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This paper is concerned with second-order nonlinear damped dynamic equations on time scales of the following more general

form (p(t)k, (x(t), xA(t)))A +r(t)ky(x(t), XK@ @) + f(t, x(o(t))) = 0. New oscillation results are given to handle some cases not
covered by known criteria. An illustrative example is also presented.

1. Introduction

Let R denote the set of real numbers and T a time scale,
that is, a nonempty closed subset of R with the topology and
ordering inherited from R. The theory of time scales was
introduced by Hilger in his Ph.D. thesis [1] in 1988, and for a
comprehensive treatment of the subject, see [2]. Much recent
attention has been concerned with the oscillation of dynamic
equations on time scales; see, for example, [1-15]. In [9], Dosly
and Hilger studied the second-order dynamic equation

(p@®)x*(®)" +qM x (e ) = 0. (1)

The authors gave a necessary and sufficient condition for the
oscillation of all solutions of (1) on time scales. In [7, 8], Del
Medico and Kong used the Riccati transformation as

N IGEN0 2
x (f)
and obtained some sufficient conditions for oscillation of (1).

In [14], Wang considered the nonlinear second-order damped
differential equation

u(t)

(c@y k(' ®)) +pek(x )
+q(t) £ (x(0) =0,

©)

t >t

and established new oscillation criteria. In [13], Tiryaki
and Zafer considered the second-order nonlinear differential
equation with nonlinear damping

(r )k, (x, x'))l +p(H)k, (x, x')x' +qt) f(x)=0 (4)

and gave interval oscillation criteria of (4). In [10], Huang
and Wang considered the second-order nonlinear dynamic
equation

(PO ®)" + fx @) =0. )

The authors gave some new oscillation criteria of (5) and
extended the results in [7, 8]. In [11], Qiu and Wang studied
the second-order nonlinear dynamic equation

(pOY )L ®) + ftx@®)=0. (©

By employing the Riccati transformation as

POy (x@®)x" (1)
x (t)
where A € Cid('ﬂ', (0,0)), B € Cid('ﬂ', R), the authors

established interval oscillation criteria for (6). And in [12],
Qiu and Wang obtained some new Kamenev-type oscillation

u(t)=A({) + B(t), (7)
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criteria for dynamic equations of the following more general
form:

(PO @) kex®®) + fLx@®) =0, ()

by using the transformation

POy (x () kox(t)
x (t)

In this paper, we consider second-order nonlinear
damped dynamic equations of the form

(p® Ky (x(),x" (t)))A +r 1)k, (x (1), x" (1) x* (1)
+f(t,x(a(t) =0

u(t) = A) +B(t). 9)

(10)

on a time scale T. We will employ functions of the form H(t, s)
and a generalized Riccati transformation as (7) and (9) which
was used in [14, 15] and derive oscillation criteria for (10)
in Section 2. An example is presented to demonstrate the
obtained results in the final section.

Definition 1. A solution x of (10) is said to have a generalized
zero at t* € T if x(t*)x(c(t*)) < 0, and it is said to
be nonoscillatory on T if there exists £, € T such that
x(t)x(o(t)) > 0 forall t > t,. Otherwise, it is oscillatory.
Equation (10) is said to be oscillatory if all solutions of (10)
are oscillatory.

2. Main Results

In this section, we establish some oscillation criteria for
(10). Our work is based on the application of the Riccati
transformation. Throughout this paper we will assume that
sup T = coand

(Cl) P € Crd(ﬂ—) (O: OO))>

(C2) r € C,y(T, R);

(C3) ky,k, € C(R%,R), and there exist ¢, > a, > 0
and a; > 0 such that 0 < o, vk (1, v) < kf(u, V) <
oy vk(u, v) and oc3kf(u, v) < uvk,(u,v) for all (u,v) €
R\ {01

(C4) for p,r, oy, oz above, we always have oy az7(t) + p(t) >
0;

(C5) f e C(TxR,R).

