1 + (−1)𝑘

2
; 𝜃 ∉ [

5𝜋
6
,

11𝜋
6

] ; ∀𝑘 = 1, . . . , 2𝑚
𝑓
+ 1,

1 + (−1)𝑘+1

2
; 𝜃 ∈ [

5𝜋
6
,

11𝜋
6

] ; ∀𝑘 = 1, . . . , 2𝑚
𝑓
+ 1,

(7b)

𝑆
𝑐⟨𝑘⟩

=

{
{
{
{

{
{
{
{

{

1 + (−1)𝑘

2
; 𝜃 ∉ [

𝜋

6
,

7𝜋
6
] ; ∀𝑘 = 1, 2, 3, . . . , 2𝑚

𝑓
+ 1,

1 + (−1)𝑘+1

2
; 𝜃 ∈ [

𝜋

6
,

7𝜋
6
] ; ∀𝑘 = 1, 2, 3, . . . , 2𝑚

𝑓
+ 1.

(7c)

The 𝑘th state for switching function 𝑆
𝑥⟨𝑘⟩

takes place from
𝑡
𝑥⟨𝑘−1⟩

to 𝑡 < 𝑡
𝑥⟨𝑘⟩

and so on and so forth, where 𝑥 = 𝑎, 𝑏, 𝑐. By
definition, 𝑡

𝑥⟨0⟩
= 0 and 𝑡

𝑥⟨2𝑚𝑓+1⟩
= 𝑇 for𝑥 = 𝑎, 𝑏, 𝑐. For some

phase angles as shown in (7a)–(7c), the switching functions
contain 2𝑚

𝑓
+1 states because for those angles the state of 𝑆

𝑥

from 𝑡
𝑥⟨2𝑚𝑓⟩

to 𝑡 < 𝑇 is equal to the state of 𝑆
𝑥
from 𝑡

𝑥⟨0⟩
to

𝑡 < 𝑡
𝑥⟨1⟩

. If one of the phase angles (𝜃,𝜑, and𝜙) is equal to𝜋/2
or 3𝜋/2, then the associated switching function only has 2𝑚

𝑓

states in a full fundamental period. Only for this particular
case, the last state is different to the first state.

Equations (4a)–(6c) are the general expression for the
approximated computation of the switching instants. In (4a)–
(4c), 𝑡

𝑎⟨𝑘⟩
, 𝑡
𝑏⟨𝑘⟩

, and 𝑡
𝑐⟨𝑘⟩

are the 𝑘th switching instants for the
switching functions of phases 𝑎, 𝑏, and 𝑐, respectively. In (5a)–
(5c), 𝑡⟨𝑖⟩

𝑎⟨𝑘⟩
, 𝑡⟨𝑖⟩
𝑏⟨𝑘⟩

, and 𝑡⟨𝑖⟩
𝑐⟨𝑘⟩

are the 𝑘th switching instants of 𝑆
𝑎
,

𝑆
𝑏
, and 𝑆

𝑐
, respectively, in the 𝑖th Newton iteration. 𝜃 is the

phase angle of fundamental components of Vref
𝑡𝑎

and is within
0 and 2𝜋;𝑚

𝑝
is the absolute slope of the triangular signal used

in the SPWM modulation technique and is equal to 4𝑚
𝑓
/𝑇;

𝑇 is the fundamental period of the control signals (3a)–(3c);
𝑚
𝑓
is the frequency modulation ratio; 𝑚

𝑎
is the amplitude

modulation ratio for each phase, and this is equal to |𝑉|/Vdc;
𝜔0 = 2𝜋/𝑇 is the desired fundamental frequency; and 𝑎

⟨𝑘⟩
are

the instants where the triangular signal is zero and these are
equal to 𝑇(𝑘 − 1)/(2𝑚

𝑓
) for 𝑘 = 1, 2, . . . , 2𝑚

𝑓
+ 1.

