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Asminiature-sized embedded computing platforms are ubiquitously deployed to our everyday environments, the issue ofmanaging
their power usage becomes important, especially when they are used in energy harvesting based self-organizing networks. One way
to provide these devices with continuous power is to utilize RF-based energy transfer. Previous research in RF-based information
and energy transfer builds up on the assumption that perfect channel estimation is easily achievable. However, as our preliminary
experiments and many previous literature in wireless network systems show, making perfect estimations of the wireless channel
is extremely challenging due to their quality fluctuations. To better reflect reality, in this work, we introduce an adaptive power
allocation and splitting (APAS) scheme which takes imperfect channel estimations into consideration. Our evaluation results show
that the proposedAPAS scheme achieves near-optimal performances for transferring energy and data over a single RF transmission.

1. Introduction

As we slowly enter the era of the Internet of Things (IoT), we
will start to experience various embedded computing systems
being introduced to our everyday lives. In particular, it is
important tomaintain a long sensing and operational lifetime
in self-organizing networks (SONs). Given that SONs are typ-
ically meant to tackle applications with little or no human
intervention, their operational durations can determine the
overall system’s self-conguration, self-optimization, and self-
healing performance [1, 2]. For this, a decade of research
in the wireless embedded systems domain has introduced
a number of schemes for optimizing energy efficiency on
resource limited computing platforms [3–5].

In addition to these schemes that focus on conserving
the power usage, another direction of research is to gather
energy. This energy gathering can take two different forms
where, in the first, an explicit hardware module is attached
for harvesting energy from external sources (e.g., sunlight,
wind, and vibration) [6, 7] and, in the second, the power
generated from radio frequency (RF) signals can be used to

transfer energy [8–10]. Given that the latter is only minimally
affected by external environmental factors, we believe that
it is an interesting research direction to explore. Since they
do not require a large-sized energy harvesting unit, applying
energy transfer techniques to data communications can
effectively reduce the size of the the hardware used in low-
power wireless networking. Based on these benefits, in this
work we study the possibilities of information and energy
transfer using RF signals for powering low-power embedded
computing platforms.

Given its attractiveness, a number of previous works have
tried tackling interesting issues in various aspects of this
research field. For example, in [11, 12], the authors investigated
the theoretical performance limits for simultaneous wireless
information and power transfer (SWIPT). The works in [13,
14] proposed time switching and dynamic power splitting
for enabling efficient SWIPT. Furthermore, Nasir et al. took
these findings to a networking perspective and introduced
the relaying protocol in [15]. Here, the authors proposed a
network where an energy constrained relay node harvests
energy from the RF signals of a source node and uses this
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harvested energy for relaying information to the next hop.
In [16], Shen et al. proposed transmitter designs for sum-
rate maximization with energy harvesting constraints on a
multiple-input single-output (MISO) interference channel. In
addition, an energy efficient resource allocation algorithm
for SWIPT was investigated [17] and multiuser scheduling
schemes for improving user fairness were studied in wireless
networks with energy harvesting [18].

Despite these efforts from the research community, in
this work we identify one important assumption that most of
these previous works made. Namely, these works commonly
took the assumption that wireless channels would be continu-
ously stable and the communication quality would be perfect
in all cases. However, research from the wireless networking
systems community showed that this observation is far from
being true. These RF signals can be severely impacted by
external factors such as human movement, environmental
changes, and even the time of day. Therefore, we believe
that taking such real-world channel factors into consideration
as we model the information and energy transfer behaviors
of RF signals is important. Specifically, in this work we try
to understand the performance of wireless links in reality
and present a novel information and energy transfer model
that reflects the nonperfect nature and inevitably imperfect
channel quality estimations of real-world wireless environ-
ments. In addition, we propose an adaptive power alloca-
tion and splitting (APAS) scheme with considerations for
imperfect wireless channel estimations in energy harvesting
based SONs. Our evaluations show that APAS outperforms
preexisting schemes and performs close to the optimal.

We summarize the contributions of this work threefold.

(i) We present empirical results on the RF characteristics
in indoor environments to showcase the dynamics
of real-world wireless channels. Our findings lead
to a conclusion that perfect channel estimations are
difficult to achieve due to various unexpected external
factors.

(ii) We introduce a novel signal transfermodel with chan-
nel estimation errors in consideration for analyzing
the simultaneous transfer of information and energy
using RF signals. Our model reflects realistic channel
environments and, therefore, provides accurate per-
formance bounds.

