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This paper is concerned with the structural controllability analysis for discrete-time linear control systems with time-delay.
By adding virtual delay nodes, the linear systems with time-delay are transformed into corresponding linear systems without
time-delay, and the structural controllability of them is equivalent. That is to say, the time-delay does not affect or change the
controllability of the systems. Several examples are also presented to illustrate the theoretical results.

1. Introduction

Controllability has been one of the fundamental concepts in
modern control theory and has played an essential role in its
development because of the broad applications. Controllabil-
ity in the classical sense refers to the complete controllability
which means that it is possible to steer control systems from
an arbitrary initial state to an arbitrary final state using the set
of unconstrained admissible controls. In practice, admissible
controls are always required to satisfy certain additional
constraints. The controllability for linear dynamical systems
with constrained controls has also been studied; see [1–3].
The problem of controllability with unconstrained controls
for both linear and nonlinear systems has been considered in
various ways; see [4–8] and the references therein.

In this paper, we will consider the problem of structural
controllability on unconstrained values of admissible con-
trols.The concept of structural controllability was introduced
by Lin in 1974 to study the controllability of linear systems,
and it was extended to other systems, such as complex net-
works and multiagent systems. Roughly speaking, structural
controllability generally means that, by adjusting the free
parameters of the structured matrix, the control system is
completely controllable. Controllability is important in the
solution of many control problems, yet the determination
of controllability indices, for example, is a particularly ill-
posed computational problem as is the problem of checking

the controllability of an uncontrollable system. Structural
controllability, on the other hand, is a property that is as
useful as traditional controllability and can be determined
precisely by a computer. The structural controllability is a
generalization of traditional controllability concept for linear
systems and is purely based on the graphic topologies among
state and input vertices. It is now a fundamental tool to study
the controllability and enables us to understand the control
systems.

The necessary and sufficient conditions of structural con-
trollability were constructed by Lin in [9] from the graphical
point of view. Since then, much work has been done on
the structural controllability of linear systems. For example,
Shields and Pearson extended Lin’s results on structural con-
trollability of single-input linear systems tomulti-input linear
systems [10]. For linear time-varying systems, the structural
properties were defined as the strong structural controllabil-
ity; for the related research, see [11, 12]. Recently, in view of
switched linear systems, the structural controllability was
investigated by Liu et al. [13].

It is well recognized that time-delay is often encountered
in physical and biological systems. Time-delay phenomenon
may occur naturally because of the physical characteristics
of information transmitting and diversity of signals, as well
as the bandwidth of communication channels. Systems with
time-delay are more difficult to handle in engineering since
the controllability matrices are usually complex.
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Studying the linear delayed systems has become an
important topic in control theory and many researchers have
devoted themselves to the controllability analysis for the
delayed systems. For example, a data-basedmethod is used to
analyze the controllability of discrete-time linear delayed sys-
tem by Liu et al. [14]. The controllability and observability of
linear time-delay differential equations have been studied in
[15, 16]. Two sufficient conditions were recently reported in Ji
et al. [17] with respect to the controllability of multiagent sys-
temswith single time-delay.The results were then extended to
multiagent systems with time-delay in state and control [18]
and switching topology [19].

In spite of this progress, there is less work concerned
with the structural controllability of linear systemswith time-
delay. This paper is devoted to the structural controllability
analysis for discrete-time linear delayed systems. By adding
virtual delay nodes, the linear systems with time-delay are
transformed into corresponding linear systems without time-
delay; the necessary and sufficient conditions with respect to
the structural controllability of linear delayed systems are
obtained.

This paper is organized as follows. In Section 2, some
basic definitions and preliminary results are presented.
We introduce the discrete-time linear delayed systems in
Section 3 and, by adding delay nodes, the linear systems
with time-delay are transformed into corresponding linear
systems without time-delay and the main result of this paper
is obtained. Several examples are also presented to illustrate
the theoretical results in Section 4. The paper concludes in
Section 5 with a summary and the possible future research
directions.

2. Preliminaries

This section gives some basic definitions and preliminary
results.