Example 1. In this example, the switching times for the phase
𝑎 are computed using (4a)–(6c) with 𝑚

𝑓
= 9, 𝑚

𝑎
= 0.6, 𝑇 =

1/60 s, and 𝜃 = 𝜋/7 rad. Figure 2 shows the SPWM process
for this case. The number of switching instants in the linear
modulation region is always 2𝑚

𝑓
for each phase; therefore,

there are 18 switching instants for the phase 𝑎.

In Table 1, the switching instants are listed. In the first
column the 𝑘th switching instant is listed. In the second
column the initial guess obtained with (6a) is listed. In the
third column the computed switching instants obtained with
(4a) are shown, which correspond to the first iteration of
(5a).The fourth and fifth columns show the second and third
iteration of (5a), respectively.

3.1. Switching Instants for Odd Switching Functions in the
Balanced Case. In the case where the switching functions are
odd, for example,𝑚

𝑓
= odd, they have half-wave symmetry;

0 2 4 6 8 10 12 14 16

0

0.5

1

Time (ms)

−0.5

−1

Figure 2: SPWM for the phase 𝑎. Carrier signal (triangular),
modulation signal (sinusoidal), and switching function (square).

Table 1: Switching times in ms for Example 1.

𝑘 𝑡
⟨0⟩
𝑎⟨𝑘⟩

= 𝑎
⟨𝑘+1⟩ 𝑡

𝑎⟨𝑘⟩
= 𝑡
⟨1⟩
𝑎⟨𝑘⟩

𝑡
⟨2⟩
𝑎⟨𝑘⟩

𝑡
⟨3⟩
𝑎⟨𝑘⟩

1 0.925925925 1.205235647 1.2037002983 1.203700251
2 1.851851851 1.575523283 1.5770181425 1.577018186
3 2.777777777 2.99403724 2.9937987468 2.993798739
4 3.703703703 3.526484448 3.5268901728 3.526890175
5 4.629629629 4.697973623 4.6979516465 4.697951646
6 5.555555555 5.578734411 5.5787334926 5.578733492
7 6.481481481 6.377189967 6.3772681085 6.377268108
8 7.407407407 7.617080290 7.6164122547 7.616412247
9 8.333333333 8.093941268 8.0948938133 8.094893827
10 9.259259259 9.538568981 9.5370336316 9.537033585
11 10.185185185 9.908856616 9.9103514759 9.910351520
12 11.111111111 11.327837058 11.327132080 11.327132072
13 12.037037037 11.859817781 11.860223506 11.860223508
14 12.962962962 13.031306957 13.031284979 13.031284979
15 13.888888888 13.912067745 13.912066825 13.912066825
16 14.814814814 14.710523300 14.710601441 14.710601441
17 15.740740740 15.950413624 15.949745588 15.949745580
18 16.666666666 16.427274602 16.428227146 16.428227161

consequently, all even-numbered harmonics vanish. In addi-
tion,

𝑡
𝑥⟨𝑘+𝑚𝑓⟩

= 𝑡
𝑥⟨𝑘⟩

+

𝑇

2
; ∀𝑘 = 1, 2, . . . , 𝑚

𝑓
, 𝑥 = 𝑎, 𝑏, 𝑐. (8)

Using half-wave symmetry property, it is only necessary
to compute half of the switching times with analytical
equations (4a)–(6c). For example, from Table 1, it is easy to
show that 𝑡

𝑎⟨𝑘+9⟩
= 𝑡
𝑎⟨𝑘⟩

+ 1/120 for 𝑘 = 1, 2, 3, . . . , 9. For
the balanced case, the switching times can be computed for
one phase, and, for the other phases, these are obtained with
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the appropriate phase angle if 𝑚
𝑓
is odd multiple of three as

follows:

𝑡
𝑏⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑡
𝑎⟨𝑘+4𝑚𝑓/3−1⟩ −

2𝑇
3
; 𝑘 = 1, 2, . . . ,

2𝑚
𝑓

3
+ 1,

𝑡
𝑎⟨𝑘−2𝑚𝑓/3−1⟩ +

𝑇

3
; 𝑘 =

2𝑚
𝑓

3
+ 2, . . . , 2𝑚

𝑓
,

∀𝜃 ∉ (

𝜋

2
,

11𝜋
6

] ,

𝑡
𝑏⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑡
𝑎⟨𝑘+4𝑚𝑓/3⟩ −

2𝑇
3
; 𝑘 = 1, 2, . . . ,

2𝑚
𝑓

3
,

𝑡
𝑎⟨𝑘−2𝑚𝑓/3⟩ +

𝑇

3
; 𝑘 =

2𝑚
𝑓

3
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ [

3𝜋
2
,

11𝜋
6

] ∪ (

𝜋

2
,

5𝜋
6
) ,

𝑡
𝑏⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑡
𝑎⟨𝑘+4𝑚𝑓/3+1⟩ −

2𝑇
3
; 𝑘 = 1, 2, . . . ,

2𝑚
𝑓

3
− 1,

𝑡
𝑎⟨𝑘−2𝑚𝑓/3+1⟩ +

𝑇

3
; 𝑘 =

2𝑚
𝑓

3
,

2𝑚
𝑓

3
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ [

5𝜋
6
,

3𝜋
2
) ,

(9a)

𝑡
𝑐⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑡
𝑎⟨𝑘+2𝑚𝑓/3−1⟩ −

𝑇

3
; 𝑘 = 1, 2, . . . ,

4𝑚
𝑓

3
+ 1,

𝑡
𝑎⟨𝑘−4𝑚𝑓/3−1⟩ +

2𝑇
3
; 𝑘 =

4𝑚
𝑓

3
+ 2, . . . , 2𝑚

𝑓
,

∀𝜃 ∉ [

𝜋

6
,

3𝜋
2
) ,

𝑡
𝑐⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑡
𝑎⟨𝑘+2𝑚𝑓/3⟩ −

𝑇

3
; 𝑘 = 1, 2, . . . ,

4𝑚
𝑓

3
,

𝑡
𝑎⟨𝑘−4𝑚𝑓/3⟩ +

2𝑇
3
; 𝑘 =

4𝑚
𝑓

3
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ [

𝜋

6
,

𝜋

2
] ∪ (

7𝜋
6
,

3𝜋
2
) ,

𝑡
𝑐⟨𝑘⟩

=

{
{
{

{
{
{

{

𝑡
𝑎⟨𝑘+2𝑚𝑓/3+1⟩ −

𝑇

3
; 𝑘 = 1, 2, . . . ,

4𝑚
𝑓

3
− 1,

𝑡
𝑎⟨𝑘−4𝑚𝑓/3+1⟩ +

2𝑇
3
; 𝑘 =

4𝑚
𝑓

3
, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ (

𝜋

2
,

7𝜋
6
] .

(9b)

If the half-wave symmetry is considered, then (9a)-(9b)
are

𝑡
𝑏⟨𝑘⟩

=

{
{

{
{

{

𝑡
𝑎⟨𝑘+4𝑚𝑓/3−1⟩ −

2𝑇
3
; 𝑘 = 1, 2, . . . , 𝑚

𝑓
,

𝑡
𝑏⟨𝑘−𝑚𝑓⟩

+

𝑇

2
; 𝑘 = 𝑚

𝑓
+ 1, 𝑚

𝑓
+ 2, . . . , 2𝑚

𝑓
,

∀𝜃 ∉ (

𝜋

2
,

11𝜋
6

] ,

𝑡
𝑏⟨𝑘⟩

=

{
{

{
{

{

𝑡
𝑎⟨𝑘+4𝑚𝑓/3⟩ −

2𝑇
3
; 𝑘 = 1, 2, 3, . . . , 𝑚

𝑓
,

𝑡
𝑏⟨𝑘−𝑚𝑓⟩

+

𝑇

2
; 𝑘 = 𝑚

𝑓
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ [

3𝜋
2
,

11𝜋
6

] ∪ (

𝜋

2
,

5𝜋
6
) ,

𝑡
𝑏⟨𝑘⟩

=

{
{

{
{

{

𝑡
𝑎⟨𝑘+4𝑚𝑓/3+1⟩ −

2𝑇
3
; 𝑘 = 1, 2, . . . , 𝑚

𝑓
,

𝑡
𝑏⟨𝑘−𝑚𝑓⟩

+

𝑇

2
; 𝑘 = 𝑚

𝑓
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ [

5𝜋
6
,

3𝜋
2
) ,

(10a)