Preliminaries about time scale calculus can be found in
[3-6] and are omitted here. For simplicity, we denote (a,b) N
T = (a, b)y throughout this paper, where a,b € R and [a, b],
[a,b)r, (a,b]y are denoted similarly.

Now, we give the first theorem.

Theorem 2. Assume that (C1)-(C5) hold and that there exists
a function q € C,y(T,R) such that uf (t,u) > q(t)u’. Also,
suppose that x(t) is a solution of (10) satisfying x(t) > 0 for
t € [ty, 00)p witht, € T. Fort € [t,,00)y, define

POk (x(8),x* (1))

11
0 +B(1), (11)

u(t)=A({)
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where A € Cid('[l', (0,00)), B € Cid('ﬂ',R), and (; A — (o —
0,)A%)p + oqa,0,rA° > 0 fort € [ty, 00)y. Then, u(t) satisfies

p)u(t)—pu@)Bt)+aA) p(t) >0, (12)
u® (1) + @, (t)

O, (1) u*(t) - D, (H)u (t)+ D5 (t)

+ <0,
o A () p (8)(u (t)u (8)—p (8)B () +a, A () p ()
(13)

where

A
o0 - a0 (a0~ (59)).

O, () =(qA@) - (a; —ay) A” () p (¥)
+oaasr (1) A% (1),
@, (£) = (20, — o) A” (1) + 0, A (1)) p (£) B(2)
+alp’ (£) A (1) A(t) + 20,057 (£) A% () B(1),
@, (1) = a, (a7 (£) + p (t)) A% (t) B> (1),
A% ()= Ao ().
(14)

Proof. By (C3) we see that x* and k, (x, x*) are both positive
or both negative or both zero. When x* > 0, which implies
that k, (x, x*) > 0, it follows that

pk? (x, xA)

—uB Ap > yYA——F—=
Hu—p +(X1 P 12 xkl (x,xA)

+ o, Ap

A A
xy (% )MAP (15)
xk, (x,x2) ?
= oczApx? > 0.

> o UAp

When x® < 0, which implies that k&, (x, xA) < 0, it follows that

K (x, xA)

- uB Ap = yAp————=~
pu —pb + oy p U pxkl(x,xA)

When x* = 0, which implies that k, (x, x*) = 0 and x = x°,
it follows that

o
pu — uB + o Ap = a  Ap > oczApx— > 0. (17)
x
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Hence, we always have
pu — uB + o Ap > 0,

x° " pu—uB+ o Ap

I\

so (12) holds. Then differentiating (11) and using (10), it
follows that

A
u® :AA(M> +A"<M> +BA

x
A
Zx(u—B)
A
Ky (x, %)) x — phky (%, x%) %
ok () e gl (s0)
xx°
A A t, (o}
_AT o AN f(6X)
A A x°
rky (x, x%) x® ky (x, x%) x®
_A° 2(0) _Atrpl( 0)
x xx
A® B\*
S—u+A‘7<—> - A%q
A A
ky (%, x™) xx® K2 (x, x*
)t B
xx? o xx°
4B K (x,x%) x
< —u-Py-az;Ar T
A X x°
1o ke o
a, x* X
A® -BY
S—u—®0—<a3r+£>Aa<u )
A o Ap
y o Ap
pu — uB + o Ap
=A_Au_q) o (mar+p) A7 (u-B)
A 0 o p A pu—uB+ o Ap
=0+ Dyu - D o
o Ap (uu— pB + a, Ap) o
(19)
50 (13) holds. Theorem 2 is proved. O

Remark 3. In Theorem 2, the condition (a; A—(«; —ar,) A%) p+
a,0,0,7A° > 0 ensures that the coefficient of u* in (13)
is always negative. The condition is obvious and easy to be
fulfilled. For example, when AXt) < Oforallt € [ty, 00)1, We
have A” = A + uA” < A; by (C4) we see that

(A - (a; —ay) A%) p + a5 A

> (A% = () — ) A7) p + a3 A°
= o, A? (aya3r + p) > 0.