(iii) Using convex optimization techniques, we propose
a resource allocation strategy that finds suboptimal
transmission power allocation and power splitting
ratios iteratively for a given training interval.Through
simulations, we show that the proposed scheme
provides near-optimal performance as well as con-
siderable performance improvement compared to
conventional schemes.

The rest of this paper is structured as follows. We start
off the paper with an empirical study of real-world channel
environments in Section 2.Thefindings fromour preliminary
studies become the basis of our system model presented
in Section 3 and the proposed adaptive power allocation
and splitting (APAS) scheme in Section 4. Using Section 5,
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Figure 1: Empirical RSSI traces for stable and dynamic indoor envi-
ronments.

we evaluate the performance of our proposed scheme and
summarize our work in Section 6.

2. Real Channel Environments

Beforewe explain the details of our proposed scheme,we start
by presenting empirical study results that show how dynamic
a practical wireless channel environment can be. Specifically,
we configure a transmitter node and a receiver node to be
positioned ∼5 meters apart. The transmitter node sends peri-
odic packets with a packet transmission interval of 250msec
at 0 dBm and we test the wireless link in two different sce-
narios: one with no surrounding humanmovement activities
(e.g., night-time) and another with continuous movement
(e.g., day-time) between the two nodes. Since nodes were
installed in a hallway environment with consistent human
activities, the dynamic links in Figure 1 are sure to have high
channel quality variability. In this experimental setting, we
present the received signal strength indicator (RSSI) value
observed at the receiver for incoming packets. Specifically,
in Figure 1 we plot the RSSI over time for both the stable
and dynamic links. Notice from Figure 1 that, with natural
human-generated link dynamics (e.g., typical human move-
ment behaviors), the signal strengths of incoming packets
severely fluctuate.

These empirical results, though tested for a single envi-
ronment, provide experimental evidence on the dynamics of
real wireless channels. Using Figure 1, we try to show that
schemes designed for real-world should not assume a stable
wireless channel. This leads to an observation that perfect
channel estimation can be difficult to achieve; thus, channel
estimation analysis for information and energy transfer
cannot be perfect in most cases. The remainder of this work
builds up on such empirical findings to propose a model
for analyzing the RF-based information and energy transfer
under imperfect channel estimations.

3. System Model

Based on our observations of real-world channel environ-
ments, we take into consideration imperfect channel esti-
mations in an orthogonal frequency division multiplexing
(OFDM) based wireless point-to-point link consisting of a
single transmitter (Tx) and receiver (Rx) pair, as shown in
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Figure 2. Tx and Rx nodes each are equipped with a single-
antenna, and the frequency band is divided into independent
𝑁 subchannels. We assume that the subchannels follow
a discrete time block-fading model in which the channel
state is invariant for a transmission block interval 𝑇 [19,
20]. In addition, each real subchannel, ℎ

𝑛
, is assumed to

be an independent identically distributed complex random
variable, such as ℎ

𝑛
∼ CN(0, 𝜎2

ℎ
) for 1 ≤ 𝑛 ≤ 𝑁. In a practical

system, the channel estimation process obtains and exploits
the channel state information (CSI). The transmission block
𝑇 is divided into two periods, where, in the first, we define
𝑇

𝜏
for channel training and, in the second, we define the

duration 𝑇 − 𝑇
𝜏
for data transmission. The minimum mean

square error (MMSE) criterion is assumed to be used for esti-
mating the channel status, and each estimated subchannel, ̂ℎ

𝑛
,

follows a Gaussian distribution, such as ̂ℎ
𝑛
∼ CN(0, 𝜎2

̂
ℎ

) for
1 ≤ 𝑛 ≤ 𝑁.

Under such settings, we note that the RF signals (at the
Rx node) can be used in two ways, either for information
decoding (ID) or for energy harvesting (EH), while these
modes cannot take place simultaneously. Here, the received
signal is split in two portions in each subchannel; the portion
of 𝜌
𝑛
among 𝑇 − 𝑇

𝜏
is reserved for ID, while 1 − 𝜌

𝑛
is for EH

before performing active analog or digital signal processing.
(We assume that the Rx node is equipped with a perfect
passive power splitting unit [17].) In addition, as RF signals
are split in two streams, two types of noise should be consid-
ered: antenna noise, 𝑛

