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This paper presents a disturbance attenuation strategy for active suspension systems with frequency band constraints, where
dynamic output feedback control is employed in consideration that not all the state variables can be measured on-line. In view
of the fact that human are sensitive to the virbation between 4–8Hz in vertical direction, the 𝐻

∞
control based on generalized

Kalman-Yakubovich-Popov (KYP) lemma is developed in this specific frequency, in order to achieve the targeted disturbance
attenuation. Moreover, practical constraints required in active suspension design are guaranteed in the whole time domain. At the
end of the paper, the outstanding performance of the system using finite frequency approach is confirmed by simulation.

1. Introduction

By reason of rough road conditions, passengers in the
car are often in a vibration environment which negatively
impacts the comfort, mental, and physical health of them,
and suspensions are crucial to attenuate the disturbance
transferred to passengers [1–3]. Hence, various approaches
various approaches have been developed that aim to enhance
suspensions’ performance such as adaptive control [4], robust
control [5, 6], and fuzzy control [7]. Generally speaking,
there are three types of suspensions: passive, semiactive, and
active suspensions. Compared with the other two kinds of
suspensions, active suspensions have a greater potential to
improve ride comfort and to guarantee the ride safety due to
the existence of active actuator.

There are three performance requirements for active
suspension systems. One is the ride comfort, which requires
isolation of vibration from road; another one is handling per-
formance mainly described by road holding, which restricts
the hop of wheel in order to ensure continuous contact of
wheels to road; the last one is the sprung displacement which
limits the suspension stroke within an allowable band.

However, these requirements are usually conflicting. For
instance, a large suspension displacementmay exist if a better

rider comfort performance is required . A variety of control
strategies have been applied to cope with this conflict [8–12].
In particular, because the 𝐻

∞
norm index can measure the

vibration attenuation performance of system appropriately
[13], many suspension problems are considered by 𝐻

∞
con-

trol theory [14–22]. In this paper, the handling performance
and the suspension stroke are regarded as constraints, and the
ride comfort is deemed as the main index to optimize.

Although various control strategies have been applied to
promote ride comfort performance of suspension systems,
few of them notice the fact that due to the human body
structure and other factors people are more sensitive to
disturbances in 4–8Hz than other frequency in vertical
direction (ISO2361). Therefore, it is considerable to develop
a finite frequency strategy to reduce the negative effect
caused by disturbances in 4–8Hz. The generalized Kalman-
Yakubovich-Popov (KYP) lemma, which has been used to
solve practical problems [23, 24], is applied to achieve the
finite frequency control to active suspensions.

It should be mentioned that the parameters of passengers
including model for suspension system could vary due to the
mass change of passengers, so how to guarantee the perfor-
mance of suspension with varying parameters is worth dis-
cussing. Meanwhile, considering that the mass of passengers
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can be accessed on line, in this paper, the suspension model
is described as a polytope, and then a parameter-dependent
control law is proposed to assure the above performance
requirements, which can also reach a lower conservativeness
than control law based on quadratic stability and constant
parameter feedback at the same time. In addition, though
state feedback may attain a superior performance compared
with static output feedback, measuring some statesmay bring
burden to the systems. Thusly, constructing dynamic output
feedback is desirable, which can achieve a relative enhanced
performance andmeanwhile reduce state-measuring sensors.

The paper is organized as follows. In Section 2 the state-
space model for quarter car suspension is presented. In
Section 3 the theorems which can be used to design the
dynamic feedback controller are illustrated. The simulation
is presented in Section 4, and the conclusion is in Section 5.

Notation. For a matrix 𝑃, 𝑃𝑇, 𝑃∗, 𝑃−1, 𝑃−𝑇, and 𝑃⊥ stand
for its transpose, conjugate transpose, inverse, transposed
inverse, and orthogonal complement, respectively; sym(𝑃)
denotes 𝑃+𝑃𝑇. 𝑃 > 0 (𝑃 < 0)means that matrix 𝑃 is positive
(negative) definite. For a matrix, {⋅}

𝑖
stands for the 𝑖th line

of the matrix. ‖𝐺(𝑗𝜔)‖
∞

stands for the𝐻
∞

norm of transfer
function matrix 𝐺. For matrices 𝑃 and 𝑄, 𝑃 ⊗ 𝑄 means the
Kronecker product. In symmetric block matrices or complex
matrix expressions, we use an asterisk (∗) to represent a term
that is induced by symmetry.

2. Quarter Car Suspension Model

The model of a quarter car suspension is shown in Figure 1.
𝑚
𝑠
and𝑚

𝑢
stand for sprung and unsprungmass, respectively.

𝑧
𝑠
, 𝑧
𝑢
, and 𝑧

𝑟
denote the sprung, unsprung displacement, and

disturbance displacement from the road, respectively. 𝑘
𝑠
, 𝑘
𝑡
,

𝑐
𝑠
, and 𝑐

𝑡
are the stiffnesses and dampings of the suspension

system, respectively.The input of the controller is denoted by
𝑢.

Based on the law of Newton, the motion equation of
suspension can be denoted as

𝑚
𝑠
�̈�
𝑠
(𝑡) + 𝑐

𝑠
[�̇�
𝑠
(𝑡) − �̇�

𝑢
(𝑡)] + 𝑘

𝑠
[𝑧
𝑠
(𝑡) − 𝑧

𝑢
(𝑡)] = 𝑢 (𝑡) ,

𝑚
𝑢
�̈�
𝑢
(𝑡) − 𝑐

𝑠
[�̇�
𝑠
(𝑡) − �̇�

𝑢
(𝑡)] − 𝑘

𝑠
[𝑧
𝑠
(𝑡) − 𝑧

𝑢
(𝑡)]

+ 𝑘
𝑡
[𝑧
𝑢
(𝑡) − 𝑧

𝑟
(𝑡)] − 𝑐

𝑡
[�̇�
𝑟
(𝑡) − �̇�

𝑢
(𝑡)] = −𝑢 (𝑡) .

(1)

Define the following state variables and the disturbance
input:

𝜉
1
(𝑡) = 𝑧

𝑠
(𝑡) − 𝑧

𝑢
(𝑡) , 𝜉

2
(𝑡) = 𝑧

𝑢
(𝑡) − 𝑧

𝑟
(𝑡) ,

𝜉
3
(𝑡) = �̇�

𝑠
(𝑡) , 𝜉

4
(𝑡) = �̇�

𝑢
(𝑡) , 𝑤 (𝑡) = �̇�

𝑟
(𝑡) .

(2)

Then (1) is equivalent to

̇𝜉 (𝑡) = 𝐴 (𝑚
𝑠
) 𝜉 (𝑡) + 𝐵 (𝑚

𝑠
) 𝑢 (𝑡) + 𝐵

1
(𝑚
𝑠
) 𝑤 (𝑡) , (3)
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Figure 1: The quarter car model.

where

𝜉 (𝑡) = [𝜉
1
(𝑡) 𝜉
2
(𝑡) 𝜉
3
(𝑡) 𝜉
4
(𝑡)]
𝑇

,

𝐴 (𝑚
𝑠
) =

[
[
[
[
[
[
[

[

0 0 1 −1

0 0 0 1

−
𝑘
𝑠

𝑚
𝑠

0 −
𝑐
𝑠

𝑚
𝑠

𝑐
𝑠

𝑚
𝑠

𝑘
𝑠

𝑚
𝑢

−
𝑘
𝑡

𝑚
𝑢

𝑐
𝑠

𝑚
𝑢

−
𝑐
𝑠
+ 𝑐
𝑡

𝑚
𝑢

]
]
]
]
]
]
]

]

,

𝐵 (𝑚
𝑠
) = [0 0

1

𝑚
𝑠

−1

𝑚
𝑢

]

𝑇

,

𝐵
1
(𝑚
𝑠
) = [0 −1 0

𝑐
𝑡

𝑚
𝑢

]

𝑇

.

