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This paper discusses and proposes a rough set model for an incomplete information system, which defines an extended tolerance
relation using frequency of attribute values in such a system. It first discusses some rough set extensions in incomplete information
systems. Next, “probability of matching” is defined from data in information systems and then measures the degree of tolerance.
Consequently, a rough set model is developed using a tolerance relation defined with a threshold. The paper discusses the
mathematical properties of the newly developed rough set model and also introduces a method to derive reducts and the core.

1. Introduction

Rough set theory [1, 2] was first proposed by Pawlak as a
means to analyze vague descriptions of items. The original
rough sets approach presupposes that all objects in an infor-
mation system have precise attribute values. Problems arise
when some of the values are unknown, which sometimes
happens in the real world. Therefore, it is necessary to
develop a theory which enables classifications of objects
even if there is only partial information available. The rough
set model proposed by Kryszkiewicz [3, 4], for example,
introduced indiscernibility based on tolerance relation to deal
with missing values in the information system. In these
approaches, a missing value was considered as a special value
that may take any possible value.

However, tolerance relation sometimes leads to a poor
result with respect to approximation. Stefanowski and
Tsoukiàs [5, 6] discussed the limitation and introduced simi-
larity relation to refine the results obtained by using tolerance
relation approach. Wang [7] gave some examples to prove
that similarity relation may results in lost information and
proposed limited tolerance relation. Yang et al. [8] also gen-
eralized a reasonable and flexible classification in incomplete
information system by “new binary relation.”

In fact, there is an array of methods to handle incomplete
objects [9, 10]. Some approaches replace missing values with

the most common value [11], while the other considers
“unknown” itself as a new value for the attribute and treats it
in the same way as ordinary values [10]. Actually, the method
of handling missing values should be chosen depending
on the characteristics and requirements of applications. In
general, approaches deal with unavailable values based on
one of the following two interpretations [12]. The first is “lost
value” in which unknown values of attributes are already lost.
Similarity relation [5] is one example of this semantics. The
second is “do not care,” which may be potentially replaced
by any value in the domain. Such incomplete decision
tables were broadly studied in numerous researches [3, 4].
Grzymala-Busse [13–17] built a characteristic relation based
on both “lost value” case and “do not care” case.

In this paper, we study “probability of matching” and pro-
pose a newmethod of handling missing values in incomplete
information systems based on tolerance degree. Our approach
adopts the “lost value” interpretation. The approach is use-
ful in knowledge acquisition from incomplete information
systems, in which some object values appear frequently and
others do not.

The paper is organized as follows. Section 2 discusses
tolerance relation to deal with incomplete information and
its drawback. This section also introduces some extensions
to avoid the issues of tolerance relation. The next section—
Section 3—is to find out how the frequency of attributes
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values affect the probability of matching among objects on
an attribute. From this, in Section 4, we propose a tolerance
relation called extended tolerance relation and discuss the
advantage of the approach. Section 5 introduces approxima-
tion spaces based on three ways. Finally, methods to derive
reduct and core shall be explained in Section 6.

2. Rough Set in Incomplete Tables

In this section, we discuss several rough set extensions in
incomplete decision tables with their issues. An information
system is defined as a pair 𝐼 = (𝑈, 𝐴), where𝑈 is a nonempty
finite set of objects called the universe and 𝐴 is a nonempty
finite set of attributes. For every 𝑎 ∈ 𝐴, there is a mapping
from 𝑈 into a space, 𝑓

𝑎
: 𝑈 → 𝑉

𝑎
, and 𝑉

𝑎
is called the value

set of 𝑎 [1, 2].
If 𝑈 contains at least one object with an unknown (miss-

ing or null) value, then 𝐼 is called an incomplete information
system, otherwise complete [3, 4]. In incomplete information
systems, objects may contain several unknown attribute
values, but we do not assume the case where all objects take
the unknown value for an attribute. Unknown values are
denoted by special symbol “∗” in incomplete information
systems and are supposed to be contained in the set 𝑉

𝑎
.

A decision table defined by DT = (𝑈,𝐴 ∪ {𝑑}) is an
information system, where 𝑑 ∉ 𝐴 is a distinguished attribute
called decision [18]. In a similar manner to information
systems, a decision table may be incomplete, otherwise
complete. However, all decision values are known both in
complete and incomplete decision tables.