𝑡
𝑐⟨𝑘⟩

=

{
{

{
{

{

𝑡
𝑎⟨𝑘+2𝑚𝑓/3−1⟩ −

𝑇

3
; 𝑘 = 1, 2, . . . , 𝑚

𝑓
,

𝑡
𝑐⟨𝑘−𝑚𝑓⟩

+

𝑇

2
; 𝑘 = 𝑚

𝑓
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∉ [

𝜋

6
,

3𝜋
2
) ,

𝑡
𝑐⟨𝑘⟩

=

{
{

{
{

{

𝑡
𝑎⟨𝑘+2𝑚𝑓/3⟩ −

𝑇

3
; 𝑘 = 1, 2, 3, . . . , 𝑚

𝑓
,

𝑡
𝑐⟨𝑘−𝑚𝑓⟩

+

𝑇

2
; 𝑘 = 𝑚

𝑓
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ [

𝜋

6
,

𝜋

2
] ∪ (

7𝜋
6
,

3𝜋
2
) ,

𝑡
𝑐⟨𝑘⟩

=

{
{

{
{

{

𝑡
𝑎⟨𝑘+2𝑚𝑓/3+1⟩ −

𝑇

3
; 𝑘 = 1, 2, 3, . . . , 𝑚

𝑓
,

𝑡
𝑎⟨𝑘−𝑚𝑓⟩

+

𝑇

2
; 𝑘 = 𝑚

𝑓
+ 1, . . . , 2𝑚

𝑓
,

∀𝜃 ∈ (

𝜋

2
,

7𝜋
6
] .

(10b)

With (10a), (10b), only the sixth part (𝑚
𝑓

switching
instants) of the total switching instants (6𝑚

𝑓
) has to be

computed with (4a)–(4c) or (5a)–(5c) and, consequently, the
computational effort is dramatically reduced.

4. Complex Fourier Series Coefficients of
the Switching Functions

Once switching instants have been analytically calculated, the
pulse train of the switching function is automatically obtained
with (7a)–(7c) in the linearmodulation.The complex Fourier
series coefficients of the switching function are zero for even
harmonic components if 𝑚

𝑓
= odd. On the other hand, the

odd complex Fourier series coefficients for𝑚
𝑓
= odd are

𝑐
𝑎⟨𝑘⟩

=

1
𝑗𝜋𝑘

𝑚𝑓

∑

𝑛=1
(−1)𝑛 𝑒−𝑗𝜔0𝑘𝑡𝑎⟨𝑛⟩

= −

1
𝜋𝑘

(

𝑚𝑓

∑

𝑛=1
(−1)𝑛 sin (𝜔

0
𝑘𝑡
𝑎⟨𝑛⟩

)

+ 𝑗

𝑚𝑓

∑

𝑛=1
(−1)𝑛 cos (𝜔

0
𝑘𝑡
𝑎⟨𝑛⟩

))

∀𝜃 ∈ [−

𝜋

2
,

𝜋

2
] , 𝑘 = odd,

(11a)
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𝑐
𝑎⟨𝑘⟩

= −

1
𝑗𝜋𝑘

𝑚𝑓

∑

𝑛=1
(−1)𝑛 𝑒−𝑗𝜔0𝑘𝑡𝑎⟨𝑛⟩

=

1
𝜋𝑘

(

𝑚𝑓

∑

𝑛=1
(−1)𝑛 sin (𝜔

0
𝑘𝑡
𝑎⟨𝑛⟩

)

+ 𝑗

𝑚𝑓

∑

𝑛=1
(−1)𝑛 cos (𝜔

0
𝑘𝑡
𝑎⟨𝑛⟩

))

∀𝜃 ∉ [−

𝜋

2
,

𝜋

2
] , 𝑘 = odd,

(11b)