(4)

Define

𝑧
𝑜1
(𝑡) = �̈�

𝑠
(𝑡) , (5)

which reflects the acceleration of 𝑚
𝑠
that contains the body

mass of passengers and seat. In the design of control law for
suspension system, body acceleration is the main index that
needs to be optimized.

Thehandling performance requires continuous contact of
wheel to road, whichmeans that the suspension system needs
to guarantee that dynamic tire load is less than static load,
namely,

𝑘
𝑡
(𝑧
𝑢
(𝑡) − 𝑧

𝑟
(𝑡)) < (𝑚

𝑠
+ 𝑚
𝑢
) 𝑔. (6)

The stroke of the suspension could not be so large that it
may exceed the maximum, which can be formulated as

𝑧𝑠 (𝑡) − 𝑧𝑢 (𝑡)
 < 𝑧max. (7)

The state space expression is described integrally as
̇𝜉 (𝑡) = 𝐴 (𝑚

𝑠
) 𝜉 (𝑡) + 𝐵 (𝑚

𝑠
) 𝑢 (𝑡) + 𝐵

1
𝑤 (𝑡) ,

𝑧
𝑜1
(𝑡) = 𝐶

1
(𝑚
𝑠
) 𝜉 (𝑡) + 𝐷

1
(𝑚
𝑠
) 𝑢 (𝑡) ,

𝑧
𝑜2
(𝑡) = 𝐶

2
(𝑚
𝑠
) 𝜉 (𝑡) ,

𝑦 (𝑡) = 𝐶𝜉 (𝑡) ,

(8)
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where 𝐴, 𝐵, and 𝐵
1
are same with the definition in (4), and

𝐶
1
(𝑚
𝑠
) = [−

𝑘
𝑠

𝑚
𝑠

0 −
𝑐
𝑠

𝑚
𝑠

𝑐
𝑠

𝑚
𝑠

] ,

𝐶
2
(𝑚
𝑠
) =

[
[
[

[

1

𝑧max
0 0 0

0
𝑘
𝑡

(𝑚
𝑠
𝑔 + 𝑚

𝑢
𝑔)

0 0

]
]
]

]

,

𝐷
1
(𝑚
𝑠
) =

1

𝑚
𝑠

,

𝐶 = [

[

1 0 0 0

0 1 0 0

0 0 1 0

]

]

.

(9)

𝑧
𝑜1
(𝑡) reflects the acceleration output of 𝑚

𝑠
; 𝑧
𝑜2
(𝑡) rep-

resents for the relative (normalized) constraints output; 𝑦(𝑡)
stands for the output of measurable states.

The parameter-varyingmodel is depicted as the following
polytopic form:

(𝐴 (𝑚
𝑠
) , 𝐵 (𝑚

𝑠
) , 𝐵
1
(𝑚
𝑠
) , 𝐶
1
(𝑚
𝑠
) , 𝐶
2
(𝑚
𝑠
) , 𝐷
1
(𝑚
𝑠
))

=

2

∑

𝑖=1

𝜆
𝑖
(𝐴
𝑖
, 𝐵
𝑖
, 𝐵
1𝑖
, 𝐶
1𝑖
, 𝐶
2𝑖
, 𝐷
1𝑖
) ,

(10)

where
(𝐴
1
, 𝐵
1
, 𝐵
11
, 𝐶
11
, 𝐶
21
, 𝐷
11
)

= (𝐴 (𝑚
𝑠max) , 𝐵 (𝑚𝑠max) , 𝐵1 (𝑚𝑠max) ,

𝐶
1
(𝑚
𝑠max) , 𝐶2 (𝑚𝑠max) , 𝐷1 (𝑚𝑠max) ) ,

(𝐴
2
, 𝐵
2
, 𝐵
12
, 𝐶
12
, 𝐶
22
, 𝐷
12
)

= (𝐴 (𝑚
𝑠min) , 𝐵 (𝑚𝑠min) , 𝐵1 (𝑚𝑠min) ,

𝐶
1
(𝑚
𝑠min) , 𝐶2 (𝑚𝑠min) , 𝐷1 (𝑚𝑠min) ) ,

𝜆
1
=

1/𝑚
𝑠
− 1/𝑚

𝑠min
1/𝑚
𝑠max − 1/𝑚𝑠min

,

𝜆
2
=

1/𝑚
𝑠max − 1/𝑚𝑠

1/𝑚
𝑠max − 1/𝑚𝑠min

,

(11)

and 𝑚
𝑠max, 𝑚𝑠min stand for the maximum and minimum of

𝑚
𝑠
, respectively.
The form of dynamic output feedback controller is

described as
̇𝜂 (𝑡) = 𝐴

𝐾
(𝑚
𝑠
) 𝜂 (𝑡) + 𝐵

𝐾
(𝑚
𝑠
) 𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
(𝑚
𝑠
) 𝜂 (𝑡) + 𝐷

𝐾
(𝑚
𝑠
) 𝑦 (𝑡) .

(12)

Substituting (12) into (8), we get

�̇� (𝑡) = 𝐴 (𝑚
𝑠
) 𝑥 (𝑡) + 𝐵 (𝑚

𝑠
) 𝑤 (𝑡) ,

𝑧
𝑜1
(𝑡) = 𝐶

1
(𝑚
𝑠
) 𝑥 (𝑡) ,

𝑧
𝑜2
(𝑡) = 𝐶

2
(𝑚
𝑠
) 𝑥 (𝑡) ,

(13)

where

𝑥 (𝑡) = [
𝜉 (𝑡)

𝜂 (𝑡)
] ,

𝐴 (𝑚
𝑠
)

= [
𝐴 (𝑚
𝑠
) + 𝐵 (𝑚

𝑠
)𝐷
𝐾
(𝑚
𝑠
) 𝐶 𝐵 (𝑚

𝑠
) 𝐶
𝐾
(𝑚
𝑠
)

𝐵
𝐾
(𝑚
𝑠
) 𝐶 𝐴

𝐾
(𝑚
𝑠
)

] ,

𝐵 (𝑚
𝑠
) = [

𝐵
1
(𝑚
𝑠
)

0
] ,

𝐶
1
(𝑚
𝑠
)

= [𝐶
1
(𝑚
𝑠
) + 𝐷
1
(𝑚
𝑠
)𝐷
𝐾
(𝑚
𝑠
) 𝐶 𝐷

1
(𝑚
𝑠
) 𝐶
𝐾
(𝑚
𝑠
)] ,

𝐶
2
(𝑚
𝑠
) = [𝐶

2
(𝑚
𝑠
) 0] .

(14)
Denote

𝐺 (𝑗𝜔) = 𝐶
1
(𝑚
𝑠
) (𝑗𝜔𝐼 − 𝐴 (𝑚

𝑠
))
−1

𝐵 (𝑚
𝑠
) , (15)

as the transfer function from 𝑤(𝑡) to 𝑧
𝑜1
(𝑡).

The𝐻
∞

norm of transfer function matrix 𝐺 is applied to
depict the ride comfort performance of suspension system,
which is defined as

𝐺 (𝑗𝜔)
∞

= sup
0∉𝑤∈𝐿

2
[0,+∞)

𝑧𝑜2
𝐿
2

‖𝑤‖
𝐿
2

, (16)

where

𝑧𝑜2
𝐿
2

= (∫

+∞

0

𝑧𝑜2 (𝑡)


2

𝑑𝑡)

1/2

,

‖𝑤‖
𝐿
2

= (∫

+∞

0

‖𝑤 (𝑡)‖
2

𝑑𝑡)

1/2

.