In a complete decision table, the relation EQU
𝑃
(𝑥, 𝑦),

𝑃 ⊆ 𝐴 denotes a binary relation between objects that are
equivalent in terms of values of attributes in 𝑃 [1]. The
equivalence relation is reflexive, symmetric, and transitive.
Let 𝐸
𝑃
(𝑥) = {𝑦 ∈ 𝑈 | EQU

𝑃
(𝑦, 𝑥)} be the set of all objects

that are equivalent to 𝑥 by 𝑃, and let it be called equivalence
class.

2.1. Tolerance Relation. A tolerance relation TOR
𝑃
(𝑥, 𝑦), 𝑃 ⊆

𝐴 denotes a binary relation between objects that are possibly
equivalent in terms of values of attributes. In incomplete
information systems [3, 4], tolerance relation is defined by

TOR
𝑃
(𝑥, 𝑦) ⇐⇒ ∀𝑎 ∈ 𝑃,

(𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦)) ∨ (𝑓

𝑎
(𝑥) = ∗) ∨ (𝑓

𝑎
(𝑦) = ∗) ,

(1)

where ∨ denotes disjunction.
The relation is reflexive and symmetric but does not need

to be transitive. Let 𝑇
𝑃
(𝑥) = {𝑦 ∈ 𝑈 | TOR

𝑃
(𝑦, 𝑥)} be the

set of objects which are in relation with 𝑥 in terms of 𝑃 in the
sense of the above tolerance relation. Due to the symmetric
property, 𝑥 is also tolerant to elements in 𝑇

𝑃
(𝑥).

Rough sets based on tolerance relation in incomplete
information systems are defined in a similar way to those in
complete information systems [1]. Let 𝑋 ⊆ 𝑈 and 𝑃 ⊆ 𝐴.

Table 1: An example of dataset with missing values.

Cases Temperature Headache Nausea Decision (flu)
𝑥
1

High ∗ No Yes
𝑥
2

Very high Yes Yes Yes
𝑥
3

∗ No No No
𝑥
4

High Yes Yes Yes
𝑥
5

High ∗ Yes No
𝑥
6

Normal Yes No No
𝑥
7

Normal No Yes No
𝑥
8

∗ Yes ∗ Yes

Then, appr𝑇
𝑃

𝑋 is the lower approximation [3, 4] of 𝑋 in
terms of 𝑃, if and only if

appr𝑇
𝑃

𝑋 = {𝑥 ∈ 𝑈 | 𝑇
𝑃
(𝑥) ⊆ 𝑋} , (2)

appr𝑇
𝑃
𝑋 is the upper approximation of 𝑋 in terms of 𝑃, if

and only if

appr𝑇
𝑃
𝑋 = {𝑥 ∈ 𝑈 | 𝑇

𝑃
(𝑥) ∩ 𝑋 ̸= 𝜙} . (3)

Now, we illustrate the above concepts with an incomplete
decision table from [10]. The decision table is shown in
Table 1.

From Table 1, we can induce approximation space for 𝑋-
group of people such that the value of flu is no based on all
condition attributes:

appr𝑇
𝐴

𝑋 = {𝑥
7
} ,

appr𝑇
𝐴
𝑋 = {𝑥

1
, 𝑥
3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
, 𝑥
8
} .

(4)

The approximations are quite poor. Moreover, there exist
objects which intuitively could be classified in 𝑋, while
they are not in the lower approximation. Take, for instance,
object 𝑥

6
; we have its complete description, and intuitively

there is no other object perceived as very tolerant to it.
However, it is not included into the lower approximation of
𝑋.This is due tomissing attribute values of objects 𝑥

8
, which

is actually tolerant to 𝑥
6
according to Equation (1).

2.2. Similarity Relation. In the approach proposed by Ste-
fanowski [5, 6], it is assumed that an object 𝑥 can be
considered as similar to another object 𝑦 only if all known
attribute values of 𝑥 are the same as those of 𝑦. Such a relation
shall not be symmetric. If one object has more complete
description than the other, the inverse relation shall not hold.
More formally, given an information system 𝐼 = (𝑈, 𝐴) and
an attribute set 𝑃 ⊆ 𝐴, the similarity relation is defined as
follows:

SIM
𝑃
(𝑥, 𝑦)⇐⇒∀𝑎 ∈𝑃, (𝑓

𝑎
(𝑥)=∗) ∨ (𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦)) .

