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Wemainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ3[𝑢](𝑥) = 0,
𝑥 ∈ R𝑛 \ 𝜕Ω, 𝑢+(𝑥) = 𝑢

−
(𝑥)𝐺(𝑥) + 𝑔(𝑥), 𝑥 ∈ 𝜕Ω, (𝐷𝑗𝑢)+(𝑥) = (𝐷

𝑗
𝑢)
−
(𝑥)𝐴
𝑗
+ 𝑓
𝑗
(𝑥), 𝑥 ∈ 𝜕Ω, 𝑢(∞) = 0, where (𝑗 = 1, . . . , 5) 𝜕Ω is

a Lyapunov surface inR𝑛,𝐷 = ∑
𝑛

𝑘=1
𝑒
𝑘
(𝜕/𝜕𝑥

𝑘
) is the Dirac operator, and 𝑢(𝑥) = ∑

𝐴
𝑒
𝐴
𝑢
𝐴
(𝑥) are unknown functions with values in

a universal Clifford algebra Cl(𝑉
𝑛,𝑛
). Under some hypotheses, it is proved that the boundary value problem has a unique solution.

1. Introduction and Preliminaries

The theory of Riemann boundary value problems in complex
plane has been systematically developed in [1, 2]. It is an inter-
esting topic to generalize the classical Riemann boundary
value problems theory to Clifford analysis. In [3–6], and so
forth,many interesting results about boundary value problem
and Riemann Hilbert problems for monogenic functions in
Clifford analysis are presented. In [7], Green’s function for the
Dirichlet problem for polyharmonic equations was studied.
The aim of this paper is to study the Riemann boundary
value problem for triharmonic functions. At first, based on
the higher order Cauchy integral representation formulas in
[8, 9] and the Plemelj formula, we give some properties of
triharmonic functions in Clifford analysis, for example, the
mean value theorem, the Painlevé theorem, and so forth.
Furthermore, on the basis of the above results, we consider
the following Riemann boundary value problems:

Δ
3
[𝑢] (𝑥) = 0, 𝑥 ∈ R

𝑛
\ 𝜕Ω,

𝑢
+
(𝑥) = 𝑢

−
(𝑥) 𝐴 + 𝑔 (𝑥) , 𝑥 ∈ 𝜕Ω,

(𝐷
𝑗
𝑢)
+

(𝑥) = (𝐷
𝑗
𝑢)
−

(𝑥) 𝐴
𝑗
+ 𝑓
𝑗
(𝑥) , 𝑥 ∈ 𝜕Ω,

|𝑢 (∞)| ≤ 𝐶
∗
,

(1)

Δ
3
[𝑢] (𝑥) = 0, 𝑥 ∈ R

𝑛
\ 𝜕Ω,

𝑢
+
(𝑥) = 𝑢

−
(𝑥) 𝐺 (𝑥) + 𝑔 (𝑥) , 𝑥 ∈ 𝜕Ω,

(𝐷
𝑗
𝑢)
+

(𝑥) = (𝐷
𝑗
𝑢)
−

(𝑥) 𝐴
𝑗
+ 𝑓
𝑗
(𝑥) , 𝑥 ∈ 𝜕Ω,

𝑢 (∞) = 0,

(2)

where (𝑗 = 1, . . . , 5).
In (1) and (2), 𝐴 and 𝐴

𝑗
are invertible constants; we

denote the inverse elements as 𝐴−1 and 𝐴
−1

𝑗
. 𝑢(𝑥), (𝐷𝑗𝑢)(𝑥),

𝑔(𝑥), 𝑓
𝑗
(𝑥) ∈ 𝐻

𝛽
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), 𝑗 = 1, . . . , 5, 0 < 𝛽 ≤ 1.

The explicit solutions for (1) are given and the boundary value
problem (2) is shown to have a unique solution under some
hypotheses.