(20)

LetDy={seT:s>0}and D = {(t,s) eT?:t>s>0}
For any function f(t,s): T> — R, denote by fi' the partial
derivatives of f with respect to s. For E ¢ R, denote by L(E)
the space of functions which are integrable on any compact
subset of E. Define

(o, B) = {(A,B) : A(s) € Cpy (Dy, (0,00))
B(s) € C}; (Dy, R),
(g A(s) = (@ =) A% (5)) p (s)
+ oy 07 (s) A (s) > 0,

(21)
a, A(s) p(s) £ () B(s) > 0,5 € Dy}

% ={H (t,s) € C' (D, [0,00)) :
H(t,t) =0,
H(t,s) > 0,Hj (t,5) < 0,t > 5> 0}.

These function classes will be used throughout this paper.
Now, we are in a position to give the second theorem.

Theorem 4. Assume that (C1)-(C5) hold and that there exists
a function q € C,y(T,R) such that uf (t,u) > q(t)u’. Also,
suppose that there exist (A, B) € (f, B) and H € F such that
M(t,-) € L([0, p(t)]y) and for any t, € T,

1 t p(t)
lim supm [L H (t,0(s)) @, (s) As — J; M (t,s) As

+Hy (1.0 (1))
x (a A(p (1) p(p(®))

—u(p 1) B(p (t)))] = 00,
(22)

where @, is defined as before, and

@2 (t,9)

M(t,s) = 404 A (s) p (s) min {®s (¢, 5), Dg (£, 5)}

@, (t,5) = ay p () H (t,5) A(s) B(s)
+((2ay — a)) p (5) + 2 5057 (5))
x H (t,0 (s)) A° (s) B(s)
+ o p’ (s) As) (H (t,5) A ()™,
Ds (t,5) = o, H (1,0 (5)) A° (5) (57 (5) + p (5))

X (e A(s) p(s) +u(s)B(s)),



O (t,s) = (a,p(s)H (t,5) A(s)
— (a1 — ) p(s) H(t,0 () A% (5)
+oyon057 (s) H (t,0(s) A% (s))

X (A (s) p(s) = p(s) B(s)).
(23)

Then, (10) is oscillatory.

Proof. Assume that (10) is not oscillatory. Without loss of
generality we may assume that there exists ¢, € [0, 00)y such
that x(t) > Ofort € [t;, 00)y. Let u(t) be defined by (11). Then
by Theorem 2, (12) and (13) hold.

For simplicity in the following, we let H;, = H(t,o(s)),
H = H(t,s), and HzA = HZA(t, s) and omit the arguments in
the integrals. For s € T, H, — H = uHJ.

Multiplying (13), where t is replaced by s, by H, and
integrating it with respect to s from t, to t with t € T and
t > o(t,), we obtain

t
J H,®yAs
t
“ i (24)
t Ou” - O,u+ @
< - J (HouA +H, e 2T ) As,
ty oy Ap (uu — pB + 0y Ap)

where @, ©,, @, are defined as before.
Noting that H(t,t) = 0, by the integration by parts
formula we have

t
J H,DyAs
to

< H(tty) u(ty)

t O,u’ - )
+J <H2Au—HU 1~ Mt Dy )As
to o Ap (pu — uB + o Ap)

< H (t,t) u(ty)

t O,u* -
+J <H2Au—Hg 12 - )As
to o Ap (pu — uB + o Ap)

t
CH (6 1)ulty) + j H2us
p(t)

p(t) 2_
+ J (HZAu PR S Lk L ) As.
to a; Ap (uu — uB + o Ap)
(25)

Since H2A < 0 on D, from (12) we see that, for t > o(t,),

J, Hiuas = 12 (0p ) (p (0) (o )
p(t

< H: (6p () (A (@) p(p®) O

—u(p(®)B(p(1))).