(5)

It is easy to observe that this relation is reflexive and
transitive although not necessarily symmetric. Now for each
object, we can induce two similarity sets: 𝑆

𝑃
(𝑥) = {𝑦 ∈ 𝑈 |
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SIM
𝑃
(𝑦, 𝑥)}, the set of objects similar to 𝑥 (note that the

arguments of SIM
𝑃
is not (𝑥, 𝑦)), and 𝑆

−1

𝑃
(𝑥) = {𝑦 ∈ 𝑈 |

SIM
𝑃
(𝑥, 𝑦)}, the set of objects to which 𝑥 is similar.

Clearly, 𝑆
𝑃
(𝑥) and 𝑆

−1

𝑃
(𝑥) are two different sets. We can

now introduce the definitions of approximation space of a set
𝑋 ⊆ 𝑈 as follows:

appr𝑆
𝑃

𝑋 = {𝑥 ∈ 𝑈 | 𝑆
−1

𝑃
(𝑥) ⊆ 𝑋} ,

appr𝑆
𝑃
𝑋 = ⋃{𝑆

𝑃
(𝑥) | 𝑥 ∈ 𝑋} .

(6)

By the definition of similarity relation and tolerance
relation introduced in this section, we can see that the
conditions for which similarity relation holds are a subset of
the conditions for which tolerance relation holds (we can see
that if SIM

𝑃
(𝑥, 𝑦), then TOR

𝑃
(𝑥, 𝑦)). Hence, tolerance classes

of elements in𝑈 shall be “wider” than the respective similarity
classes [5, 6].

2.3. Limited Tolerance Relation. Lets compare the attributes
of 𝑥
4
with those of 𝑥

5
in Table 1. According to our intuition,

𝑥
4
seems similar to 𝑥

5
due to the same description in

temperature and nausea. However, it is actually not, though
𝑥
5
is similar to 𝑥

4
according to the Equation (5). In a huge

system, two objects may be considered as distinct, in terms
of similarity relation, because of little missing information.
For example, objects 𝑥 with (∗, 1, 2, 3, 4, 5, 6, 7, 8, 9) and 𝑦

with (0, ∗, 2, 3, 4, 5, 6, 7, 8, 9), where the vectors are abbreviate
representation of attribute values of the objects, are tolerant
according to Equation (1) and intuitively similar to each other.
However, they do not satisfy the nonsymmetric similarity
relation. To avoid such problem, Wang [7] developed a novel
limited tolerance (LT) relation.

Let 𝑂
𝑃
(𝑥) = {𝑎 | 𝑎 ∈ 𝑃, 𝑓

𝑎
(𝑥) ̸= ∗}; limited tolerance

relation is defined on 𝑈 as follows:

LTOR
𝑃
(𝑥, 𝑦) ⇐⇒ (∀𝑎 ∈ 𝑃; 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦) = ∗)

∨ ((𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙)

∧ (∀𝑎 ∈ 𝑃; 𝑓
𝑎
(𝑥) ̸= ∗ ∧𝑓

𝑎
(𝑦)

̸= ∗ 󳨀→ 𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦))) .

(7)

In the formula, the condition that𝑓
𝑎
(𝑥) ̸= ∗∧𝑓

𝑎
(𝑦) ̸= ∗ →

𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦) is equivalent to (𝑓

𝑎
(𝑥) = ∗) ∨ (𝑓

𝑎
(𝑦) =

∗) ∨ (𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦)). Thus, the two objects that satisfy

TOR
𝑃
(𝑥, 𝑦) but not LTOR

𝑃
(𝑥, 𝑦) are only those satisfying

𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) = 𝜙.

Generally speaking, two objects are in limited tolerance
relation if they are in one of the two cases.The first case is that
all attribute values of the two objects are missing.The second
is a case where there is at least an attribute having an ordinary
value for both objects and the two objects have the same value
for those attributes. Obviously, limited tolerance relation is
reflexive and symmetric but not necessarily transitive.

Thus, limited tolerance class is denoted by

LT
𝑃
(𝑥) = {𝑦 ∈ 𝑈 | LTOR

𝑃
(𝑦, 𝑥)} . (8)

Based on that, approximation space is defined as follows:

apprLT
𝑃

𝑋 = {𝑥 ∈ 𝑈 | LT
𝑃
(𝑥) ⊆ 𝑋} ,

apprLT
𝑃
𝑋 = {𝑥 ∈ 𝑈 | LT

𝑃
(𝑥) ∩ 𝑋 ̸= 𝜙} .