Let 𝑉
𝑛,𝑠

(0 ≤ 𝑠 ≤ 𝑛) be an 𝑛-dimensional (𝑛 ≥ 1)

real linear space with basis {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}, and Cl(𝑉

𝑛,𝑠
) the

universal Clifford algebra over 𝑉
𝑛,𝑠
. For more information on

Cl(𝑉
𝑛,𝑠
) (0 ≤ 𝑠 ≤ 𝑛), we refer to [10–12].

Throughout this paper, suppose Ω is an open, bounded
nonempty subset of R𝑛 with a Lyapunov boundary 𝜕Ω,
denotingΩ+ = Ω,Ω− = R𝑛 \ Ω. In this paper, for simplicity,
we will only consider the case of 𝑠 = 𝑛. The operator 𝐷 is
given as

𝐷 =

𝑛

∑

𝑘=1

𝑒
𝑘

𝜕

𝜕𝑥
𝑘

: 𝐶
𝑟
(Ω,Cl (𝑉

𝑛,𝑛
)) → 𝐶

𝑟−1
(Ω,Cl (𝑉

𝑛,𝑛
)) .

(3)
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Let 𝑢 be a function with value in Cl(𝑉
𝑛,𝑛
), defined in Ω,

and the operator 𝐷 acts on the function 𝑢 from the left and
from the right, which is being governed by the following rule:

𝐷 [𝑢] =

𝑛

∑

𝑘=1

∑

𝐴

𝑒
𝑘
𝑒
𝐴

𝜕𝑢
𝐴

𝜕𝑥
𝑘

,

[𝑢]𝐷 =

𝑛

∑

𝑘=1

∑

𝐴

𝑒
𝐴
𝑒
𝑘

𝜕𝑢
𝐴

𝜕𝑥
𝑘

.

(4)

Definition 1. A compact surface Γ is called Lyapunov surface
with Hölder exponent 𝛼, if the following conditions are
satisfied.

(i) At each point 𝑥 ∈ Γ there is a tangential space.

(ii) There exists a number 𝑟, such that for any point 𝑥 ∈

Γ the set Γ ∩ 𝐵
𝑟
(𝑥) (Lyapunov ball) is connected and

parallel lines to the outer normal 𝛼(𝑥) intersect at not
more than one point.

(iii) The normal 𝛼(𝑥) is Hölder continuous on Γ; that is,
there are constants 𝐶 > 0 and 0 < 𝛼 ≤ 1 such that for
𝑥, 𝑦 ∈ Γ

𝛼 (𝑥) − 𝛼 (𝑦)
 ≤ 𝐶

𝑥 − 𝑦


𝛼
. (5)

Let Ω be an open nonempty subset of R𝑛 with a
Lyapunov boundary, 𝑢(𝑥) = ∑

𝐴
𝑒
𝐴
𝑢
𝐴
(𝑥), where 𝑢

𝐴
(𝑥) are

real functions; 𝑢(𝑥) is called a Hölder continuous function
onΩ if the following condition is satisfied:

𝑢 (𝑥1) − 𝑢 (𝑥
2
)


= [∑

𝐴

𝑢𝐴 (𝑥1) − 𝑢
𝐴
(𝑥
2
)


2
]

1/2

≤ 𝐶
𝑥1 − 𝑥

2



𝛼
,

(6)

where for any 𝑥
1
, 𝑥
2
∈ Ω, 𝑥

1
̸= 𝑥
2
, 0 < 𝛼 ≤ 1, 𝐶 is a positive

constant independent of 𝑥
1
, 𝑥
2
.

Let𝐻𝛼(𝜕Ω,Cl(𝑉
𝑛,𝑛
)) denote the set of Hölder continuous

functions with values in Cl(𝑉
𝑛,𝑛
) on 𝜕Ω (the Hölder exponent

is 𝛼, 0 < 𝛼 < 1). We denote the norm in𝐻
𝛼
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)) as

‖𝑢‖(𝛼,𝜕Ω) = ‖𝑢‖∞ + ‖𝑢‖𝛼, (7)

where

‖𝑢‖∞ := sup
𝑥∈𝜕Ω

|𝑢 (𝑥)| ,

‖𝑢‖𝛼 := sup
𝑥
1
,𝑥
2
∈𝜕Ω

𝑥
1
̸= 𝑥
2

𝑢 (𝑥1) − 𝑢 (𝑥
2
)


𝑥1 − 𝑥
2



𝛼
.