Abstract and Applied Analysis

Since Hy < 0 on D, we see that H, < H. For t > o(ty),
s € [tg, p(®), from (o A — (o) — 0)A%)p + 37 A% > 0
and (C4), we have

o, pHA - (o) — o)) pH, A + o o057 H A7
> o pH A - (o) — ) pH, A + oyo,05rH A7 (27)
= (A - (a; —ay) A?) p + aya,a37A% ) H, > 0.

Fort > o(ty), s € [ty p(t))y, and u(s) < 0, from (27) we
have

HZAu _ HU ®1u2 - (Dzu
ay Ap (uu — pB + o, Ap)
 —lo, pHA- (&, — &) pH, A+t 0,051 H, A%) 1” + D yu
oy Ap (pu — pB + oy Ap)
oy pHA — (- &) pH, A + ayoyo5rH, A° 2
oy Ap (pu — pB + o Ap)
o,
+ u
oy Ap (&, Ap — uB)

B (O] yuz
a, Ap (e Ap — uB) pu — uB + o Ap
_ @4 2
=- u
o, Ap (e, Ap — uB) (uu — uB + o, Ap)
0,
+ u
a, Ap (&, Ap — uB)
< - s 5 W+ P4 u
o, Ap(a, Ap — uB) oy Ap (ay Ap — uB)
2
(e ome)
o, Ap(ey Ap - uB)” 205
o2
+ 4
4o, ApDs
o]

=M.

<
4o Ap min {@g, Oy}
(28)

Fort > o(ty), s € [ty p(t))y, and u(s) > 0, from (27) we
have

HZAu _ HU_ @1142 — q)zu
o Ap (pu — uB + o Ap)
e, pPHA— (e, — ) pH, A + oy o, 037 H, A) 1 + Dy
o Ap (pu — uB + o Ap)
o, pHA - (o) — o)) pH, A + o o057 H, A7
oy Ap (pu — pB + 0 Ap)

D, 2
x| u—
2(a, pHA—(ot; — o)) pH, A% + o, oy 00,7 H, A%
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@}
40 ApDyg
@2
< 4 = M.
4o, Ap min { @, Oy}
(29)
Therefore, for all t > o(t,), s € [y, p(t))y, we have
O,u’ - O

Hu-H, it L <M.  (30)

"oy Ap (pu — uB + o Ap)

Then, from (25), (26), and (30) we obtain that, for t € T and
t > o(ty),

t
j H,®,As
ty

p(t)
< H(tt))ulty) + J MAs

to

—Hy (t,p () (A(p (1)) p(p (1))
~u(p®)B(p(t))).
(31)

Hence,

p(t)
M (t,s) As

1 t
H(b5) [Jto H(t,0(s)) D,y (s) As - LO

+ Hy (t,p (1)

< (@A (o) o ) -u(p ) Blp©) |
<u(ty) < oo,
(32)
which contradicts (22) and completes the proof. O

Remark 5. 1f we change the condition (a; A — (¢ — o, ) A%) p+
o, 0a,05rA% > 0 in the definition of (of, %) to a stronger one
A%(t) <0, (27) in the proof of Theorem 4 will be changed to

o pHA - (o — ) pH, A + ayo,05rH, A°
> oy pH A — (o — o) pH A + a3t H A (33)
= o, H, A’ (oyo7 + p) > 0.
Then the definition of M can be simplified as
M(t,s) = (@ (t9))
X (4o 0, p (s) H (t, 0 (s)) A% (s) A(s)

X (a057 (s) + p (s)) min {D, (s) , D (s)})_l,
(34)
where

©; (s) = a1 A(s) p(s) —p(s) B(s),
Dy (s) = A(s) p(s) +pu(s)B(s).

(35)

When (A,B) = (1,0), Theorem 4 can be simplified as
Corollary 6.