(17)

The control target is summarized as follows.
For a certain 𝛾, design a dynamic output feedback in the

form of (12) which satisfies
(I) The closed loop system is asymptotically stable.
(II) The finite frequency (from 𝜔

1
to 𝜔
2
) 𝐻
∞

norm from
road disturbance to vehicle acceleration is less than 𝛾.
namely,

𝐺 (𝑗𝜔)
∞

𝜔
1
<𝜔<𝜔

2

< 𝛾. (18)

(III) The relative constraint responses shown in the follow-
ing can be satisfied as long as the disturbance energy is
less than the maximum of the 2-norm of disturbance
input denoted as 𝑤max. that is,

{𝑧𝑜2 (𝑡)}𝑘

 < 1, 𝑘 = 1, 2. (19)

3. Dynamic Output Feedback Controller
Design for Polytopic Suspension System

In this section, we will derive three theorems for the design of
output feedback controller that satisfies (19) and one theorem
of full frequency controller used for comparison.
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3.1. Finite Frequency Design

Theorem 1. For the given parameters 𝛾, 𝜂, 𝜌 > 0, if there
exist symmetric matrices 𝑃(𝑚

𝑠
), positive definite symmetric

matrices 𝑃
𝑆
(𝑚
𝑠
), 𝑄(𝑚

𝑠
), and general matrix 𝑊(𝑚

𝑠
) satisfy-

ing

[
[
[
[
[
[

[

− sym (𝑊 (𝑚
𝑠
)) −𝑊

𝑇

(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) + 𝑃
𝑆
(𝑚
𝑠
) −𝑊

𝑇

(𝑚
𝑠
) −𝑊

𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)

∗ −𝑃
𝑆
(𝑚
𝑠
) 0 0

∗ ∗ −𝑃
𝑆
(𝑚
𝑠
) 0

∗ ∗ ∗ −𝜂𝐼

]
]
]
]
]
]

]

< 0, (20)

[

Ω
1
Ω
2

∗ Ω
3

] < 0, (21)

[

−𝐼 √𝜌 {𝐶2 (𝑚𝑠)}
𝑘

∗ −𝑃
𝑆
(𝑚
𝑠
)

] < 0, 𝑘 = 1, 2, (22)

where

Ω
1
= [

[

−𝜔
1
𝜔
2
𝑄 (𝑚
𝑠
) − sym (𝐴

𝑇

(𝑚
𝑠
)𝑊 (𝑚

𝑠
)) 𝑃 (𝑚

𝑠
) − 𝑗𝜔

𝑐
𝑄 (𝑚
𝑠
) + 𝑊

𝑇

(𝑚
𝑠
)

𝑃 (𝑚
𝑠
) + 𝑗𝜔

𝑐
𝑄 (𝑚
𝑠
) + 𝑊(𝑚

𝑠
) −𝑄 (𝑚

𝑠
)

]

]

,

Ω
2
= [

[

−𝑊
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐶
𝑇

1
(𝑚
𝑠
)

0 0

]

]

,

Ω
3
= [

−𝛾
2

𝐼 0

0 −𝐼

] ,

𝜔
𝑐
=
(𝜔
1
+ 𝜔
2
)

2
,

(23)

then a dynamic output feedback controller exists, which sat-
isfies the requirements of (I), (II) and (III) with 𝑤max =

𝜌/𝜂.

Proof. By using Schur complement, inequality (20) is equiv-
alent to

[
Γ −𝑊

𝑇

(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) + 𝑃
𝑆
(𝑚
𝑠
)

∗ −𝑃
𝑆
(𝑚
𝑠
)

] < 0, (24)

where

Γ =
1

𝜂
𝑊
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐵
𝑇

(𝑚
𝑠
)𝑊 (𝑚

𝑠
)

+ 𝑊
𝑇

(𝑚
𝑠
) 𝑃
−1

𝑆
(𝑚
𝑠
)𝑊 (𝑚

𝑠
) + sym (𝑊 (𝑚

𝑠
)) .

(25)

Multiplying (24) by diag{−𝑊−𝑇(𝑚
𝑠
), 𝑃
−𝑇

𝑆
(𝑚
𝑠
)} from the

left side and by diag{−𝑊−1(𝑚
𝑠
), 𝑃
−1

𝑆
(𝑚
𝑠
)} from the right side,

respectively, we obtain

[

[

1

𝜂
𝐵 (𝑚
𝑠
) 𝐵
𝑇

(𝑚
𝑠
) + 𝑃
−1

𝑆
(𝑚
𝑠
) − sym (𝐿 (𝑚

𝑠
)) 𝐴 (𝑚

𝑠
) 𝑃
−1

𝑆
(𝑚
𝑠
) + 𝐿
𝑇

(𝑚
𝑠
)

∗ −𝑃
−1

𝑆
(𝑚
𝑠
)

]

]

< 0, (26)

where 𝐿 = −𝑊−1.
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Applying reciprocal projection theorem (see Appendix A)
and choosing 𝑆

𝑇

(𝑚
𝑠
) = 𝐴(𝑚

𝑠
)𝑃
−1

𝑆
(𝑚
𝑠
), Ψ(𝑚

𝑠
) =

(1/𝜂)𝐵(𝑚
𝑠
)𝐵
𝑇

(𝑚
𝑠
), inequality (26) is equivalent to

𝐴 (𝑚
𝑠
) 𝑃
−1

𝑆
(𝑚
𝑠
) + 𝑃
−1

𝑆
(𝑚
𝑠
) 𝐴
𝑇

(𝑚
𝑠
) +

1

𝜂
𝐵 (𝑚
𝑠
) 𝐵
𝑇

(𝑚
𝑠
) < 0.

(27)

Multiplying the above inequality from both the left and
the right sides by 𝑃

𝑆
(𝑚
𝑠
), we get

𝑃
𝑆
(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) + 𝐴
𝑇

(𝑚
𝑠
) 𝑃
𝑆
(𝑚
𝑠
)

+
1

𝜂
𝑃
𝑆
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐵
𝑇

(𝑚
𝑠
) 𝑃
𝑆
(𝑚
𝑠
) < 0,

(28)

which guarantees

𝑃
𝑆
(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) + 𝐴
𝑇

(𝑚
𝑠
) 𝑃
𝑆
(𝑚
𝑠
) < 0, (29)

obviously. From the standard Lyapunov theory for
continuous-time linear system, the closed-loop system
(13) is asymptotically stable with 𝑤(𝑡) = 0.

By substitution, inequality (21) is equivalent to

[𝐼 𝐹
𝐵
(𝑚
𝑠
)]Ω (𝑚

𝑠
) [𝐼 𝐹

𝐵
(𝑚
𝑠
)]
𝑇

+ sym (𝐹
𝐴
(𝑚
𝑠
)𝑊 (𝑚

𝑠
) 𝑅) < 0,

(30)

where

𝐹
𝐴
(𝑚
𝑠
) =

[
[

[

−𝐴
𝑇

(𝑚
𝑠
)

𝐼

−𝐵
𝑇

(𝑚
𝑠
)

]
]

]

, 𝐹
𝐵
(𝑚
𝑠
) = [

[

𝐶
𝑇

1
(𝑚
𝑠
)

0

0

]

]

,

𝑅 = [𝐼 0 0] ,

Ω (𝑚
𝑠
) = 𝑇 [

Φ ⊗ 𝑃
𝑠
(𝑚
𝑠
) + Ψ ⊗ 𝑄 (𝑚

𝑠
) 0

0 Π
]𝑇
𝑇

,

Π = [
𝐼 0

0 −𝛾
2

𝐼
] , Φ = [

0 1

1 0
] ,

Ψ = [
−1 𝑗𝜔

𝑐

−𝑗𝜔
𝑐
−𝜔
1
𝜔
2

] , 𝑇 =

[
[
[

[

0 𝐼 0 0

𝐼 0 0 0

0 0 0 𝐼

0 0 𝐼 0

]
]
]

]

.