(8)

Lemma 2. The Hölder space 𝐻
𝛼
(𝜕Ω, 𝐶𝑙(𝑉

𝑛,𝑛
)) is a Banach

space with norm (7).

Denote the fundamental solutions of 𝐷𝑗 (𝑗 = 1, 2, . . . , 6)
by

𝐻
1
(𝑥) =

1

𝜔
𝑛

x
𝜌𝑛 (𝑥)

,

𝐻
2 (𝑥) =

1

2 − 𝑛

1

𝜔
𝑛

1

𝜌𝑛−2 (𝑥)
,

𝐻
3
(𝑥) =

1

2 (2 − 𝑛)

1

𝜔
𝑛

x
𝜌𝑛−2 (𝑥)

,

𝐻
4
(𝑥) =

1

2 (2 − 𝑛) (4 − 𝑛)

1

𝜔
𝑛

1

𝜌𝑛−4 (𝑥)
,

𝐻
5 (𝑥) =

1

8 (2 − 𝑛) (4 − 𝑛)

1

𝜔
𝑛

x
𝜌𝑛−4 (𝑥)

,

𝐻
6
(𝑥) =

1

8 (2 − 𝑛) (4 − 𝑛) (6 − 𝑛)

1

𝜔
𝑛

1

𝜌𝑛−6 (𝑥)
,

(9)

where 𝜌(𝑥) = (∑
𝑛

𝑖=1
𝑥
2

𝑖
)
1/2 and 𝜔

𝑛
denotes the area of the unit

sphere inR𝑛 (𝑛 ≥ 3, 𝑛 ̸= 4, 𝑛 ̸= 6).
We will introduce the following operators:

(𝐹
𝜕Ω
𝑢) (𝑥) = ∫

𝜕Ω

2𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑢 (𝑦) , 𝑥 ∈ R

𝑛
\ 𝜕Ω,

(10)

(𝑆
𝜕Ω
𝑢) (𝑥) = ∫

𝜕Ω

2𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑢 (𝑦) , 𝑥 ∈ 𝜕Ω, (11)

where 𝑢 ∈ 𝐻
𝛼
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)).

Lemma 3 (see [5]). The integral operator 𝑆
𝜕Ω

in (11) is a
bounded linear operator mapping the function space 𝐻𝛼(𝜕Ω,
𝐶𝑙(𝑉
𝑛,𝑛
)) into itself; that is, there exists a positive constant 𝑀

such that, for all 𝑢 ∈ 𝐻
𝛼
(𝜕Ω; 𝐶𝑙(𝑉

𝑛,𝑛
)),

𝑆𝜕Ω𝑢
(𝛼,𝜕Ω)

≤ 𝑀‖𝑢‖(𝛼,𝐶𝑙(𝑉
𝑛,𝑛
)
. (12)

2. Some Properties for Triharmonic Functions

Theorem 4 (Gauss-mean value formula for triharmonic
functions, see [6, 13]). Suppose Δ3[𝑢] = 0 in R𝑛; then, for
any 𝑥 ∈ R𝑛,

𝑢 (𝑥) =
1

𝜔
𝑛
𝑅𝑛−1

∫
𝜕𝐵(𝑥,𝑅)

𝑢 (𝑦) 𝑑𝑆

−
𝑅
2

2𝑛
Δ [𝑢] (𝑥) −

𝑅
4

8𝑛 (𝑛 + 2)
Δ
2
[𝑢] (𝑥) ,

(13)

or

𝑢 (𝑥) =
𝑛

𝜔
𝑛
𝑅𝑛

∫
𝐵(𝑥,𝑅)