2.1.The Representation Graph of the Linear Systems. Consider
the following discrete-time linear control system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (1)

where state 𝑥 and input 𝑢 take their values in R𝑛 and R𝑟,
respectively. Matrixes 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑟

are
assumed to be structured matrices, which means that their
elements are either fixed zeros or free parameters. For conve-
nience in this paper, the structured system (1) is represented
as matrix pair (𝐴, 𝐵).

The matrix pair (𝐴, 𝐵) has the same structure as the pair
(𝐴, 𝐵) of the same dimensions if for every fixed (zero) entry of
matrix (𝐴, 𝐵) the corresponding entry of matrix (𝐴, 𝐵) is also
fixed (zero) and for every fixed (zero) entry of matrix (𝐴, 𝐵)
the corresponding entry of matrix (𝐴, 𝐵) is also fixed (zero).

The structured system (𝐴, 𝐵) can be described by a
directed graph (Lin [9]).

The representation graph of structured system (1) is a
directed graph G, with vertex set V = X ∪ U, where
X = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} is called state vertex set and U =

{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑟
} is called input vertex set, and edge set I =

I
𝑈𝑋
∪I
𝑋𝑋

, where

I
𝑈𝑋
= {(𝑢

𝑖
, 𝑥
𝑗
) ‖ 𝑏
𝑗𝑖
̸= 0, 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑛} (2)

is the oriented edges between inputs and states, and

I
𝑋𝑋
= {(𝑥

𝑖
, 𝑥
𝑗
) ‖ 𝑎
𝑗𝑖
̸= 0, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛} (3)

is the oriented edges between states defined by the intercon-
nectionmatrices𝐴 and 𝐵 above.This directed graphG is also
called the graph ofmatrix pair (𝐴, 𝐵) and denoted byG(𝐴, 𝐵).

Definition 1 ([9] (stem)). An alternating sequence of distinct
vertices and oriented edges is called a directed path, in which
the terminal node of any edge never coincides with its initial
node or the initial or the terminal nodes of the former edges.
A stem is a directed path in the state vertex set X, which
begins in the input vertex setU.

Definition 2 ([9] (accessibility)). A vertex (other than the
input vertices) is called nonaccessible if and only if there is no
possibility of reaching this vertex through any stem of graph
G.

Definition 3 ([9] (dilation)). Consider one vertex set 𝑆 formed
by the vertices from the state vertices set X and determine
another vertex set 𝑇(𝑆), which contains all vertices V with the
property that there exists an oriented edge from V to one ver-
tex in 𝑆.Then, graphG contains a “dilation” if and only if there
exist at least a set 𝑆 of 𝑘 vertices in the vertex set of the graph
such that there are no more than 𝑘 − 1 vertices in 𝑇(𝑆).

2.2. Controllability and Structural Controllability. It is well
known that for delayed control systems generally two types
of controllability are considered: absolute controllability and
relative controllability; see paper [3]. In this paper, we will
consider the relative controllability under general assumption
on unconstrained values of admissible controls. The defini-
tions are as follows.

Definition 4 (see [5]). The linear control system (1) is said to
be (completely) controllable if for any initial state 𝑥(0) and
any terminal state 𝑥

𝑓
there exist a positive integer 𝑘 and a

sequence of controls 𝑢(0), . . . , 𝑢(𝑘 − 1) such that 𝑥(𝑘) = 𝑥
𝑓
.

For the linear system (1), let 𝑊 = [𝐵, 𝐴𝐵, . . . , 𝐴𝑛−1𝐵],
and we have the following complete controllability criterion
(Kalman [6]).

Lemma 5. The linear control system (1) is controllable if and
only if rank [W] = n.

Definition 6 (see [9]). The linear control system (1) given
by its structured matrices (𝐴, 𝐵) is said to be structurally
controllable if and only if there exists a matrix pair (𝐴, 𝐵)
having the same structure as the pair (𝐴, 𝐵) such that
the corresponding structured system (𝐴, 𝐵) is completely
controllable.
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The following lemma characterizes the structural control-
lability for the linear structured system (1) (Liu et al. [13]).

Lemma 7. The linear structured system (𝐴, 𝐵) is structurally
controllable if and only if its representation graph satisfies that

(i) there is no nonaccessible vertex inG(𝐴, 𝐵),
(ii) there is no “dilation” inG(𝐴, 𝐵).