Corollary 6. Assume that (C1)-(C5) hold and that there exists

a function q € C,;(T,R) such that uf(t,u) > q(t)uz. Also,
suppose that there exists H € 7 such that, for any t, € T,

lim sup————
t_,oopH(t, to)

X “t: H (t,0(s))q(s)As

ol J-p(t) (p (s) H2 (¢, s))2

-— As
4o, )i, (easr(s)+p(s) H(t,0(s))

Fo (60 ) p(p (1) | = 0
(36)
Then, (10) is oscillatory.
When r(t) = 0, (10) will be simplified as

(pWk (x®),x*®))" + fx@®) =0. (7
Then Theorem 4 can be simplified as Corollary 7.

Corollary 7. Assume that (C1)-(C5) hold and that there exists
a function q € C,y(T,R) such that uf (t,u) > q(t)u’. Also,
suppose that there exist (A,B) € (A, %B) and H € H such
that, forany t, € T,

1 t p(t)
limsupm |:J H (t,0(s)) D, (s) AS—J‘ M, (t,s)As
t— 00 sLlg ty to
+Hy (t,p (1))
x (, A(p (1) p(p(®))

o @)Blp®) | =
(38)
where
® (t,s)
40, A (s) min {®@, (t,5), Dy, (t,5)}

M (t,s) =

Oy (t,5) = ayH (t,5) A(s) B(s)
+ (20, — ;) H (t,0 (5)) A% (5) B(s)
+0;p(s) As) (H (t,5) A(s))™,
Dy (t,5) = 0 H (5,0 () A% (5) (0, A(s) p(s) + u () B(s))
@y, (t,5) = (o H (£,5) A(s) = (@) — &) H (1,0 (5)) A” (s))

X (e A(s) p(s) —u(s)B(s)).
(39)

Then, (37) is oscillatory.



Remark 8. When r(t) = 0, k;(u,v) =
replaced by

Y(u)k(v), and (C3) is

(C6) v € C(R, (0,7]), where # is a fixed positive constant;

(C7) k € C(R,R), and there exists y; > y, > 0 such that
0 < y,yk(y) < k*(y) <y, yk(y) for all y #0.

Theorem 4 is reduced to [12, Theorem 4].

3. Example

In this section, we will give an example to demonstrate
Corollary 7.

Example 1. Consider the equations

[12+X (t) A

2 . 3
2142 (t) (t)] +t° (2 +sint)x (o (t)) =0, (40)

P12 @) (= 0) i
E ey | TersmixeO=0

(41)

where p(t) = 1/t%, r(t) = 0,q(t) = t% k,(u,v) = (2+u?)/(1+
u*))vin (40), and ky(u,v) = ((1+ 20°v?) /(1 + u*v?))v in (41),
so we have both o} = 2, a, = 1. Letting H(t,s) = (t — s)%, we
have

(1) T= [1>OO)> (Aa B) = (52> 1/52)’
litnlsolipH(l, 0 H H (t,0(s)) D, (s) As
p(t)
- J M, (t,s) As
+Hy (5. (1)
x ( A(p () p(p (1)
o @)B(p©) |
! 24, 4
—htnisolip( e L (t—ys) (s +S—3>ds
e (t—s+4ts — 852)
—J- (t s+ tj S)ds
1 4s
= 00.
(42)

That is, (38) holds. By Corollary 7 we see that (40) and (41)
are oscillatory. Consider
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(2) T=N, (A B)=(1,0),

t— 00

lim supﬁ “ H (t,0(s)) @, (s) As
17

p(t)
- J M, (t,s)As
tO

+Hy (tp (1)) (g A(p () p(p (1))

o @) B(p®) |
! e 22
_h?lsogp(t— 2 [L (t—s—1)"s"As
JH (2t -2s-1)* 2 ]
— As —
1 2(t-s—1)>° (t—1)*
 lim sup— ni(n—k—l)zkz
B n%oop(n—l)z =l
*(2n 2k—1) 2
Zk2(n k- (n—l)z]
= Q.
(43)

That is, (38) holds. By Corollary 7 we see that (40) and (41)
are oscillatory.
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