(31)

Based on projection lemma (see Appendix A), inequality
(30) is equivalent to

𝐹
⊥

𝐴
(𝑚
𝑠
) [𝐼 𝐹

𝐵
(𝑚
𝑠
)]Ω (𝑚

𝑠
) [𝐼 𝐹

𝐵
(𝑚
𝑠
)]
𝑇

(𝐹
⊥

𝐴
(𝑚
𝑠
))
𝑇

< 0,

(32)

(𝑅
𝑇

)
⊥

[𝐼 𝐹
𝐵
(𝑚
𝑠
)]Ω (𝑚

𝑠
) [𝐼 𝐹

𝐵
(𝑚
𝑠
)]
𝑇

(𝑅
𝑇⊥

)
𝑇

< 0. (33)

Noting that inequality (33) is eternal establishment, we
just need to consider inequality (32), which is equivalent to

𝐹
𝑇

(𝑚
𝑠
)Ω (𝑚

𝑠
) 𝐹 (𝑚

𝑠
) < 0, (34)

where

𝐹 (𝑚
𝑠
) = [

𝐼 𝐴
𝑇

(𝑚
𝑠
) 0 𝐶

𝑇

1
(𝑚
𝑠
)

0 𝐵
𝑇

(𝑚
𝑠
) 𝐼 0

]

𝑇

. (35)

Rewrite inequality (34) as

[
[
[

[

𝐴 (𝑚
𝑠
) 𝐵 (𝑚

𝑠
)

𝐼 0

𝐶
1
(𝑚
𝑠
) 0

0 𝐼

]
]
]

]

𝑇

[
Φ ⊗ 𝑃 (𝑚

𝑠
) + Ψ ⊗ 𝑄 (𝑚

𝑠
) 0

0 Π
]

×

[
[
[

[

𝐴 (𝑚
𝑠
) 𝐵 (𝑚

𝑠
)

𝐼 0

𝐶
1
(𝑚
𝑠
) 0

0 𝐼

]
]
]

]

< 0,

(36)

and then we obtain

[
𝐴 (𝑚
𝑠
) 𝐵 (𝑚

𝑠
)

𝐼 0
]

𝑇

(Φ ⊗ 𝑃 (𝑚
𝑠
) + Ψ ⊗ 𝑄 (𝑚

𝑠
))

× [
𝐴 (𝑚
𝑠
) 𝐵 (𝑚

𝑠
)

𝐼 0
] + [

𝐶
1
(𝑚
𝑠
) 0

0 𝐼
]

𝑇

× Π[
𝐶
1
(𝑚
𝑠
) 0

0 𝐼
] < 0.

(37)

Applying generalized KYP lemma (see Appendix A), we
get

Ξ
∗

ΠΞ < 0, 𝜔
1
< 𝜔 < 𝜔

2
, (38)

where

Ξ = [
𝐶
1
(𝑚
𝑠
) 0

0 𝐼
] [
(𝑗𝜔𝐼 − (𝐴 (𝑚

𝑠
))
−1

𝐵 (𝑚
𝑠
)

𝐼
] , (39)

namely,

sup
𝜔
1
<𝜔<𝜔

2

𝐺 (𝑗𝜔)
∞

< 𝛾. (40)

Select

𝑉 (𝑡) = 𝑥
𝑇

(𝑡) 𝑃
𝑆
(𝑚
𝑠
) 𝑥 (𝑡) (41)

as the Lyapunov function, we obtain

�̇� (𝑡) = 2𝑥
𝑇

(𝑡) 𝑃
𝑆
(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃
𝑆
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝑤 (𝑡) .

(42)

Applying the following inequality

2𝑥
𝑇

(𝑡) 𝑃
𝑆
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝑤 (𝑡)

≤
1

𝜂
𝑥
𝑇

(𝑡) 𝑃
𝑠
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐵
𝑇

(𝑚
𝑠
) 𝑃
𝑆
(𝑚
𝑠
) (𝑥) 𝑡

+ 𝜂𝑤
𝑇

(𝑡) 𝑤 (𝑡) , ∀𝜂 > 0,

(43)
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and (28) to (42), we get

�̇� (𝑡) ≤ 𝜂𝑤
𝑇

(𝑡) 𝑤 (𝑡) . (44)

Integrate (44) from 0 to 𝑡:

𝑉 (𝑡) − 𝑉 (0) ≤ 𝜂∫

𝑡

0

𝑤
𝑇

(𝑡) 𝑤 (𝑡) 𝑑𝑡 = 𝜂‖𝑤 (𝑡)‖
2
≤ 𝜂𝑤max.

(45)

Substituting (41) into (45) with 𝑉(0) = 0, we get

𝑥
𝑇

(𝑡) 𝑃
𝑆
(𝑚
𝑠
) 𝑥 (𝑡) ≤ 𝑉 (0) + 𝜂𝑤max = 𝜌, (46)

which is equivalent to

𝑥
𝑇

(𝑡) 𝑥 (𝑡) ≤ 𝜌, (47)

where 𝑥(𝑡) = 𝑃1/2
𝑆
(𝑚
𝑠
)𝑥(𝑡).

Noting that

max {𝑧𝑜2 (𝑡)}𝑘


2

= max

𝑥
𝑇

(𝑡) 𝑃
−1/2

𝑆
(𝑚
𝑠
) {𝐶
2
(𝑚
𝑠
)}
𝑇

𝑘

× {𝐶
2
(𝑚
𝑠
)}
𝑘

𝑃
−1/2

𝑆
(𝑚
𝑠
) 𝑥(𝑡)

2

≤ 𝜌𝜃max (𝑃
−1/2

𝑆
(𝑚
𝑠
) {𝐶
2
(𝑚
𝑠
)}
𝑇

𝑘

{𝐶
2
(𝑚
𝑠
)}
𝑘

𝑃
−1/2

𝑆
(𝑚
𝑠
)) ,

(48)

where 𝜃max stands for the maximum eigenvalue, we can
therefore guarantee constraints mentioned in (19) as long as

𝜌𝑃
−1/2

𝑆
(𝑚
𝑠
) {𝐶
2
(𝑚
𝑠
)}
𝑇

𝑘
{𝐶
2
(𝑚
𝑠
)}
𝑘
𝑃
−1/2

𝑆
(𝑚
𝑠
) < 𝐼, (49)

which is equivalent to (22) by applying Schur complement.

Before giving a convex expression which can be solved by
LMI Toolbox, we firstly perform transformation to inequali-
ties (20), (21), and (22).

Decompose matrix𝑊(𝑚
𝑠
) for convenience in the follow-

ing form:

𝑊(𝑚
𝑠
) = [

𝑋 (𝑚
𝑠
) 𝑌 (𝑚

𝑠
)

𝑈 (𝑚
𝑠
) 𝑉 (𝑚

𝑠
)
] ,

𝑊
−1

(𝑚
𝑠
) = [

𝑀(𝑚
𝑠
) 𝐺 (𝑚

𝑠
)

𝐻 (𝑚
𝑠
) 𝐿 (𝑚

𝑠
)
] .

(50)

According to the literature [25], we assume that both
𝑈(𝑚
𝑠
) and𝐻(𝑚

𝑠
) are invertible without loss of generality.

Denote

Δ (𝑚
𝑠
) = [

𝐼 𝑀 (𝑚
𝑠
)

0 𝐻 (𝑚
𝑠
)
] , (51)

and perform the congruence transformation to inequalities
(20), (21), and (22) by

𝐽
1
(𝑚
𝑠
) = diag {Δ𝑇 (𝑚

𝑠
) , Δ
𝑇

(𝑚
𝑠
) , Δ
𝑇

(𝑚
𝑠
) , 𝐼} ,

𝐽
2
(𝑚
𝑠
) = diag {Δ𝑇 (𝑚

𝑠
) , Δ
𝑇

(𝑚
𝑠
) , 𝐼, 𝐼} ,

𝐽
3
(𝑚
𝑠
) = diag {𝐼, Δ𝑇 (𝑚

𝑠
)} ,

(52)

respectively.
Denote

𝑄 (𝑚
𝑠
) = Δ
𝑇

(𝑚
𝑠
) 𝑄 (𝑚

𝑠
) Δ (𝑚

𝑠
) ,

�̂� (𝑚
𝑠
) = Δ
𝑇

(𝑚
𝑠
) 𝑃 (𝑚

𝑠
) Δ (𝑚

𝑠
) ,

�̂�
𝑆
(𝑚
𝑠
) = Δ
𝑇

(𝑚
𝑠
) 𝑃
𝑆
(𝑚
𝑠
) Δ (𝑚

𝑠
) ,

𝐴 (𝑚
𝑠
) = Δ
𝑇

(𝑚
𝑠
)𝑊
𝑇

(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) Δ (𝑚

𝑠
)