𝑢 (𝑦) 𝑑𝑉

−
𝑅
2

2 (𝑛 + 2)
Δ [𝑢] (𝑥) −

𝑅
4

8 (𝑛 + 2) (𝑛 + 4)
Δ
2
[𝑢] (𝑥) ,

(14)

where 𝜔
𝑛
denotes the area of the unit sphere inR𝑛.
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Corollary 5. Suppose Δ3[𝑢] = 0 in R𝑛 and |𝑢(𝑥)| = 𝑂(|𝑥|)

(|𝑥| → ∞); then Δ[𝑢] = 0 and Δ2[𝑢] = 0 inR𝑛.

Corollary 6. Suppose Δ3[𝑢] = 0 in R𝑛 and 𝑢(𝑥) is bounded
inR𝑛; then 𝑢(𝑥) ≡ 𝐶.

Theorem 7. Suppose Δ3[𝑢] = 0 inR𝑛 \ 𝜕Ω, and for 𝑥 ∈ 𝜕Ω,
𝑢 ∈ 𝐶

6
(R𝑛 \ 𝜕Ω, 𝐶𝑙(𝑉

𝑛,𝑛
)), [𝑢]+(𝑥) = [𝑢]

−
(𝑥) ∈ 𝐶

5
(𝜕Ω,

𝐶𝑙(𝑉
𝑛,𝑛
)), and, moreover, 𝐷𝑗[𝑢]+(𝑥) = 𝐷

𝑗
[𝑢]
−
(𝑥) ∈ 𝐻

𝛼
𝑗(𝜕Ω,

𝐶𝑙(𝑉
𝑛,𝑛
)), 0 < 𝛼

𝑗
≤ 1, where 𝑗 = 0, 1, . . . , 5. Then Δ

3
[𝑢] = 0 in

R𝑛.

Theorem 8. Let 𝑢 ∈ 𝐶
6
(Ω
−
, 𝐶𝑙(𝑉

𝑛,𝑛
)) ∩ 𝐶

5
(Ω−, 𝐶𝑙(𝑉

𝑛,𝑛
)),

Δ
3
[𝑢] = 0 in Ω

−, 𝐷𝑗[𝑢](𝑥) ∈ 𝐻
𝛼
𝑗(𝜕Ω, 𝐶𝑙(𝑉

𝑛,𝑛
)), 0 < 𝛼

𝑗
≤ 1

(𝑗 = 0, 1, . . . , 5), and |𝑢(𝑥)| = 𝑂(1) (|𝑥| → ∞); then for
𝑥 ∈ Ω

−

𝑢 (𝑥) =

5

∑

𝑗=0

(−1)
𝑗+1

∫
𝜕Ω

𝐻
𝑗+1

(𝑦 − 𝑥) 𝑑𝜎
𝑦
𝐷
𝑗
[𝑢] (𝑦) + 𝐶,

(15)

where𝐻
𝑗
(𝑦 − 𝑥) is as in (9) and 𝐶 is a constant.

Proof. For 𝑦 ∈ 𝜕Ω, denote 𝐷𝑗[𝑢](𝑦) = −Ψ
𝑗
(𝑦), (𝑗 = 0, 1,

. . . , 5). For 𝑥 ∈ R𝑛 \ 𝜕Ω, denoting

Θ (𝑥) =

5

∑

𝑗=0

(−1)
𝑗
∫
𝜕Ω

𝐻
𝑗+1

(𝑦 − 𝑥) 𝑑𝜎
𝑦
Ψ
𝑗
(𝑦) ,

𝑢
∗
(𝑥) = {

−Θ (𝑥) , 𝑥 ∈ Ω
+

𝑢 (𝑥) − Θ (𝑥) , 𝑥 ∈ Ω
−
,

(16)

then Δ
3
[𝑢
∗
] = 0 inR𝑛 \ 𝜕Ω. By using Plemelj formula, com-

bining with weak singularity of𝐻
𝑗
(𝑥) (𝑗 ≥ 2), we obtain the

following:

𝐷
𝑗
[𝑢
∗
]
+

(𝑥) = 𝐷
𝑗
[𝑢
∗
]
−

(𝑥) ∈ 𝐻
𝛼


𝑗 (𝜕Ω,Cl (𝑉
𝑛,𝑛
)) , (17)

where 0 < 𝛼


𝑗
≤ 1 (𝑗 = 0, 1, . . . , 5). By using Theorem 7, we

have Δ
3
[𝑢
∗
] = 0 in R𝑛. It is clear that we have |𝑢

∗
(𝑥)| =

𝑂(1) (|𝑥| → ∞). In view of Corollary 6, then the results fol-
low.

Corollary 9. Let 𝑢 ∈ 𝐶
6
(Ω
−
, 𝐶𝑙(𝑉

𝑛,𝑛
)) ∩ 𝐶

5
(Ω−, 𝐶𝑙(𝑉

𝑛,𝑛
)),

Δ
3
[𝑢] = 0 in Ω

−, 𝐷𝑗[𝑢](𝑥) ∈ 𝐻
𝛼
𝑗(𝜕Ω, 𝐶𝑙(𝑉

𝑛,𝑛
)), 0 < 𝛼

𝑗
≤ 1

(𝑗 = 0, 1, . . . , 5), and |𝑢(𝑥)| = 𝑂(1) (|𝑥| → ∞), then

𝐷
𝑗
[𝑢] (∞) = 0, 𝑗 = 1, . . . , 5, (18)

Remark 10. When the condition |𝑢(𝑥)| = 𝑂(1) (|𝑥| → ∞)
in Corollary 9 is replaced by 𝑢(∞) = 0, then the results in
Corollary 9 are still valid.

3. Riemann Boundary Value Problem for
Triharmonic Functions

In this section, we will consider the Riemann boundary value
problem (1); the explicit expression of the solution is given.

Theorem 11. The Riemann boundary value problem (1) is
solvable and the solution can be written as

𝑢 (𝑥) =

{{{{{

{{{{{

{

6

∑

𝑖=1

Ψ
𝑖
(𝑥) + 𝐶, 𝑥 ∈ Ω,

6

∑

𝑖=1

Ψ
𝑖
(𝑥) + 𝐶𝐴

−1
, 𝑥 ∈ Ω

−
,

(19)

where

Ψ
1 (𝑥) =

{{{

{{{

{

−∫
𝜕Ω

𝐻
6
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) , 𝑥 ∈ Ω

+

−∫
𝜕Ω

𝐻
6
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦)𝐴
−1

5
, 𝑥 ∈ Ω

−

(20)

Ψ
2 (𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
5
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
5
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦)𝐴
−1

4
, 𝑥 ∈ Ω

−

(21)

Ψ
3
(𝑥) =

{{{

{{{

{

−∫
𝜕Ω

𝐻
4
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦) , 𝑥 ∈ Ω

+

−∫
𝜕Ω

𝐻
4
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦)𝐴
−1

3
, 𝑥 ∈ Ω

−

(22)

Ψ
4
(𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
3
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
2
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
3
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
2
(𝑦)𝐴
−1

2
, 𝑥 ∈ Ω

−

(23)

Ψ
5
(𝑥) =

{{{

{{{

{

−∫
𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
1
(𝑦) , 𝑥 ∈ Ω

+

−∫
𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
1
(𝑦)𝐴
−1

1
, 𝑥 ∈ Ω

−

(24)

Ψ
6
(𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑔 (𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑔 (𝑦)𝐴

−1
, 𝑥 ∈ Ω

−

(25)

𝑓
4
(𝑥) = 𝑓

4
(𝑥) − ∫

𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) (−1 + 𝐴

−1

5
𝐴
4
) ,

𝑥 ∈ 𝜕Ω,

(26)

𝑓
3
(𝑥) = 𝑓

3
(𝑥) + ∫

𝜕Ω

𝐻
3
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) (−1 + 𝐴

−1

5
𝐴
3
)