𝐴
, and signal processing noise, 𝑛

𝑆
. 𝑛
𝐴
is

generated at the Rx antenna while 𝑛
𝑆
is introduced when the

received signal is divided into ID and EH. Nevertheless, we
neglect 𝑛

𝐴
since it is much smaller than 𝑛

𝑆
[14]. Furthermore,

we assume 𝑛
𝑆

∼ CN(0, 1). Then, the achievable sum
rate using the estimated subchannels can be represented by
[20]

𝑅 =

𝑁

∑

𝑛=1

𝑟

𝑛

=

𝑁

∑

𝑛=1

𝑇 − 𝑇

𝜏

𝑇

log
2
(1 +

(1 + 𝑝

𝜏
𝑇

𝜏
) 𝜌

𝑛
𝑝

𝑛











̂

ℎ

𝑛











2

1 + 𝜌

𝑛
𝑝

𝑛
+ 𝑝

𝜏
𝑇

𝜏

) ,

(1)

where 𝑝
𝜏
and 𝑝

𝑛
denote the power for estimating channel

conditions and power allocated in subchannel 𝑛 for data
transmission, respectively. When performing EH at the Rx,
the harvested energy is represented as
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where 𝜂 is the energy conversion efficiency achieved by con-
verting the received RF signals into harvestable energy at the
Rx. We also assume that ∑𝑁

𝑛=1
𝜂|ℎ

𝑛
|

2

≤ 1, according to the
laws of thermodynamics.

We now look into the training interval, the power alloca-
tion, and the power splitting ratio required to maximize the

sum rate while guaranteeing the minimum harvested energy
𝑔min. Consider

max
𝑇
𝜏
,�⃗�,�⃗�

𝑁

∑

𝑛=1

𝑟

𝑛

s.t. C1:
𝑁

∑

𝑛=1

𝑔

𝑛
≥ 𝑔min,

C2:
𝑁

∑

𝑛=1

𝑝

𝑛
≤ 𝑝max,

C3: 𝑝
𝑛
≥ 0, ∀𝑛,

C4: 0 ≤ 𝜌
𝑛
≤ 1, ∀𝑛,

C5: 0 ≤ 𝑇
𝜏
≤ 𝑇.

(3)

Here, ⃗
𝑝 = {𝑝

1
, . . . , 𝑝

𝑁
} and �⃗� = {𝜌

1
, . . . , 𝜌

𝑁
}. Furthermore,

the five constraints can be explained as follows. Constraint
C1 ensures that the amount of energy harvested should be
larger than the minimum amount of required energy 𝑔min.
Constraint C2 limits the available transmission power of the
Tx to 𝑝max. Constraint C3 is a nonnegative constraint on the
transmission power. Constraints C4 and C5 are the ranges of
𝜌

𝑛
and 𝑇

𝜏
, respectively.

4. Adaptive Power Allocation and Splitting

We now propose an adaptive power allocation and splitting
(APAS) algorithm by solving the optimization problem in
(3). We note that it is difficult to find a closed form solution
for 𝑇∗
𝜏
from optimization techniques, given that the objective

function of (3) is not in concave form with respect to
𝑇

𝜏
. However, considering the fact that 𝑇

𝜏
lies within the

interval (0, 𝑇), 𝑇∗
𝜏
can be derived using a one-dimensional

exhaustive search. For example, 𝑇∗
𝜏
can be found from the

probability density function (PDF) of channel distribution.
If 𝑇∗
𝜏
is determined at once, it can be used for estimating

all unknown channels that will be generated. Furthermore,
using the concavity of ⃗

𝑝 and �⃗�, we can find their suboptimal
values iteratively, which reflect channel estimation errors. (In
a biconvex problem, where the problem in (3) is convex with
respect to ⃗

𝑝 for a fixed �⃗� or vice versa, the convergence of
a partial optimum solution can be guaranteed by using the
block coordinate descent (BCD) algorithm [21].)

For a given 𝑇
𝜏
, Tx estimates CSI on subchannels and

determines the allocated power and the power splitting ratio.
The Lagrangian function of (3) can be expressed by

Λ (
⃗
𝑝, �⃗�, 𝜆, 𝜇) =

𝑁

∑
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+ 𝜇(𝑝max −
𝑁
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𝑝

𝑛
) .