= [
𝑋
𝑇

(𝑚
𝑠
) 𝐴 (𝑚

𝑠
) + 𝐵
𝐾
(𝑚
𝑠
) 𝐶 𝐴

𝐾
(𝑚
𝑠
)

𝐴 (𝑚
𝑠
) + 𝐵 (𝑚

𝑠
)𝐷
𝐾
(𝑚
𝑠
) 𝐶 𝐴 (𝑚

𝑠
)𝑀 (𝑚

𝑠
) + 𝐵 (𝑚

𝑠
) 𝐶
𝐾
(𝑚
𝑠
)
] ,

𝐵 (𝑚
𝑠
) = Δ
𝑇

(𝑚
𝑠
)𝑊
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)

= [
𝑋
𝑇

(𝑚
𝑠
) 𝐵
1
(𝑚
𝑠
)

𝐵
1
(𝑚
𝑠
)

] ,

𝐶
1
(𝑚
𝑠
) = 𝐶
1
(𝑚
𝑠
) Δ (𝑚

𝑠
)

= [𝐶
1
(𝑚
𝑠
) + 𝐷
1
(𝑚
𝑠
)𝐷
𝐾
(𝑚
𝑠
) 𝐶 𝐶

1
(𝑚
𝑠
)𝑀 (𝑚

𝑠
) + 𝐷
1
(𝑚
𝑠
) 𝐶
𝐾
(𝑚
𝑠
)] ,

𝐶
2
(𝑚
𝑠
) = 𝐶
2
(𝑚
𝑠
) Δ (𝑚

𝑠
) = [𝐶

2
(𝑚
𝑠
) 𝐶
2
(𝑚
𝑠
)𝑀 (𝑚

𝑠
)] ,
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�̂� (𝑚
𝑠
) = Δ
𝑇

(𝑚
𝑠
)𝑊 (𝑚

𝑠
) Δ (𝑚

𝑠
)

= [
𝑋
𝑇

(𝑚
𝑠
) 𝑍 (𝑚

𝑠
)

𝐼 𝑀 (𝑚
𝑠
)
] ,

(53)

then we get the following theorem.

Theorem 2. For the given parameters 𝛾, 𝜂, 𝜌 > 0, if there exist
symmetric matrix �̂�(𝑚

𝑠
), positive definite symmetric matrices

�̂�
𝑆
(𝑚
𝑠
), 𝑄(𝑚

𝑠
), and general matrices 𝐴

𝐾
(𝑚
𝑠
), 𝐵
𝐾
(𝑚
𝑠
),

𝐶
𝐾
(𝑚
𝑠
),𝐷
𝐾
(𝑚
𝑠
), �̂�(𝑚

𝑠
),𝑀(𝑚

𝑠
),𝑋(𝑚

𝑠
), 𝑍(𝑚

𝑠
) satisfying

[
[
[

[

sym (�̂� (𝑚
𝑠
)) −𝐴 (𝑚

𝑠
) + �̂�
𝑆
(𝑚
𝑠
) −�̂�

𝑇

(𝑚
𝑠
) −𝐵 (𝑚

𝑠
)

∗ −�̂�
𝑆
(𝑚
𝑠
) 0 0

∗ ∗ −�̂�
𝑆
(𝑚
𝑠
) 0

∗ ∗ ∗ −𝜂𝐼

]
]
]

]

< 0, (54)

[
[
[
[

[

−𝜔
1
𝜔
2
𝑄 (𝑚
𝑠
) − sym (𝐴 (𝑚

𝑠
)) �̂� (𝑚

𝑠
) − 𝑗𝜔

𝑐
𝑄 (𝑚
𝑠
) + �̂�

𝑇

(𝑚
𝑠
) −𝐵 (𝑚

𝑠
) 𝐶
𝑇

1
(𝑚
𝑠
)

�̂� (𝑚
𝑠
) + 𝑗𝜔

𝑐
𝑄 (𝑚
𝑠
) + �̂� (𝑚

𝑠
) −𝑄 (𝑚

𝑠
) 0 0

−𝐵
𝑇

(𝑚
𝑠
) 0 −𝛾

2

𝐼 0

𝐶
1
(𝑚
𝑠
) 0 0 −𝐼

]
]
]
]

]

< 0, (55)

[
−𝐼 √𝜌{𝐶2 (𝑚𝑠)}

𝑘

∗ −�̂�
𝑆
(𝑚
𝑠
)

] < 0, 𝑘 = 1, 2, (56)

then a dynamic output feedback controller exists, which satisfies
the requirements of (I), (II) and (III) with 𝑤max = 𝜌/𝜂.

The corresponding controller in the form of (12) can be
given by

𝐷
𝐾
(𝑚
𝑠
) = 𝐷

𝐾
(𝑚
𝑠
) ,

𝐶
𝐾
(𝑚
𝑠
) = (𝐶

𝐾
(𝑚
𝑠
) − 𝐷
𝐾
(𝑚
𝑠
) 𝐶𝑀(𝑚

𝑠
))𝐻
−1

(𝑚
𝑠
) ,

𝐵
𝐾
(𝑚
𝑠
) = 𝑈

−𝑇

(𝑚
𝑠
) (𝐵
𝐾
(𝑚
𝑠
) − 𝑋
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)𝐷
𝐾
(𝑚
𝑠
)) ,

𝐴
𝐾
(𝑚
𝑠
)

= 𝑈
−𝑇

(𝑚
𝑠
) [𝐴
𝐾
(𝑚
𝑠
) − 𝑋
𝑇

(𝑚
𝑠
) 𝐴 (𝑚

𝑠
)𝑀 (𝑚

𝑠
)

− 𝑋
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)𝐷
𝐾
(𝑚
𝑠
) 𝐶𝑀(𝑚

𝑠
)

− 𝑈
𝑇

(𝑚
𝑠
) 𝐵
𝐾
(𝑚
𝑠
) 𝐶𝑀(𝑚

𝑠
)

− 𝑋
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐶
𝐾
(𝑚
𝑠
)𝐻 (𝑚

𝑠
)]

× 𝐻
−1

(𝑚
𝑠
) .

(57)
Though a parameter-dependent controller can be

designed via Theorem 2, it is difficult to obtain targeted
matrices in real time as 𝑚

𝑠
varies. Therefore, we give a

tractable LMI-based theorem as follows.

Theorem 3. For the given parameters 𝛾, 𝜂, and 𝜌 > 0, if there
exist symmetric matrix �̂�

𝑖
, positive definite symmetric matrices

�̂�
𝑆𝑖
, 𝑄
𝑖
, and general matrices𝐴

𝐾𝑖
, 𝐵
𝐾𝑖
, 𝐶
𝐾𝑖
, 𝐷
𝐾𝑖
, �̂�
𝑖
,𝑀
𝑖
, 𝑋
𝑖
, 𝑍
𝑖

(𝑖 = 1, 2), satisfying

[
𝐽
1
𝐽
2

∗ 𝐽
3

] < 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 2, (58)

[
𝐾
1
+ 𝑗𝐾
2
𝐾
3

∗ 𝐾
4

] < 0, 1 ≤ 𝑖 ≤ 𝑗 ≤ 2, (59)