3. Main Results

3.1. Discrete-Time Linear Systems with Time-Delay. Consider
the following linear control systems with time-delay in state:

𝑥
𝑖
(𝑘 + 1) =

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) +

𝑟

∑

𝑗=1

𝑏
𝑖𝑗
𝑢
𝑗
(𝑘) ,

𝑖 = 1, 2, . . . , 𝑛,

(4)

where 𝑥 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
]
𝑇

∈ R𝑛 is the state vector and
𝑢 = [𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑟
]
𝑇

∈ R𝑟 is the control input vector.Matrices
𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑟

are assumed to be structured
matrices. 0 ≤ 𝜏

𝑖𝑗
≤ 𝑏 with bounded maximum delay 𝑏 and

each directed edge (𝑥
𝑖
, 𝑥
𝑗
) experiences a fixed delay 𝜏

𝑖𝑗
in the

sense that each message leaving state node 𝑥
𝑖
takes 𝜏

𝑖𝑗

iterations to reach 𝑥
𝑗
.

Definition 8. The linear delayed system (4) given by its struc-
tured matrices (𝐴, 𝐵) is said to be structurally controllable if
and only if there exists amatrix pair (𝐴, 𝐵) has the same struc-
ture as the pair (𝐴, 𝐵) such that the corresponding delayed
system (4) given by its structured matrices (𝐴, 𝐵) is com-
pletely controllable.

By inserting delays on edges, the linear delayed system
is transformed into a corresponding linear system without
time-delay.

For every directed edge (𝑥
𝑖
, 𝑥
𝑗
) with time-delay 𝜏

𝑖𝑗
, we

want to add 𝜏
𝑖𝑗
nodes 𝑑𝑖𝑗

1
, 𝑑
𝑖𝑗

2
, . . . , 𝑑

𝑖𝑗

𝜏𝑖𝑗

on the edge, replace
(𝑥
𝑖
, 𝑥
𝑗
) by a delay chain 𝑑𝑖𝑗

1
, 𝑑
𝑖𝑗

2
, . . . , 𝑑

𝑖𝑗

𝜏𝑖𝑗

, and reroute all
messages from 𝑥

𝑖
to 𝑥
𝑗
through that chain. Instead, 𝑥

𝑖
sends

its message to delay node 𝑥𝑖𝑗
1
with the weight of the message

being the same as the one that would be used to send a mes-
sage from 𝑥

𝑖
to 𝑥
𝑗
directly without delay; after that, all delay

nodes just forward information until the destination node 𝑥
𝑗

is reached (see Figure 1).
Note 𝜏 = 𝜏

11
+ ⋅ ⋅ ⋅+𝜏

1𝑛
+𝜏
21
+ ⋅ ⋅ ⋅+𝜏

21
+ ⋅ ⋅ ⋅+𝜏

𝑛1
+ ⋅ ⋅ ⋅+𝜏

𝑛𝑛
,

all the numbers of time-delays. Let

�̃� = [𝑥
1
, . . . , 𝑥

𝑛
, 𝑑
11

1
, . . . , 𝑑

11

𝜏11

, . . . , 𝑑
1𝑛

1
, . . . , 𝑑

1𝑛

𝜏1𝑛

, . . . , 𝑑
𝑛1

1
, . . . ,

𝑑
𝑛1

𝜏𝑛1

, . . . , 𝑑
𝑛𝑛

1
, . . . , 𝑑

𝑛𝑛

𝜏𝑛𝑛

]

𝑇

;

(5)

then, �̃� ∈ R𝑛+𝜏.
Thus, the linear delayed system (4) is equivalent to the

following linear system without time-delay:

�̃� (𝑘 + 1) = A�̃� (𝑘) +B𝑢 (𝑘) , (6)

where A ∈ R(𝑛+𝜏)×(𝑛+𝜏) and B ∈ R(𝑛+𝜏)×𝑟 are corresponding
to 𝐴 and 𝐵, respectively.

Example 9. Consider a very simple example. Without delays
we define

𝐴 =(

2

3

1

3

0

1

3

1

3

1

3

0

1

3

2

3

),

𝐵 = (

1

0

0

) .