(4)

Here, 𝜆 and 𝜇 are nonnegative Lagrangian multipliers, which
correspond to constraints C1 and C2, respectively. To find a
solution to this, we decouple the original problem into par-
allel 𝑁 subproblems for each subchannel. By discarding the
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Figure 2: System model for wireless information and energy transfer.

constant terms, the Lagrangian function (4) for a particular
subchannel 𝑛 can be represented as

Λ (𝑝

𝑛
, 𝜌

𝑛
, 𝜆, 𝜇) = 𝑟

𝑛
+ 𝜆𝑔

𝑛
− 𝜇𝑝

𝑛
. (5)

By taking the derivative of (5) with respect to 𝑝
𝑛
, we can

obtain a power allocation strategy as in the following:
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Here, [𝑥]+ = max (0, 𝑥), 𝐻
𝑒
= 1 + 𝑝
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𝜏
, and 𝜁
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𝑛
). For the obtained 𝑝∗

𝑛
from (6), we

also take the derivative of (5) with respect to 𝜌
𝑛
, to obtain the

power splitting strategy as in the following:
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Here, [𝑥]1
0
= min (max (0, 𝑥), 1).

Then, 𝑝∗
𝑛
and 𝜌∗

𝑛
can be interpreted in terms of chan-

nel estimation, channel condition, and harvested energy as
follows. We especially note that an increment in 𝑇

𝜏
ensures

the exact estimation of channel conditions but decreases the
data transmission time. An extremely large 𝑇

𝜏
does not allow

for a dedicated data transmission time; as a result, 𝑝∗
𝑛
and

𝜌

∗

𝑛
become zero. In addition, 𝑝∗

𝑛
and 𝜌∗

𝑛
are proportional to

|

̂

ℎ

𝑛
|

2, so they show large values on subchannels with good
channel conditions. 𝑝∗

𝑛
is proportional to 𝜆𝜂|̂ℎ

𝑛
|

2, which is
related to the amount of harvested energy, but 𝜌∗

𝑛
is inversely

proportional to 𝜆𝜂|̂ℎ
𝑛
|

2. An amount of𝑝∗
𝑛
increases on a good

subchannel, where large amounts of energy harvesting are
possible, while 𝜌∗

𝑛
decreases on that subchannel to meet the

constraint C1 for harvested energy tightly. In short, 𝑝∗
𝑛
and

𝜌

∗

𝑛
are adjusted reciprocally to the maximize sum rate while

guaranteeing 𝑔min.
Based on the obtained

→

𝑝

∗ and
→

𝜌

∗, Lagrangian multipliers
can be updated by a well-known bisection algorithm or a
gradient algorithm. We detail the overall procedure of the
proposed algorithm in Algorithm 1.

5. Simulation Results and Discussion

For evaluations, we configure a simulation environment as
in the following. Specifically, we set 𝑁 = 32, 𝑇 = 1000,
𝜂 = 0.9, 𝑝

𝜏
= 𝑝max = 43 dBm, and 𝑔min = 20 dBm. We

assume that subchannel ℎ
𝑛
experiences Rayleigh fading, so ℎ

𝑛

is generated as a random variable distributed exponentially
with 𝜎2

ℎ
= 10

−4. In addition, it is independent from other
subchannels ℎ

𝑗
for 𝑗 ̸= 𝑛. We compare the performance of

APAS with three algorithms: OPAS, EPAS, and E2PAS.

(i) Optimal power allocation and splitting (OPAS): with
perfect CSI at the Tx (CSIT), ⃗𝑝 and �⃗� are determined
optimally.

(ii) Equal Power Allocation and Adaptive Power Splitting
(EPAS): power is allocated equally to all subchannels,
and �⃗� is determined adaptively to meet 𝑔min with
respect to (7).
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Figure 3: Power allocation and splitting of OPAS, APAS, EPAS, and
E2PAS.

(1) Initialize ⃗
𝑝, �⃗�, and Lagrangian multipliers

(2) for 𝑇
𝜏
= 1 :𝑇

(3) Estimate |̂ℎ
𝑛
|

2 for ∀𝑛 based on the PDF of channel
(4) Evaluate 𝑅
(5) end for
(6) Return 𝑇∗

𝜏
= max

𝑇
𝜏

𝑅

(7) repeat
(8) Find

→

𝑝

∗ according to (6)
(9) Find

→

𝜌

∗ according to (7)
(10) Update Lagrangian multipliers, 𝜆 and 𝜇
(11) until

→

𝑝

∗ and
→

𝜌

∗ converge

Algorithm 1: Adaptive power allocation and splitting.

(iii) Equal Power Allocation and Equal Power Splitting
(E2PAS): power is allocated equally to all subchannels,
and �⃗� is determined equally for all subchannels to
meet 𝑔min.