𝑐
𝑏⟨𝑘⟩

=

1
𝑗𝜋𝑘

𝑚𝑓

∑

𝑛=1
(−1)𝑛 𝑒−𝑗𝜔0𝑘𝑡𝑏⟨𝑛⟩

= −

1
𝜋𝑘

(

𝑚𝑓

∑

𝑛=1
(−1)𝑛 sin (𝜔

0
𝑘𝑡
𝑏⟨𝑛⟩

)

+ 𝑗

𝑚𝑓

∑

𝑛=1
(−1)𝑛 cos (𝜔

0
𝑘𝑡
𝑏⟨𝑛⟩

))

∀𝜃 ∈ [

5𝜋
6
,

11𝜋
6

] , 𝑘 = odd,

(12a)

𝑐
𝑏⟨𝑘⟩

= −

1
𝑗𝜋𝑘

𝑚𝑓

∑

𝑛=1
(−1)𝑛 𝑒−𝑗𝜔0𝑘𝑡𝑏⟨𝑛⟩

=

1
𝜋𝑘

(

𝑚𝑓

∑

𝑛=1
(−1)𝑛 sin (𝜔

0
𝑘𝑡
𝑏⟨𝑛⟩

)

+ 𝑗

𝑚𝑓

∑

𝑛=1
(−1)𝑛 cos (𝜔

0
𝑘𝑡
𝑏⟨𝑛⟩

))

∀𝜃 ∉ [

5𝜋
6
,

11𝜋
6

] , 𝑘 = odd,

(12b)

𝑐
𝑐⟨𝑘⟩

=

1
𝑗𝜋𝑘

𝑚𝑓

∑

𝑛=1
(−1)𝑛 𝑒−𝑗𝜔0𝑘𝑡𝑐⟨𝑛⟩

= −

1
𝜋𝑘

(

𝑚𝑓

∑

𝑛=1
(−1)𝑛 sin (𝜔

0
𝑘𝑡
𝑐⟨𝑛⟩

)

+ 𝑗

𝑚𝑓

∑

𝑛=1
(−1)𝑛 cos (𝜔

0
𝑘𝑡
𝑐⟨𝑛⟩

))

∀𝜃 ∈ [

𝜋

6
,

7𝜋
6
] , 𝑘 = odd,

(13a)

𝑐
𝑐⟨𝑘⟩

= −

1
𝑗𝜋𝑘

𝑚𝑓

∑

𝑛=1
(−1)𝑛 𝑒−𝑗𝜔0𝑘𝑡𝑐⟨𝑛⟩

=

1
𝜋𝑘

(

𝑚𝑓

∑

𝑛=1
(−1)𝑛 sin (𝜔

0
𝑘𝑡
𝑐⟨𝑛⟩

)

+ 𝑗

𝑚𝑓

∑

𝑛=1
(−1)𝑛 cos (𝜔

0
𝑘𝑡
𝑐⟨𝑛⟩

))

∀𝜃 ∉ [

𝜋

6
,

7𝜋
6
] , 𝑘 = odd.

(13b)

The following relationships between the complex Fourier
series coefficients are satisfied if additionally a balanced case
is considered; that is, 𝜑 = 𝜃 + 2𝜋/3 and 𝜙 = 𝜃 − 2𝜋/3 in (2):

󵄨
󵄨
󵄨
󵄨
𝑐
𝑎⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑐
𝑏⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑐
𝑐⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
≜
󵄨
󵄨
󵄨
󵄨
𝑐
⟨𝑘⟩

󵄨
󵄨
󵄨
󵄨
,

∠𝑐
𝑏⟨𝑘⟩

= ∠𝑐
𝑎⟨𝑘⟩

−

2𝜋𝑘
3

,

∠𝑐
𝑐⟨𝑘⟩

= ∠𝑐
𝑎⟨𝑘⟩

−

4𝜋𝑘
3

.