(7)

Assume that the directed edge (𝑥
1
, 𝑥
2
) experiences a fixed

delay 4 in the sense that the message leaving state node 𝑥
1

takes 4 iterations to reach state node 𝑥
2
. Then, by inserting 4

delay nodes on the edge (𝑥
1
, 𝑥
2
), replace (𝑥

1
, 𝑥
2
) by a delay

chain 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑑
4
and reroute all messages from 𝑥

1
to 𝑥
2

through that chain; that is, 𝑥
1
sends its message to delay node

𝑑
1
with the weight being 2/3, and then 𝑑

1
sends itsmessage to

delay node 𝑑
2
, 𝑑
2
sends its message to delay node 𝑑

3
, 𝑑
3
sends

its message to delay node 𝑑
4
, and 𝑑

4
sends its message to state

node 𝑥
2
all with the weight being 1. Then, the linear control

systemwith delays is transformed into a linear systemwithout
time-delay with the corresponding structured matrices given
by

A =

(

(

(

(

(

(

(

(

(

(

2

3

1

3

0 0 0 0 0

0

1

3

1

3

0 0 0 1

0

1

3

2

3

0 0 0 0

1

3

0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

,

B =

(

(

(

(

(

(

(

(

(

1

0

0

0

0

0

0

)

)

)

)

)

)

)

)

)

.

(8)

The directed graphs G(𝐴, 𝐵) and G(A,B) can be seen in
Figure 1.

3.2. Structural Controllability Analysis. As mentioned above,
the structural controllability of the linear delayed system (4)
is in consensuswith that of the linear system (6)without time-
delay. However, some parameters of the structured matrixA
are not adjusted; the weight of the edge from one delay node
to another node is fixed number 1 (see Figure 1). Therefore,
it has failed to apply Lemma 7 to characterize the structural
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x1

x2

x3

u1

(a)

x1

x2

x3

d2

d3

d4

d1

u1

(b)

Figure 1: (a) A directed graph with 3 state nodes. (b) The directed graph when we add a delay of 4 on the edge (𝑥
1
, 𝑥
2
).

controllability of the linear system (6).Thus, we construct the
following linear structured system:

�̂� (𝑘 + 1) =A�̂� (𝑘) +B𝑢 (𝑘) , (9)

where �̂� = [𝑥
1
, . . . , 𝑥

𝑛
, 𝑥
𝑛+1
, . . . , 𝑥

𝑛+𝜏
]
𝑇

∈ R𝑛+𝜏 and matrices
A andB are structured matrices such that (A,B) have the
same structure as (A,B).

For example, we construct a linear structured system
corresponding to the linear control system described by a
directed graph in Figure 1 with the structuredmatricesA and
B given by

A =

(

(

(

(

(

(

(

(

(

𝛼
11
𝛼
12
0 0 0 0 0

0 𝛼
22
𝛼
23
0 0 0 𝛼

27

0 𝛼
32
𝛼
33
0 0 0 0

𝛼
41
0 0 0 0 0 0

0 0 0 𝛼
54
0 0 0

0 0 0 0 𝛼
65
0 0

0 0 0 0 0 𝛼
76
0

)

)

)

)

)

)

)

)

)

,

B =

(

(

(

(

(

(

(

(

(

𝛽
1

0

0

0

0

0

0

)

)

)

)

)

)

)

)

)

(10)

with 𝛼
𝑖𝑗
(1 ≤ 𝑖, 𝑗 ≤ 7) and 𝛽

1
being nonzero free parameters.

In fact, the structure of the representation graphG(A,B)
is the same as graphG(A,B), only denoting the delay nodes
of G(A,B) as ordinary nodes is graph G(A,B). On the
other hand, graphG(A,B) can also be seen as the expansion
ofG(𝐴, 𝐵).

The following theorems build the equivalence of the
structural controllability of the three systems: system (1),
system (4), and system (9).

Theorem 10. The linear system (6) is structurally controllable
if and only if the linear system (9) is structurally controllable.

Proof. Thenecessity is obvious; we then prove the sufficiency.
Assume that the linear system (9) is structurally controllable;
that is, there exists a matrix pair (A,B) having the same
structure as (A,B) and satisfying

rank [B,AB, . . . ,A
𝑛−1

B]
𝑇

= 𝑛 + 𝜏. (11)

In the following, we will adjust some parameters of A,
wihch is the corresponding parameters to fixed numbers 1 of
A.