− ∫
𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦) (−1 + 𝐴

−1

4
𝐴
3
) ,

𝑥 ∈ 𝜕Ω,

(27)
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𝑓
2
(𝑥) = 𝑓

2
(𝑥) − ∫

𝜕Ω

𝐻
4
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) (−1 + 𝐴

−1

5
𝐴
2
)

+ ∫
𝜕Ω

𝐻
3
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦) (−1 + 𝐴

−1

4
𝐴
2
)

− ∫
𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦) (−1 + 𝐴

−1

3
𝐴
2
) ,

𝑥 ∈ 𝜕Ω,

(28)

𝑓
1 (𝑥) = 𝑓

1 (𝑥)

+ ∫
𝜕Ω

𝐻
5
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) (−1 + 𝐴

−1

5
𝐴
1
)

− ∫
𝜕Ω

𝐻
4
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦) (−1 + 𝐴

−1

4
𝐴
1
)

+ ∫
𝜕Ω

𝐻
3
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦) (−1 + 𝐴

−1

3
𝐴
1
)

− ∫
𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
2
(𝑦) (−1 + 𝐴

−1

2
𝐴
1
) ,

𝑥 ∈ 𝜕Ω,

(29)

𝑔 (𝑥) = 𝑔 (𝑥)

− ∫
𝜕Ω

𝐻
6
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) (−1 + 𝐴

−1

5
𝐴)

+ ∫
𝜕Ω

𝐻
5
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦) (−1 + 𝐴

−1

4
𝐴)

− ∫
𝜕Ω

𝐻
4
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦) (−1 + 𝐴

−1

3
𝐴)

+ ∫
𝜕Ω

𝐻
3
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
2
(𝑦) (−1 + 𝐴

−1

2
𝐴)

− ∫
𝜕Ω

𝐻
2
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
1
(𝑦) (−1 + 𝐴

−1

1
𝐴) ,

𝑥 ∈ 𝜕Ω.

(30)

4. Existence of Solutions for
Riemann Boundary Value Problem for
Triharmonic Functions

Theorem 12. Suppose 𝐺(𝑥) ∈ 𝐻
𝛼
(𝜕Ω, 𝐶𝑙(𝑉

𝑛,𝑛
)) 0 < 𝛼 < 1

and 𝐺(𝑥) satisfies the following condition:

2
𝑛−2

‖1 − 𝐺 (𝑥)‖(𝛼,𝜕Ω) (𝑀 + 1) < 1, (31)

where𝑀 is the positive constant mentioned in Lemma 3. Then
(2) admits a unique solution.

Proof. Denoting 𝑤(𝑥) = 𝐷
5
[𝑢](𝑥) then 𝑤

+
(𝑥) = 𝑤

−
(𝑥)𝐴
5
+

𝑓
5
(𝑥), 𝑥 ∈ 𝜕Ω. Moreover, by 𝐷

5
[𝑢](∞) = 0. we get the

following:

𝜔 (𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
5
(𝑦)𝐴
−1

5
, 𝑥 ∈ Ω

−
,

(32)

With Ψ
1
(𝑥) being as in (20), it is easy to check that

𝐷
5
(𝑢 − Ψ

1
) (𝑥) = 0, 𝑥 ∈ R

𝑛
\ 𝜕Ω. (33)

DenotingΔ2𝑢(𝑥)−Δ2Ψ
1
(𝑥) := 𝜑

1
(𝑥), 𝑥 ∈ R𝑛 \𝜕Ω, and using

(Δ
2
𝑢)
+
(𝑥) = (Δ

2
𝑢)
−
(𝑥)𝐴
4
+ 𝑓
4
(𝑥), 𝑥 ∈ 𝜕Ω, we conclude that

𝜑
+

1
(𝑥) = 𝜑

−

1
(𝑥) 𝐴4 + 𝑓

4 (𝑥) , 𝑥 ∈ 𝜕Ω, (34)

where 𝑓
4
(𝑥) ∈ 𝐻

𝛽
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), 0 < 𝛽 ≤ 1 being as in (26).