(14)

Observe that, in (11a)–(13b), the summation only includes
half of the switching times for each phase.Moreover, only half
of the switching times for one phase have to be computed.
For example, half of the switching times are computed for
the phase 𝑎 using (4a); then 𝑐

𝑎⟨𝑘⟩
is computed using (11a),

(11b); finally, 𝑐
𝑏⟨𝑘⟩

and 𝑐
𝑐⟨𝑘⟩

are computed using (14). Once
the complex Fourier series coefficients have been obtained,
(2) can be evaluated in order to compute the value of the
switching function at the time 𝑡 given specific values of
𝑚
𝑎
, 𝑚
𝑓
, and 𝜃. In the general case, 𝑚

𝑎
and 𝜃 vary in the

time since these parameters are the output of a control
system. Figure 3 shows the sequential process to evaluate the
switching functions at specific time 𝑡; this diagram represents
the proposed Fourier series model of a VSC. In particular
for the SPWM technique, dominant complex Fourier series
coefficients appear as sidebands, centered around the switch-
ing frequency and its multiples, and the rest of the nonzero
𝑐
⟨𝑘⟩

are very small and consequently can be neglected which
means that they are not computed.

Equations (11a)–(13b) are analytical expressions of the
Fourier coefficients of the switching functions based on
the SPWM technique. Notice that these equations depend
on the switching times, which are also described by ana-
lytical and explicit equations in terms of the modulation
parameters, such as the index modulation frequency, the
index modulation amplitude, and the phase angle. With the
proposed model of a VSC in terms of the Fourier series, the
original time domain model is preserved and the undesired
effects of the discontinuity such as stiffness and inconsistent
initial conditions are efficiently avoided. Additionally, this
Fourier series model allows the direct application of fast
time domain methods for the computation of the periodic
steady state solution such as Newton methods which also
gives information about the stability of the periodic solution
through the Floquet multipliers. An important additional
feature of the proposed model is that the small harmonic
components can be neglected in the analysis. It is important
to remark that this Fourier series model is for the analysis of
nonlinear power systems with closed-loop control schemes.

5. Case Study

With the purpose of showing the properties of the proposed
formulation of the VSC, a small but complex power sys-
tem is considered as a case study. This system is periodic,
discontinuous, and nonlinear, with a closed-loop control.
The test case is shown in Figure 4, where the STATCOM
includes the control system based on that described in [18];
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Figure 5 shows the control system. The reference line-to-
line rms voltage is 200 Volts (|V

1
|
ref

= 200√2/3) at the
point of common coupling (PCC); the reference voltage for
the dc capacitor is Vrefdc = 500 Volts. Table 2 shows the
parameters of the test system. It is important to remark that
this case study is described by a set of highly nonlinear and
discontinuous ordinary differential equations.This case study
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Figure 5: STATCOM control system.

Table 2: Data of the test system.

Electric and
control
parameters

Sources of voltage (line-to-ground)

𝑅
𝑠1
= 0.1Ω

𝑉
𝑠1
= 200√

2

3

[

[

[

[

[

[

cos (2𝜋𝑓𝑡)

cos (2𝜋𝑓𝑡 − 2𝜋

3

)

cos (2𝜋𝑓𝑡 + 2𝜋

3

)

]

]

]

]

]

]

Volts

𝐿
𝑠1
= 0.01H

𝑅
𝐿1
= 0.2Ω

𝐿
𝐿1
= 0.015H

𝑅
𝐿2
= 0.15Ω

𝐿
𝐿2
= 0.01H

𝐶dc = 1000 𝜇F
𝑅stat = 0.05Ω

𝑉
𝑠2
= 200√

2

3

[

[

[

[

[

[

cos (2𝜋𝑓𝑡 − 0.436)

cos(2𝜋𝑓𝑡 − 2𝜋

3

− 0.436)

cos(2𝜋𝑓𝑡 + 2𝜋

3

− 0.436)

]

]

]

]

]

]

Volts

𝐿 stat = 0.005H
𝑟 = 1mΩ

𝑓 = 60Hz
𝐾
𝑚𝑝

= 0.004

𝐾
𝑚𝑖

= 1.6

𝐾
𝜃𝑝
= 1.6 × 10

−6

𝐾
𝜃𝑖
= 6 × 10

−5

is first carried out for low switching frequency and then is
repeated for a higher switching frequency in order to evaluate
the performance of the proposed approach.