Firstly, we analyze the characteristics of columns ofA. It is
easy to conclude from graphG(A,B) that the weight of edge
from each delay node is number 1.Then, there is one element
1 in every column from the 𝑛+ 1 column to the 𝑛+ 𝜏 column,
and there is only one non-zero parameter 1 in every column
from the 𝑛 + 1 column to the 𝑛 + 𝜏 column since there is only
one edge from each delay node. These elements 1 are either
below the diagonal or above the diagonal. If they are below
the diagonal, they will be in the form of inclined diagonal;
else, if they are above the diagonal, they are in the first 𝑛 rows
(see Figure 1).

Then, from the 𝑛 + 𝜏 column (the last column), we carry
the elementary transformation on the matrixA. In the 𝑛 + 𝜏
column of the matrixA, there is only one element that is not
zero, and the nonzero element is fixednumber 1. SinceAhave
the same structure as A, the corresponding element in the
𝑛 + 𝜏 column ofA is also nonzero, assuming that he value of
this element is 𝜎

𝑛+𝜏
. Our goal is to put this number 𝜎

𝑛+𝜏
into

number 1. We can do it as we just need to multiply the 𝑛 + 𝜏
column of A by 1/𝜎

𝑛+𝜏
. For the sake of calculating the rank

of the controllability matrix, we then multiply the 𝑛 + 𝜏 row
ofA by 𝜎

𝑛+𝜏
.

Next, assume that the single nonzero element in the 𝑛 +
𝜏 − 1 column of A is 𝜎

𝑛+𝜏−1
. We then multiply the 𝑛 + 𝜏 − 1
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column ofA by 1/𝜎
𝑛+𝜏−1

and multiply the 𝑛+𝜏−1 row ofA
by 𝜎
𝑛+𝜏−1

.
Continue to do elementary transformation according to

the rules, multiply the 𝑛 + 𝜏 − 𝑗 column by 1/𝜎
𝑛+𝜏−𝑗

, and
multiply the 𝑛 + 𝜏 − 𝑗 row by 𝜎

𝑛+𝜏−𝑗
, until the 𝑛 + 1 column of

A. Due to the features of matrix A, The column number of
the nonzero element in the 𝑛 + 𝑘 (1 ≤ 𝑘 ≤ 𝜏) row ofA is less
than 𝑛 + 𝑘, so multiply the 𝑛 + 𝑘 row by 𝜎

𝑛+𝑘
which changes

the elements in the first 𝑛 + 𝑘 columns; the elements after
𝑛 + 𝑘 columns having been transferred to 1 are not subject
to change.

In this way, matrixA is transformed to a matrixA with
the invertible matrix 𝑃, the product of a series of elementary
matrix, such thatA = 𝑃−1A𝑃.

Let ̃B = 𝑃−1̃B𝑃. Here the matrix ̃B = (B, 0) ∈
R(𝑛+𝜏)×(𝑛+𝜏) is constituted byB as sub-block matrix.Then ̃B
can be expressed in the form of a partitioned matrix, that is
̃B = (B, 0) with the first 𝑟 columns denoted byB. We thus
obtained a pair of matrix (A,B) having the same structure
as the matrix pair (A,B), such that

rank [B,AB, . . . ,A
𝑛−1

B]
𝑇

= rank [̃B,ÃB, . . . ,A
𝑛−1

̃B]
𝑇

= rank [𝑃−1̃B𝑃, 𝑃−1ÃB𝑃, . . . , 𝑃−1A
𝑛−1

̃B𝑃]
𝑇

= rank [̃B,ÃB, . . . ,A
𝑛−1

̃B]
𝑇

= rank [B,AB, . . . ,A
𝑛−1

B]
𝑇

= 𝑛 + 𝜏,

(12)

which implies the structural controllability of system (6).This
completes the proof.

The theorem above reveals that the structural control-
lability of the time-delayed system (4) is consistent with
the expansion system (9) without time-delay. Next, we will
show the equivalence of the structural controllability between
system (1) and the expansion system (9).

Theorem 11. The linear system (1) is structurally controllable if
and only if the linear system (9) is structurally controllable.