By Corollary 9, it is clear that 𝜑
1
(∞) = 0, and we then get the

following representation formula:

𝜑
1
(𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
4
(𝑦)𝐴
−1

4
, 𝑥 ∈ Ω

−
.

(35)

Analogously, we find with Ψ
2
(𝑥) from (21) that Δ2𝑢(𝑥) −

Δ
2
Ψ
1
(𝑥) − Δ

2
Ψ
2
(𝑥) = 0, 𝑥 ∈ R𝑛 \ 𝜕Ω. Denote

𝐷
3
𝑢 (𝑥) − 𝐷

3
Ψ
1 (𝑥) − 𝐷

3
Ψ
2 (𝑥) := 𝜑

2 (𝑥) ,

𝑥 ∈ R
𝑛
\ 𝜕Ω.

(36)

Using the condition (𝐷
3
𝑢)
+
(𝑥) = (𝐷

3
𝑢)
−
(𝑥)𝐴
3
+ 𝑓
3
(𝑥), 𝑥 ∈

𝜕Ω, we obtain that

𝜑
+

2
(𝑥) = 𝜑

−

2
(𝑥) 𝐴3 + 𝑓

3 (𝑥) , 𝑥 ∈ 𝜕Ω, (37)

where 𝑓
3
(𝑥) ∈ 𝐻

𝛽
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), 0 < 𝛽 ≤ 1 being as in (27).

By Corollary 9, it is clear that 𝜑
2
(∞) = 0, and we then get the

following representation formula:

𝜑
2
(𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
3
(𝑦)𝐴
−1

3
, 𝑥 ∈ Ω

−
.

(38)

Here Ψ
3
(𝑥) being as in (22), then we have 𝐷

3
𝑢(𝑥) −

𝐷
3
Ψ
1
(𝑥) − 𝐷

3
Ψ
2
(𝑥) − 𝐷

3
Ψ
3
(𝑥) = 0, 𝑥 ∈ R𝑛 \ 𝜕Ω. We denote

Δ𝑢 (𝑥) − ΔΨ
1
(𝑥) − ΔΨ

2
(𝑥) − ΔΨ

3
(𝑥) := 𝜑

3
(𝑥) (39)

and use the condition (Δ𝑢)
+
(𝑥) = (Δ𝑢)

−
(𝑥)𝐴
2
+ 𝑓
2
(𝑥), 𝑥 ∈

𝜕Ω. We conclude that

𝜑
+

3
(𝑥) = 𝜑

−

3
(𝑥) 𝐴
2
+ 𝑓
2
(𝑥) , 𝑥 ∈ 𝜕Ω, (40)
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where 𝑓
2
(𝑥) ∈ 𝐻

𝛽
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), 0 < 𝛽 ≤ 1 being as in (28).

Corollary 9 ensures that 𝜑
3
(∞) = 0; then

𝜑
3
(𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
2
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
2
(𝑦)𝐴
−1

2
, 𝑥 ∈ Ω

−
.

(41)

Use the same way again, Ψ
4
(𝑥) being as in (23), that Δ𝑢(𝑥) −

ΔΨ
1
(𝑥)−ΔΨ

2
(𝑥)−ΔΨ

3
(𝑥)−ΔΨ

4
(𝑥) = 0,𝑥 ∈ R𝑛\𝜕Ω. Denoting

𝐷𝑢 (𝑥) −

4

∑

𝑖=1

𝐷Ψ
𝑖
(𝑥) := 𝜑

4
(𝑥) , 𝑥 ∈ R

𝑛
\ 𝜕Ω (42)

and using (𝐷𝑢)
+
(𝑥) = (𝐷𝑢)