5.1. Low Switching Frequency. In this case, the modulation
index is 𝑚

𝑓
= 21 (1260Hz). Figure 6 shows a comparison in

transient state between Simulink and the proposed model
with 𝑛max = 210 which is equivalent to 12.6 kHz or ten times
the switching frequency. Figure 6(a) shows the source current
of phase 𝑎 (𝑖

𝑠𝑎1
), Figure 6(b) shows the STATCOM current of

phase 𝑎 (𝑖stat𝑎), and Figure 6(c) shows the voltage across the
dc capacitor (Vdc). Please observe that the obtained solution
with Simulink and the proposed model are in very close
agreement. However, Simulink requires an integration step of
1 𝜇s; meanwhile the proposed model requires an integration
step of 39.7 𝜇s. According to the Nyquist-Shannon sampling
theorem, the largest integration step must be 1/(2 × 12600)
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Figure 7: (a) Time evolution of Vdc for two seconds. (b) Vdc for the last five full cycles.

or 39.7 𝜇s; otherwise, the total harmonic components below
12.6 kHz will not be taken into account in the simulation. In
the SPWM, there are around 𝑛max/2nonzero complex Fourier
series coefficients; however, most of them are very small
and can be neglected in order to reduce the operations and
thus to reduce the computational effort. For this case, there
are 𝑛max/2 nonzero complex Fourier series coefficients (odd
components); however, there are only 81 dominant harmonic
components (>1 × 10−3).

The steady state solution comparison is carried out as
follows. Firstly, a time domain simulation during one second
is carried out in Simulink in order to obtain the steady
state solution. Figure 7(a) shows the obtained solution with
Simulink for the voltage at the dc capacitor with three differ-
ent integration steps. On the other hand, Figure 7(b) shows
the last five full cycles of this solution; notice that the solution
is still varying regardless of the simulation time [7] and this
is highly affected by the integration step. This behavior is due
to the numerical error introduced by the discontinuities of
the ideal model of the semiconductors [7, 17]. One of the
advantages of the proposed formulation is that it can be used
in a Newtonmethod, in order to compute the periodic steady
state solution and its respective stability. Figure 8 shows the
periodic steady state waveforms of Vdc and 𝑖stat𝑎 for two
different integration steps in order to show that the proposed

Table 3: Convergence errors for 𝑛max = 210 and𝑚
𝑓
= 21.

Iteration Error
Δ𝑡 = 39.7 𝜇s Δ𝑡 = 9.92 𝜇s

1 5.8314 × 10−4 5.9212 × 10−4

2 5.5949 × 10−6 5.6916 × 10−6

3 3.4122 × 10−11 3.2503 × 10−11

formulation can be used in simulations with large integration
steps.These periodic solutionswere computedwith aNewton
method based on the enhanced numerical differentiation
process [1]. Table 3 shows the convergence error of the
Newton method for two different integrations steps.

5.2. High Switching Frequency. In practical applications of
low power systems, the switching frequency can be up to
100 kHz, but, in this case study, we consider a modulation
index of 𝑚

𝑓
= 165 (9900Hz); however, the proposed for-

mulation can handle a higher modulation index. For this
particular case (𝑚

𝑓
= 165), there are only 89 dominant

harmonic components (>1× 10−3), which hardly represent
the 11% of 𝑛max/2. This consideration reduces almost 90% of
the computation effort. Figure 9(a) shows the source current
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of phase 𝑎 (𝑖
𝑠𝑎1

), Figure 9(b) shows the STATCOM current of
phase 𝑎 (𝑖stat𝑎), and Figure 9(c) shows the voltage across the dc
capacitor (Vdc). Please observe that the obtained solutionwith
Simulink and the proposed model are practically overlapped.
Simulink requires an integration step of 1𝜇s and the proposed
model requires an integration step of 5.05 𝜇s; according to
the Nyquist-Shannon sampling theorem, this is the largest
integration step that can be selected.