[
−𝐼 √𝜌{𝐶2𝑖𝑗 + 𝐶2𝑗𝑖}

𝑘

∗ −�̂�
𝑆𝑖
− �̂�
𝑆𝑗

] < 0, 𝑘 = 1, 2; 1 ≤ 𝑖 ≤ 𝑗 ≤ 2,

(60)

where

𝐽
1
= [

sym (�̂�
𝑖
+ �̂�
𝑗
) −𝐴

𝑖𝑗
− 𝐴
𝑗𝑖
+ �̂�
𝑆𝑖
+ �̂�
𝑆𝑗

∗ −�̂�
𝑆𝑖
− �̂�
𝑆𝑗

] ,

𝐽
2
= [

−�̂�
𝑇

𝑖
− �̂�
𝑇

𝑗
−𝐵
𝑖𝑗
− 𝐵
𝑗𝑖

0 0
] ,

𝐽
3
= [

−�̂�
𝑆𝑖
− �̂�
𝑆𝑗

0

∗ −2𝜂𝐼
] ,

𝐾
1
= [

−𝜔
1
𝜔
2
(𝑄
𝑖
+ 𝑄
𝑗
) − sym (𝐴

𝑖𝑗
+ 𝐴
𝑗𝑖
) �̂�
𝑖
+ �̂�
𝑗
+ �̂�
𝑇

𝑖
+ �̂�
𝑇

𝑗

�̂�
𝑖
+ �̂�
𝑗
+ �̂�
𝑖
+ �̂�
𝑗

−𝑄
𝑖
− 𝑄
𝑗

] ,

𝐾
2
= [

0 −𝜔
𝑐
(𝑄
𝑖
+ 𝑄
𝑗
)

𝜔
𝑐
(𝑄
𝑖
+ 𝑄
𝑗
) 0

] ,
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𝐾
3
= [

−𝐵
𝑖𝑗
− 𝐵
𝑗𝑖
𝐶
𝑇

1𝑖𝑗
+ 𝐶
𝑇

1𝑗𝑖

0 0
] ,

𝐾
4
= [

−2𝛾
2

𝐼 0

0 −2𝐼
] ,

𝐴
𝑖𝑗
= [

𝑋
𝑇

𝑖
𝐴
𝑗
+ 𝐵
𝐾𝑖
𝐶 𝐴

𝐾𝑖

𝐴
𝑖
+ 𝐵
𝑖
𝐷
𝐾𝑗
𝐶 𝐴
𝑖
𝑀
𝑗
+ 𝐵
𝑖
𝐶
𝐾𝑗

] ,

𝐵
𝑖𝑗
= [

𝑋
𝑇

𝑖
𝐵
1𝑗

𝐵
1𝑖

] ,

𝐶
1𝑖𝑗
= [𝐶
1𝑖
+ 𝐷
1𝑖
𝐷
𝐾𝑗
𝐶 𝐶
1𝑖
𝑀
𝑗
+ 𝐷
1𝑖
𝐶
𝐾𝑗
] ,

𝐶
2𝑖𝑗
= [𝐶
2𝑖
𝐶
2𝑖
𝑀
𝑗
] ,

�̂�
𝑖
= [

𝑋
𝑇

𝑖
𝑍
𝑖

𝐼 𝑀
𝑖

] ,

(61)

then a dynamic output feedback controller exists, which satisfies
the requirements of (I), (II) and (III) with 𝑤max = 𝜌/𝜂.

The corresponding controller in the form of (12) can be
given by

𝐷
𝐾
(𝑚
𝑠
) = 𝐷

𝐾
(𝑚
𝑠
) ,

𝐶
𝐾
(𝑚
𝑠
) = (𝐶

𝐾
(𝑚
𝑠
) − 𝐷
𝐾
(𝑚
𝑠
) 𝐶𝑀(𝑚

𝑠
))𝐻
−1

(𝑚
𝑠
) ,

𝐵
𝐾
(𝑚
𝑠
) = 𝑈

−𝑇

(𝑚
𝑠
) (𝐵
𝐾
(𝑚
𝑠
) − 𝑋
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)𝐷
𝐾
(𝑚
𝑠
)) ,

𝐴
𝐾
(𝑚
𝑠
) = 𝑈

−𝑇

(𝑚
𝑠
) [𝐴
𝐾
(𝑚
𝑠
) − 𝑋
𝑇

(𝑚
𝑠
) 𝐴 (𝑚

𝑠
)𝑀 (𝑚

𝑠
)

− 𝑋
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)𝐷
𝐾
(𝑚
𝑠
) 𝐶𝑀(𝑚

𝑠
)

− 𝑈
𝑇

(𝑚
𝑠
) 𝐵
𝐾
(𝑚
𝑠
) 𝐶𝑀(𝑚

𝑠
)

− 𝑋
𝑇

(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐶
𝐾
(𝑚
𝑠
)𝐻 (𝑚

𝑠
)]

× 𝐻
−1

(𝑚
𝑠
) ,

(62)

where

(𝐴
𝐾
(𝑚
𝑠
) , 𝐵
𝐾
(𝑚
𝑠
) , 𝐶
𝐾
(𝑚
𝑠
) ,

𝐷
𝐾
(𝑚
𝑠
) ,𝑀 (𝑚

𝑠
) , 𝑋 (𝑚

𝑠
) , 𝑍 (𝑚

𝑠
) )

=

2

∑

𝑖=1

𝜆
𝑖
(𝐴
𝐾𝑖
, 𝐵
𝐾𝑖
, 𝐶
𝐾𝑖
, 𝐷
𝐾𝑖
,𝑀
𝑖
, 𝑋
𝑖
, 𝑍
𝑖
) ,

(63)

and 𝜆
𝑖
(𝑖 = 1, 2) can be calculated by (11).

Proof. we just prove that inequality (58) is sufficient to
inequality (54) for simplicity.

Denote

Ψ (𝑚
𝑠
) =

[
[
[

[

sym (�̂� (𝑚
𝑠
)) −𝐴 (𝑚

𝑠
) + �̂�
𝑆
(𝑚
𝑠
) −�̂�

𝑇

(𝑚
𝑠
) −𝐵 (𝑚

𝑠
)

∗ −�̂�
𝑆
(𝑚
𝑠
) 0 0

∗ ∗ −�̂� (𝑚
𝑠
) 0

∗ ∗ ∗ −𝜂𝐼

]
]
]

]

, (64)

which stands for the left of inequality (54).
Inequality (58) is equivalent to

Ψ
𝑖𝑗
+ Ψ
𝑗𝑖
< 0, 1 ≤ 𝑖 < 𝑗 ≤ 2,

Ψ
𝑖𝑖
< 0, 𝑖 = 1, 2,

(65)

where

Ψ
𝑖𝑗
=

[
[
[

[

sym (�̂�
𝑖
) −𝐴

𝑖𝑗
+ �̂�
𝑆𝑖
−�̂�
𝑇

𝑖
−𝐵
𝑖𝑗

∗ −�̂�
𝑆𝑖

0 0

∗ ∗ −�̂�
𝑆𝑖

0

∗ ∗ ∗ −𝜂𝐼

]
]
]

]

,

1 ≤ 𝑖 ≤ 𝑗 ≤ 2.

(66)

Assume that

(𝐴
𝐾
(𝑚
𝑠
) , 𝐵
𝐾
(𝑚
𝑠
) , 𝐶
𝐾
(𝑚
𝑠
) ,

𝐷
𝐾
(𝑚
𝑠
) ,𝑀 (𝑚

𝑠
) , 𝑋 (𝑚

𝑠
) , 𝑍 (𝑚

𝑠
))

=

2

∑

𝑖=1

𝜆
𝑖
(𝐴
𝐾𝑖
, 𝐵
𝐾𝑖
, 𝐶
𝐾𝑖
, 𝐷
𝐾𝑖
,𝑀
𝑖
, 𝑋
𝑖
, 𝑍
𝑖
) ,

(67)

and then we get

Ψ (𝑚
𝑠
) =

2

∑

𝑖=1

2

∑

𝑗=1

𝜆
𝑖
𝜆
𝑗
Ψ
𝑖𝑗
=

2

∑

𝑖=1

𝜆
2

𝑖
Ψ
𝑖𝑖
+ 𝜆
1
𝜆
2
(Ψ
12
+ Ψ
21
) , (68)

which is negative definite by inequality (65), that is,

Ψ (𝑚
𝑠
) < 0. (69)

Remark 4. 𝑈(𝑚
𝑠
), 𝐻(𝑚

𝑠
) should be chosen to meet the

definition, that is,

𝑈
𝑇

(𝑚
𝑠
)𝐻 (𝑚

𝑠
) = 𝑍 (𝑚

𝑠
) − 𝑋
𝑇

(𝑚
𝑠
)𝑀 (𝑚

𝑠
) . (70)

However, the value of 𝑈(𝑚
𝑠
) and 𝐻(𝑚

𝑠
) can be chosen

variously for the given 𝑍(𝑚
𝑠
), 𝐻(𝑚

𝑠
), and 𝑀(𝑚

𝑠
). In this

paper, we use the singular value decomposition approach.