−
(𝑥)𝐴
1
+ 𝑓
1
(𝑥), 𝑥 ∈ 𝜕Ω, we get

𝜑
+

4
(𝑥) = 𝜑

−

4
(𝑥) 𝐴1 + 𝑓

1 (𝑥) , 𝑥 ∈ 𝜕Ω, (43)

where 𝑓
1
(𝑥) ∈ 𝐻

𝛽
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), 0 < 𝛽 ≤ 1 being taken from

(29). By Corollary 9, it is clear that 𝜑
4
(∞) = 0, and we then

get the following representation formula:

𝜑
4
(𝑥) =

{{{

{{{

{

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
1
(𝑦) , 𝑥 ∈ Ω

+

∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝑓
1
(𝑦)𝐴
−1

1
, 𝑥 ∈ Ω

−
.

(44)

Finally, we use Ψ
5
(𝑥) as defined in (24) and get 𝐷𝑢(𝑥) −

∑
4

𝑖=1
𝐷Ψ
𝑖
(𝑥) = 0, 𝑥 ∈ R𝑛 \ 𝜕Ω. Define

𝑢 (𝑥) −

5

∑

𝑖=1

Ψ
𝑖
(𝑥) := 𝜑

5
(𝑥) , 𝑥 ∈ R

𝑛
\ 𝜕Ω. (45)

Working with the condition 𝑢
+
(𝑥) = 𝑢

−
(𝑥)𝐺(𝑥) + 𝑔(𝑥) we

arrive at

𝜑
+

5
(𝑥) = 𝜑

−

5
(𝑥) 𝐺 (𝑥) + 𝑔 (𝑥) , 𝑥 ∈ 𝜕Ω, (46)

where 𝑔(𝑥) ∈ 𝐻
𝛽
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), 0 < 𝛽 ≤ 1 being taken from

(30). It is clear that 𝜑
5
(∞) = 0. We obtain that

𝐷𝜑
5
= 0, R

𝑛
\ 𝜕Ω

𝜑
+

5
(𝑥) = 𝜑

−

5
(𝑥) 𝐺 (𝑥) + 𝑔 (𝑥) , 𝑥 ∈ 𝜕Ω

𝜑
5
(∞) = 0.

(47)

We only need to consider the existence of solutions to
(47).The solution to this problemmay be written in the form

𝜑
5
(𝑥) = ∫

𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝜑
6
(𝑦) , (48)

where 𝜑
6
(𝑦) is a Hölder continuous function to be deter-

mined on 𝜕Ω. Then, by using Plemelj formula, (47) can be
reduced to an equivalent singular integral equation for 𝜑

6
,

𝜑
6
(𝑥)

= [
𝜑
6
(𝑥)

2
− ∫
𝜕Ω

𝐻
1
(𝑦 − 𝑥) 𝑑𝜎

𝑦
𝜑
6
(𝑦)] (1 − 𝐺 (𝑥)) + 𝑔 (𝑥) ,

𝑥 ∈ 𝜕Ω.

(49)

Letting𝑇 denote the integral operator defined by the right
hand side of (49), we get

(𝑇𝜑
6
) (𝑥) = [𝜑

6
(𝑥) − (𝑆

𝜕Ω
𝜑
6
) (𝑥)]

(1 − 𝐺 (𝑥))

2
+ 𝑔 (𝑥).

(50)

For any 𝜔
1
, 𝜔
2
∈ 𝐻
𝛼
(𝜕Ω,Cl(𝑉

𝑛,𝑛
)), we have

𝑇𝜔1 − 𝑇𝜔
2

(𝛼,𝜕Ω)

≤
2
𝑛−1

2

𝜔1 − 𝜔
2

(𝛼,𝜕Ω)‖
1 − 𝐺‖(𝛼,𝜕Ω) (1 +𝑀) .

(51)

Under the condition (31), the integral operator𝑇 is a contrac-
tion operator mapping the Banach space 𝐻

𝛼
(𝜕Ω,Cl(𝑉

𝑛,𝑛
))

into itself, which has a unique fixed point for the operator
𝑇. Thus, there exists a unique solution to (47). The proof is
done.
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