Figure 10 shows the periodic steady state waveforms of
Vdc and 𝑖stat𝑎 for two different integration steps in order
to show that the proposed formulation can be used in
simulations with the largest integration step. These periodic
solutionswere computedwith aNewtonmethod based on the
enhanced numerical differentiation process [1]. Table 4 shows
the convergence error of theNewtonmethod for two different
integrations steps. This case omits the transient comparison
since the conclusions are similar to the first case.

It is important to remark that the Newton method has
quadratic convergence since the full system is considered
in the solution; therefore, this model is able to trace the
stability boundary of power networks including VSC-based
components. For example, for this operating condition, the
maximum Floquet multiplier is 0.9522, whichmeans stability

Table 4: Convergence errors for 𝑛max = 1650 and𝑚
𝑓
= 165.

Iteration Error
Δ𝑡 = 5.05 𝜇s Δ𝑡 = 4.17 𝜇s

1 6.2180 × 10−4 6.3136 × 10−4

2 7.6696 × 10−6 7.8222 × 10−6

3 3.0805 × 10−11 3.0823 × 10−11

for the system. On the other hand, if the integral gain of
the amplitude modulation ratio, 𝐾

𝑚𝑖
, is changed from 1.6 to

0.32, the maximum Floquet multiplier is 1.0023 and now the
system is unstable.

Table 5 shows the convergence error of the enhanced
numerical differentiation process for this unstable condition.
To verify the instability, a time domain simulation is carried
out with 𝐾

𝑚𝑖
= 0.32. Figure 11 shows the time evolution of

the voltage across the dc capacitor (a) and the phase portrait
of 𝑖
𝑠1𝑎

versus 𝑖
𝑠1𝑏

(b). From this figure, it is easy to see that the
solution is unstable since the phase portrait corresponds to a
torus instead of a limit cycle.
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Table 5: Convergence errors for 𝑛max = 1650 and 𝑚
𝑓

= 165

(unstable condition).

Iteration Error
Δ𝑡 = 5.05 𝜇s Δ𝑡 = 4.17 𝜇s

1 1.7039 × 10−3 1.7041 × 10−3

2 2.3285 × 10−4 2.3552 × 10−4

3 1.8926 × 10−8 1.9204 × 10−8

4 3.4885 × 10−14 3.5209 × 10−14

6. Conclusions

In this research, a comprehensive modeling of the voltage
source converter has been presented. The VSC model was
developed in terms of the Fourier series. Additionally, ana-
lytical and explicit equations for the computation of the
switching times have been obtained and, based on these
equations, a set of analytical equations for the computation
of the complex Fourier series coefficients of the switching
functions was developed. The balanced condition and the
properties of the Fourier series for 𝑚

𝑓
equal to odd multiple

of three have been exploited in order to compute the three
switching functions only with the sixth part of the total
switching instants.

Also, the developed model based on the Fourier series
representation of the switching functions is suitable for the
application of fast time domain methods. In the case of

this contribution, a Newton method was applied in order to
obtain the periodic steady state solution of a power system in
an efficient way. The power system used in the case studies
includes nonlinear components with SPWM VSC and with
closed-loop control.

In order to prove the benefits of the proposed model,
a case study including a STATCOM with a control system
has been analyzed. A very important characteristic of the
proposed approach has been observed; that is, it is possible
to consider only the dominant harmonic components in
the solution, which means higher efficiency. For instance,
in the second case study, the total harmonic components
were 1650; however, only 89 dominant complex Fourier series
coefficients were employed in both the transient and the
steady state solutions.

In summary, the VSC model developed in this contribu-
tion offers the following advantages.

(i) This proposal reaches the periodic steady state solu-
tion of a power system in an efficient way by using a
Newton method.

(ii) A system that is typically discontinuous is trans-
formed into a continuous one with all its advantages.

(iii) After the transformation, the nonlinear discontinu-
ous system reaches a nonlinear and continuous form
including the harmonic information of interest.
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