Remark 5. Based on [26], for real matrices 𝑆
1
and 𝑆

2
, 𝑆
1
+

𝑗𝑆
2
< 0 is equivalent to [ 𝑆1 𝑆2

−𝑆
2
𝑆
1

] < 0. Thusly, (59) can be
converted into real matrix inequality by defining

𝑆
1
= [

𝐾
1
𝐾
3

∗ 𝐾
4

] , 𝑆
2
= [

𝐾
2
0

0 0
] . (71)
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Remark 6. The matrices of dynamic output feedback con-
troller 𝐴

𝐾
(𝑚
𝑠
), 𝐵
𝐾
(𝑚
𝑠
), 𝐶
𝐾
(𝑚
𝑠
), 𝐷
𝐾
(𝑚
𝑠
), and Lyapunov

matrix 𝑃
𝑆
(𝑚
𝑠
) are dependent nonlinearly on parameter 𝑚

𝑠
.

For instance, as can be seen in the above deduction, matrix
𝐷
𝐾
(𝑚
𝑠
) in Theorem 3 can be formulated as

𝐷
𝐾
(𝑚
𝑠
) = 𝐷

𝐾
(𝑚
𝑠
) =

2

∑

𝑖=1

𝜆
𝑖
𝐷
𝐾𝑖
= 𝜆
1
𝐷
𝐾1
+ 𝜆
2
𝐷
𝐾2

=
1/𝑚
𝑠
− 1/𝑚

𝑠min
1/𝑚
𝑠max − 1/𝑚𝑠min

𝐷
𝐾1

+
1/𝑚
𝑠max − 1/𝑚𝑠

1/𝑚
𝑠max − 1/𝑚𝑠min

𝐷
𝐾2
,

(72)

where 𝐷
𝐾1

and 𝐷
𝐾2

are the corresponding matrix solutions
of LMIs in Theorem 3, and the value of matrix 𝐷

𝐾
(𝑚
𝑠
) may

vary with the change of𝑚
𝑠
.

Remark 7. Inequalities from (58) to (60) can be simplified
from 12 LMIs to 4 LMIs if the following matrix variables are
chosen as �̂�

1
= �̂�
2
, �̂�
𝑆1

= �̂�
𝑆2
, 𝑄
1
= 𝑄
2
, 𝐴
𝐾1

= 𝐴
𝐾2
,

𝐵
𝐾1
= 𝐵
𝐾2
, 𝐶
𝐾1
= 𝐶
𝐾2
, 𝐷
𝐾1
= 𝐷
𝐾2
, �̂�
1
= �̂�
2
,𝑀
1
= 𝑀
2
,

𝑋
1
= 𝑋
2
, and𝑍

1
= 𝑍
2
. However, this simplification will keep

the matrices for the designed controller constant for all 𝑚
𝑠
,

and an invariant Lyapunov function, rather than a parameter-
dependent one, has to be used for the whole domain, which
will bring a larger conservativeness thanTheorem 3.

3.2. Full Frequency Design. Based on the theorem of [27], we
formulate Theorem 8 without proof for simplicity.

Theorem 8. For the given parameter 𝛾 > 0, if there exist
positive definite symmetric matrices 𝑌

𝐶𝑖
, 𝑋
𝐶𝑖

and general
matrices 𝐴

𝐶𝑖
, 𝐵
𝐶𝑖
, 𝐶
𝐶𝑖
, 𝐷
𝐶𝑖
, (𝑖 = 1, 2), satisfying

[
[

[

sym (𝐴
𝑒𝑖𝑗
+ 𝐴
𝑒𝑗𝑖
) 𝐵
𝑒𝑖𝑗

𝐶
𝑇

𝑒1𝑖𝑗
+ 𝐶
𝑇

𝑒1𝑗𝑖

∗ −2𝛾
2

𝐼 0

∗ ∗ −2𝐼

]
]

]

< 0,

1 ≤ 𝑖 ≤ 𝑗 ≤ 2,

(73)

[
−2𝐼 √𝜌{𝐶𝑒2𝑖𝑗 + 𝐶𝑒2𝑗𝑖}

𝑘

∗ −𝑃
𝐶𝑖
− �̂�
𝐶𝑗

] < 0,

𝑘 = 1, 2; 1 ≤ 𝑖 ≤ 𝑗 ≤ 2,

(74)

where

𝐴
𝑒𝑖𝑗
= [

𝐴
𝑖
𝑋
𝐶𝑗
+ 𝐵
𝑖
𝐶
𝐶𝑗

𝐴
𝑖
+ 𝐵
𝑖
𝐷
𝐶𝑗
𝐶

𝐴
𝐶𝑖

𝑌
𝐶𝑖
𝐴
𝑗
+ 𝐵
𝐶𝑖
𝐶
] ,

𝐵
𝑒𝑖𝑗
= [

𝐵
1𝑖

𝑌
𝐶𝑖
𝐵
1𝑗

] ,

𝐶
𝑒1𝑖𝑗

= [𝐶
1𝑖
𝑋
𝐶𝑗
+ 𝐷
1𝑖
𝐶
𝐶𝑗
𝐶
1𝑖
+ 𝐷
1𝑖
𝐷
𝐶𝑗
𝐶] ,

𝐶
𝑒2𝑖𝑗

= [𝐶
2𝑖
𝑋
𝐶𝑗
𝐶
2𝑖
] ,

𝑃
𝐶
𝑖

= [
𝑋
𝐶𝑖

𝐼

𝐼 𝑌
𝐶𝑖

] ,

(75)

then a dynamic output feedback controller exists, which satisfies
(I) and (III), and ‖𝐺(𝑗𝜔)‖

∞
< 𝛾 with 𝑤max = 𝜌/𝜂.

The corresponding controller in the form of (12) can be
given by

𝐷
𝐾
(𝑚
𝑠
) = 𝐷

𝐶
(𝑚
𝑠
) , (76)

𝐶
𝐾
(𝑚
𝑠
) = (𝐶

𝐶
(𝑚
𝑠
) − 𝐷
𝐶
(𝑚
𝑠
) 𝐶𝑋
𝐶
(𝑚
𝑠
))𝑀
−𝑇

𝐶
(𝑚
𝑠
) ,

(77)

𝐵
𝐾
(𝑚
𝑠
) = 𝑁

−1

𝐶
(𝑚
𝑠
) (𝐵
𝐶
(𝑚
𝑠
) − 𝑌
𝐶
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)𝐷
𝐶
(𝑚
𝑠
)) ,

(78)

𝐴
𝐾
(𝑚
𝑠
)

= 𝑁
−1

𝐶
(𝑚
𝑠
) [𝐴
𝐶
(𝑚
𝑠
) − 𝑌
𝐶
(𝑚
𝑠
) 𝐴 (𝑚

𝑠
)𝑋
𝐶
(𝑚
𝑠
)

− 𝑌
𝐶
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
)𝐷
𝐶
(𝑚
𝑠
) 𝐶𝑋
𝐶
(𝑚
𝑠
)

− 𝑁
𝐶
(𝑚
𝑠
) 𝐵
𝐾
(𝑚
𝑠
) 𝐶𝑋
𝐶
(𝑚
𝑠
)

−𝑌
𝐶
(𝑚
𝑠
) 𝐵 (𝑚

𝑠
) 𝐶
𝐾
(𝑚
𝑠
)𝑀
𝑇

𝐶
]

×𝑀
−𝑇

𝐶
(𝑚
𝑠
) ,

(79)

where

(𝐴
𝐶
(𝑚
𝑠
) , 𝐵
𝐶
(𝑚
𝑠
) , 𝐶
𝐶
(𝑚
𝑠
) , 𝐷
𝐶
(𝑚
𝑠
) , 𝑋
𝐶
(𝑚
𝑠
) , 𝑌
𝐶
(𝑚
𝑠
))

=

2

∑

𝑖=1

𝜆
𝑖
(𝐴
𝐶𝑖
, 𝐵
𝐶𝑖
, 𝐶
𝐶𝑖
, 𝐷
𝐶𝑖
, 𝑋
𝐶𝑖
, 𝑌
𝐶𝑖
) ,

(80)

and 𝜆
𝑖
(𝑖 = 1, 2) can be calculated by (11).