Proof. The proof of the theorem mainly used the results of
Lemma 7. Prove the necessity first. Suppose that the linear
system (9) is not structurally controllable; it means that there
is nonaccessible vertex or there is “dilation” in G(A,B).
Since there is no difference between graph G(A,B) and
graph G(A,B) from the view of graph theory, therefore
there is nonaccessible vertex or there is “dilation” inG(A,B).

In the first case, there is nonaccessible vertex inG(A,B).
If the nonaccessible vertex is the adding delayed vertex 𝑑𝜏𝑖𝑗

𝑘
,

the 𝑘 delayed vertex adding on the edge (𝑥
𝑖
, 𝑥
𝑗
), then the

state vertex 𝑥
𝑖
is a nonaccessible vertex. If the nonaccessible

vertex is state vertex, then there exists the corresponding
nonaccessible state vertex in G(𝐴, 𝐵). This is because if the

state vertex𝑥
𝑖
and the state vertex𝑥

𝑗
experience a delay 𝜏

𝑖𝑗
, we

add 𝜏
𝑖𝑗
delay vertex on the edge (𝑥

𝑖
, 𝑥
𝑗
) in the graph G(𝐴, 𝐵)

and replace (𝑥
𝑖
, 𝑥
𝑗
) by a delay chain; the resulting graph is

G(A,B). The state vertex in G(A,B) is the corresponding
state vertex inG(𝐴, 𝐵).

In the second case, there is “dilation” inG(A,B).That is,
there exist at least a set 𝑆 of 𝑘 vertices in the vertex set of graph
G(A,B) such that there are no more than 𝑘 − 1 vertices in
𝑇(𝑆). If there are 𝜎 (0 ≤ 𝜎 ≤ 𝑘) delayed vertices in set 𝑆, then
the 𝜎 delayed vertices are in set 𝑇(𝑆), and there are no more
than 𝑘 − 𝜎 − 1 state vertices in 𝑇(𝑆). This implies there exist
a corresponding set �̃� of 𝑘 − 𝜎 vertices in the vertex set of the
graphG(𝐴, 𝐵) such that there are nomore than 𝑘−𝜎−1 state
vertices in 𝑇(�̃�). Therefore, there is “dilation” in G(𝐴, 𝐵). By
Lemma 7, the linear system (1) is not structurally controllable.

It is easy to prove the sufficiency as in the discussion
above. Thus, the proof of the theorem is complete.

4. Some Examples

There are two examples being presented in this section to
illustrate the theoretical results.

Example 1. Consider a linear control system without time-
delays with the structured matrices given by

𝐴 =(

1

3

1

3

0

2

3

1

3

2

3

0

1

3

1

3

),

𝐵 = (

1

0

0

) .

(13)

We first consider the case that the message leaving state
node 𝑥

1
takes 3 iterations to reach state node 𝑥

2
and the

message leaving state node 𝑥
3
takes also 3 iterations to reach

state node 𝑥
2
. Then, the linear control system with delays by

inserting delay nodes is transformed into a corresponding
linear system without time-delay with the corresponding
structured matrices given by

A =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

3

1

3

0 0 0 0 0 0 0

0

1

3

0 0 0 1 0 0 1

0

1

3

1

3

0 0 0 0 0 0

2

3

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0

2

3

0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

,
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B =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

0

0

0

0

0

0

0

0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(14)

The directed graphs G(𝐴, 𝐵) and G(A,B) can be seen in
Figure 2.

We then construct a linear structured system (A,B)
with the same structure as (A,B); its controllable matrices
are assumed to be (A,B) withA given by

A

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝛼
11
𝛼
12
0 0 0 0 0 0 0

0 𝛼
22
0 0 0 𝛼

26
0 0 𝛼

29

0 𝛼
32
𝛼
33
0 0 0 0 0 0

𝛼
41
0 0 0 0 0 0 0 0

0 0 0 𝛼
54
0 0 0 0 0

0 0 0 0 𝛼
65
0 0 0 0

0 0 𝛼
73
0 0 0 0 0 0

0 0 0 0 0 0 𝛼
87
0 0

0 0 0 0 0 0 0 𝛼
98
0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(15)

Selecting

𝑃 =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

1

1

1

𝛼
26
𝛼
65
𝛼
54

1

𝛼
26
𝛼
65

1

𝛼
26

1

𝛼
29
𝛼
98
𝛼
87

1

𝛼
29
𝛼
98

1

𝛼
29

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

, (16)

by simple calculation we obtain

A = 𝑃
−1

A𝑃 =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

∗ ∗ 0 0 0 0 0 0 0

0 ∗ 0 0 0 1 0 0 1

0 ∗ ∗ 0 0 0 0 0 0

∗ 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 ∗ 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

, (17)

where ∗ are non-zero elements and A is the controllability
matrix ofA.