Figure 3 shows the power allocation and splitting of
OPAS, APAS, EPAS, and E2PAS, respectively. In OPAS and
APAS, a large amount of power is allocated to the subchannel
with the highest channel gain, and a portion of power is
split to harvest energy on that subchannel. It is best to use
the power allocated to the best subchannel for guaranteeing
𝑔min since energy can be harvested with higher efficiency.
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Figure 4: Correlation coefficient of APAS, EPAS, and E2PAS.

The differences of resource allocation between OPAS and
APAS come from the errors in channel estimation, but
their resource allocation forms show similar tendency. This
indicates that APAS can achieve a performance close to the
optimal bound. On the other hand, in EPAS and E2PAS,
power is allocated equally on all subchannels and energy
is harvested on several subchannels; therefore, a subset of
the power can be used inefficiently. In particular, despite
its implementation simplicity, performance can be degraded
severely in E2PAS due to the fact that resource allocation is
performed regardless of the channel conditions.

Figure 4 shows the correlation coefficient of APAS, EPAS,
and E2PAS with varying 𝑔min. This result targets for showing
how the power allocation and splitting of each scheme is
similar to OPAS. In OPAS, more power is allocated to the
best subchannel to ensure 𝑔min with a high efficiency as 𝑔min
increases. As a result, we can notice here that the correlation
coefficients of EPAS and E2PAS decrease seriously. On the
other hand, the correlation coefficient of APAS stays high,
∼0.9, evenwith increasing𝑔min.Therefore, this result suggests
that APAS can adapt the power allocation and splitting strat-
egy to a level similar to the optimal solution under various
conditions.

Figure 5 plots the data rate 𝑅 versus the training interval
𝑇

𝜏
, which shows the effects of 𝑇

𝜏
on 𝑅. As 𝑇

𝜏
increases, it

is possible to estimate the channel conditions more accu-
rately. As a result, 𝑅 increases gradually to a peak point.
However, additional increase in 𝑇

𝜏
beyond its optimal value

causes reduction in the dedicated transmission time, thereby
decreasing 𝑅. This suggests that there is an optimal value of
𝑇

𝜏
for maximizing 𝑅 from the tradeoff relationship between

the accuracy of channel estimations and the duration of data
transmission time.The optimal training interval𝑇∗

𝜏
increases

with a large 𝑔min, which indicates that an exact channel
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estimation is desired to satisfy a large requirement for the har-
vested energy. There is no significant difference, in particular
less than 10%, between the maximum 𝑅 achieved at 𝑇∗

𝜏
and

the optimal bound of 𝑅.
Figure 6 shows the data rate𝑅 versus the harvested energy

𝑔min when 𝑇
𝜏
= 20. As 𝑔min increases, a large portion of

power should be used for harvesting energy. In consequence,
𝑅 decreases gradually for all algorithms. APAS has the gain
of adaptive power allocation compared with EPAS, while it
has the gain of adaptive power allocation and splitting when
compared to E2PAS. Therefore, we can confirm the gain of
each adaptive strategy by comparing APAS with EPAS and
E2PAS, respectively. In EPAS and E2PAS, the rates at which
𝑅 decreases with increasing 𝑔min are noticeably steeper than
those of OPAS and APAS. This is mainly due to the fact that,
in EPAS and E2PAS, the power cannot be used efficiently.

Therefore, APAS outperforms EPAS and E2PAS significantly
at larger 𝑔min values. For example, APAS outperforms EPAS
and E2PAS in terms of 𝑅 by 20% and 40% at 𝑔min = 20 dBm,
respectively. On the other hand, the performance difference
between OPAS and APAS remains relatively constant despite
increasing 𝑔min.

6. Conclusion

RF-based information and energy transferring techniques
hold the potential to dramatically change the design of wire-
less systems and their networking architectures.Nevertheless,
the research community is still in the early stages of validating
their effectiveness. In this work, we target to tackle one of the
strongest assumptions that most of the works in information
and energy transfer made, which is the assumption that
perfect channel estimation is possible. We show through
an empirical study that the variability of wireless channels
makes perfect estimations of the wireless environment close
to impossible. For this, we propose APAS, which takes into
consideration imperfect channel estimation results for eval-
uating the effectiveness of information and energy transfer
on wireless devices for energy harvesting based SONs. In
APAS, the power allocation and splitting ratio is determined
adaptively with considerations for the estimated channel
quality. In addition, our results indicate that APAS achieves
near-optimal performances under various conditions. We
hope that this work can act as a catalyst in enabling future
research that tries to adopt RF-based information and energy
transfer in realistic channel environments.
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