The same approach mentioned in Remark 4 is used to
obtain the value of𝑁

𝐶
(𝑚
𝑠
) and𝑀

𝐶
(𝑚
𝑠
), which should meet

the following equation:

𝑁
𝐶
(𝑚
𝑠
)𝑀
𝑇

𝐶
(𝑚
𝑠
) = 𝐼 − 𝑌

𝐶
(𝑚
𝑠
)𝑋
𝐶
(𝑚
𝑠
) . (81)

4. A Design Example

In this section, we will show how to apply the above theorems
to design finite frequency controller and full frequency
controller for a specific suspension system.The parameter for
the suspension is shown in Table 1.

We first choose the following parameters: 𝜌 = 1, 𝜂 =

10000, 𝑧max = 0.1m,𝜔
1
= 8𝜋rad/s, and𝜔

2
= 16𝜋rad/s.Then,

the matrices in (12) can be calculated by applying Theorem 3
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Table 1: The model parameters of active suspensions.

𝑘
𝑠

𝑘
𝑡

𝑐
𝑠

𝑐
𝑡

𝑚
𝑠max 𝑚

𝑠min 𝑚
𝑠

𝑚
𝑢

18 kN/m 200 kN/m 1 kN/m 10N/m 384 kg 254 kg 320 kg 40 kg

Frequency (Hz)

M
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Figure 2: The curves of maximum singular values.

and Remark 7 for finite frequency controller and Theorem 8
for full frequency controller (shown in Appendix B) with the
least guaranteed 𝐻

∞
performances 𝛾 = 2.54 for Theorem 3,

𝛾 = 2.73 for Remark 6, and 𝛾 = 10.98 for Theorem 8.
Then, the curves of maximum singular values of systems

using open-loop, finite frequency (parameter-dependent),
and full frequency controllers are shown in Figure 2. Com-
pared with the other two curves (the open-loop system and
the system with full frequency controller), the system with
finite frequency controller has the least𝐻

∞
norm of the three

systems in 4–8Hz, which indicates that the finite frequency
controller has a better effect on the attenuation of targeted
frequency disturbance.

In order to examine the performance of finite frequency
controller, we assume that the disturbance is in the form of

𝑤 (𝑡) = {
𝐴 sin (2𝜋𝑓𝑡) 𝑡 ∈ [0, 𝑇]

0 𝑡 ∉ [0, 𝑇] ,
(82)

where 𝐴, 𝑓 stand for the amplitude and the frequency of
disturbance, respectively, and 𝑇 = 1/𝑓.

Suppose that 𝐴 is 0.4m and 𝑓 is 5Hz, and then the
body acceleration and the relative constraints responses to
this disturbance are shown in Figures 3, 4, and 5, respectively.

It is obvious that the body acceleration response for finite
frequency controller decreases faster with respect to time
than the other two controllers, and at the same time, both the
relative dynamic tire load response and relative suspension
stroke response are within the allowable range, which satisfy
requirement (III), namely, |{𝑧

𝑜2
(𝑡)}
𝑘
| < 1, 𝑘 = 1, 2.

5. Conclusion

In this paper, we manage to design a dynamic output
feedback controller for active suspensions with practical
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Figure 3: The time response of body acceleration.
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Figure 4: The time response of relative dynamic tire load.
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Figure 5: The time response of relative suspension stroke.
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constraints included. This controller particularly diminishes
disturbance at 4–8Hz, which is the frequency sensitive band
for human. Besides, for the reason that the controller is a
parameter-dependent one, it has a smaller conservativeness
than controller designed on the basis of quadratic stability
and constant parameter feedback.The excellent performance
of the closed-loop system with finite frequency controller has
been demonstrated by simulation.

Appendices

A. Related Lemmas

Lemma A.1 (generalized KYP lemma [28]). Let matrices Θ,
𝐹, Φ, and Ψ be given, Denote by 𝑁

𝜔
the null space of 𝑇

𝜔
𝐹,

where 𝑇
𝜔
= [𝐼 −𝑗𝜔𝐼]. The inequality

𝑁
∗

𝜔
Θ𝑁
𝜔
< 0, 𝜔 ∈ [𝜔

1
𝜔
2
] (A.1)

holds, if and only if, there exist 𝑃, 𝑄 > 0 such that

𝐹
∗

(Φ ⊗ 𝑃 + Ψ ⊗ 𝑄) 𝐹 < 0, (A.2)

where

Φ = [
0 1

1 0
] , Ψ = [

−1 𝑗𝜔
𝑐

−𝑗𝜔
𝑐
−𝜔
1
𝜔
2

] , (A.3)

with 𝜔
𝑐
= (𝜔
1
+ 𝜔
2
)/2.

Lemma A.2 (projection lemma [25]). Let Γ, Λ, and Θ be
given, there exists a matrix satisfying

sym (ΓΛΘ) + Θ < 0, (A.4)

if and only if, the following two conditions hold:

Γ
⊥

Θ(Γ
⊥

)
𝑇

< 0, (Λ
𝑇

)
⊥

Θ((Λ
𝑇

)
⊥

)

𝑇

< 0. (A.5)

Lemma A.3 (reciprocal projection lemma [25]). Let 𝑃 be
any given positive definite matrix.The following statements are
equivalent.

(1) Ψ + 𝑆 + 𝑆𝑇 < 0.

(2) The LMI problem

[
Ψ + 𝑃 − [𝑊

𝑠
] 𝑆
𝑇

+𝑊
𝑇

∗ −𝑃
] < 0 (A.6)

is feasible with respect to𝑋.

B. Controller Matrices

The parameter matrices of the dynamic output feedback
controller for Theorem 3:

𝐴
𝐾
=

[
[
[

[

−14.821 −0.12731 −1.1424 0.00255

−228.44 −136.92 13.701 0.02030

2038.1 151.59 −21.603 −0.47598

2.4991 × 10
9

−7.4319 × 10
7

4.2012 × 10
6

−1.0171 × 10
6

]
]
]

]

,

𝐵
𝐾
=

[
[
[

[

99.943 109.08 44.969

−3170.6 −2956.8 −891.61

−632.00 1156.4 −1125.8

−1.0944 × 10
8

−1.8461 × 10
9

−7.9445 × 10
7

]
]
]

]

,

𝐶
𝐾
= [3814.4 −686.19 1758.9 3.5961] ,

𝐷
𝐾
= [−1.8676 × 10

5

−2.0429 × 10
5

−86675] .

(B.1)

The parameter matrices of the dynamic output feedback
controller for Theorem 8:

𝐴
𝐾
=

[
[
[

[

−12.734 26.225 21.367 −0.31502

−36.286 14.954 36.984 0.69500

−111.01 −84.507 −65.487 −0.0771

−45995 −42118 −29117 −1623.6

]
]
]

]

,

𝐵
𝐾
=

[
[
[

[

−793.37 −56.495 −136.30

1770.9 122.15 113.03

−90.855 3448.7 −802.39

6.4417 × 10
5

7.1058 × 10
6

−2.7515 × 10
5

]
]
]

]

,

𝐶
𝐾
= [518.19 −604.03 −590.41 10.015] ,

𝐷
𝐾
= [25422 1720.8 2609.8] .

(B.2)
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