Example 2. Consider another linear control system without
time-delay with the structured matrices given by

𝐴 =(

1

3

2

3

0

1

3

1

3

1

3

0

2

3

1

3

),

𝐵 = (

1

0

0

) .

(18)
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x1

x2

x3

u1

(a)

x1

x2

x3d2 d3 d4

d5

d6

d1

u1

(b)

Figure 2: (a) A directed graph with 3 state nodes. (b) The directed graph when we add a delay of 3 on the edge (𝑥
1
, 𝑥
2
) and add a delay of 3

on the edge (𝑥
3
, 𝑥
2
).

x1

x2

x3

u1

(a)

x1

x2

x3

d2

d3

d4

d5

d6

d1

u1

(b)

Figure 3: (a) A directed graph with 3 state nodes. (b) The directed graph when we add a delay of 3 on the edge (𝑥
2
, 𝑥
1
) and add a delay of 3

on the edge (𝑥
2
, 𝑥
3
).

We then consider the case that the message leaving state
node 𝑥

2
takes 3 iterations to reach state node 𝑥

1
and the

message leaving state node 𝑥
2
also takes 3 iterations to reach

state node 𝑥
3
. Then, the linear control system with delays by

inserting delay nodes is transformed into a corresponding
linear system without time-delay with the corresponding
structured matrices given by

A =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

3

0 0 0 0 1 0 0 0

1

3

1

3

1

3

0 0 0 0 0 0

0 0

1

3

0 0 0 0 0 1

0

2

3

0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0

2

3

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

,

B =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

0

0

0

0

0

0

0

0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(19)

The directed graphs G(𝐴, 𝐵) and G(A,B) can be seen in
Figure 3.

We then construct a linear structured system (A,B)
with the same structure as (A,B); its controllable matrices
are assumed to be (A,B) withA given by
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A

=

(

(

(

(

(

(

(

(

(

(

(

(

(

(

𝛼
11
0 0 0 0 𝛼

16
0 0 0

𝛼
21
𝛼
22
𝛼
23
0 0 0 0 0 0

0 0 𝛼
33
0 0 0 0 0 𝛼

39

0 𝛼
42
0 0 0 0 0 0 0

0 0 0 𝛼
54
0 0 0 0 0

0 0 0 0 𝛼
65
0 0 0 0

0 𝛼
72
0 0 0 0 0 0 0

0 0 0 0 0 0 𝛼
87
0 0

0 0 0 0 0 0 0 𝛼
98
0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

.

(20)

Selecting

𝑃 =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

1

1

1

1

𝛼
16
𝛼
65
𝛼
54

1

𝛼
16
𝛼
65

1

𝛼
16

1

𝛼
39
𝛼
98
𝛼
87

1

𝛼
39
𝛼
98

1

𝛼
39

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

, (21)

by simple calculation we obtain

A = 𝑃
−1

A𝑃 =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

∗ 0 0 0 0 1 0 0 0

∗ ∗ ∗ 0 0 0 0 0 0

0 0 ∗ 0 0 0 0 0 1

0 ∗ 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 ∗ 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

, (22)

where ∗ are nonzero elements, which is the controllability
matrix ofA.

5. Summary and Future Work

The structural controllability analysis for discrete-time linear
control systems with time-delay is discussed in the paper.
We derive necessary and sufficient conditions for the linear

delayed systems to be structurally controllable by transform-
ing the delayed systems into a corresponding linear system
without time-delay. This method is suitable for the discrete-
time linear delayed systems; the structural controllability for
the continuous-time linear delayed systems is also an issue we
are concern with.We look forward tomaking some results on
continuous-time systems.
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