(9)

Wang [7] also proved that tolerance relation and similarity
relation are the two extremities for extending indiscernibility
relation, and limited tolerance relation happens to be between
tolerance and similar relations,

appr𝑇
𝑃

𝑋 ⊆ apprLT
𝑃

𝑋 ⊆ appr𝑆
𝑃

𝑋,

appr𝑆
𝑃
𝑋 ⊆ apprLT

𝑃
𝑋 ⊆ appr𝑇

𝑃
𝑋.

(10)

3. Probability of Matching

“The most common attribute value of an attribute” is a
method of handlingmissing value summarized byGrzymala-
Busse [9, 10]. In this method, missing values are replaced
by the most common value of the attribute. In different
words, a missing attribute value is replaced by the most
probable known attribute value, where such probabilities
are represented by frequencies of corresponding attribute
values. This method of handling missing attribute values is
implemented, for example, in well-known machine learning
algorithm CN2 [11]. Grymala-Busse illustrated the method
[10] by the example from Table 1. For case 𝑥

1
, the value

of headache is replaced by yes since in Table 1 the attribute
headache has four values yes and two values no. Similarly, for
case 𝑥

3
, the value of temperature is high since the attribute

temperature has the value very high once, normal twice, and
high three times.

Using this notion, suppose that the value domains are
known, first, we define minimum probability that each value
of an attribute appears based on the frequency in the dataset
for each concept. Then, the minimum probability that two
objects have the same values is defined in order to propose
a tolerance relation.

The probability that a value 𝑗 ∈ 𝑉
𝑎
, 𝑗 ̸= ∗ appears as a

value of a certain object is between |𝑉
𝑎
(𝑗)|/|𝑈| and {|𝑉

𝑎
(𝑗)| +

|𝑉
𝑎
(∗)|}/|𝑈|, where 𝑉

𝑎
(𝑗) and 𝑉

𝑎
(∗) are sets of objects whose

value of attribute “𝑎” is “𝑗” and “∗,” respectively. If 𝑓
𝑎
(𝑥) ̸= ∗,

that is, the attribute value of an object 𝑥 is not missing, the
probability that 𝑓

𝑎
(𝑥) appears is between |𝐸

{𝑎}
(𝑥)|/|𝑈| and

{|𝐸
{𝑎}
(𝑥)| + |𝑉

𝑎
(∗)|}/|𝑈|.

Let us define probabilities 𝜌
𝑎
(𝑜𝑏
𝑎
(𝑗)) and 𝜌

𝑎
(𝑥), which are

the minimum probabilities that a value of attribute “𝑎” is “𝑗,”
𝑜𝑏
𝑎
(𝑗) is an object whose value of attribute “𝑎” is “𝑗,” and

the minimum probability that an attribute value 𝑓
𝑎
(𝑥) ̸= ∗

appears, respectively.Theminimumprobabilities are given as
follows:

𝜌
𝑎
(𝑜𝑏
𝑎
(𝑗)) =

󵄨󵄨󵄨󵄨𝑉𝑎 (𝑗)
󵄨󵄨󵄨󵄨

|𝑈|
,

𝜌
𝑎
(𝑥) =

󵄨󵄨󵄨󵄨𝐸{𝑎} (𝑥)
󵄨󵄨󵄨󵄨

|𝑈|
, if 𝑓

𝑎
(𝑥) ̸= ∗ .

(11)

The minimum probabilities take a value in [0, 1] in
general, but they are greater than zero if 𝑜𝑏

𝑎
(𝑗) ∈ 𝑈 and𝑥 ∈ 𝑈
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Table 2: Minimum probabilities of attribute values.

Attribute Value Probabilities
Temperature Very high 0.125
Temperature High 0.375
Temperature Normal 0.250
Headache Yes 0.500
Headache No 0.250
Nausea Yes 0.500
Nausea No 0.375

and less than one when there is at least a missing value for “𝑎”
in 𝑈.

The minimum probabilities of attribute values are illus-
trated in the Table 2. From this table, we can see that in the
information system in Table 1, the value high of temperature
occurs more frequently than the other values. The most
frequent values of headache and nausea happen to be “yes.”

Now, we define the probability of matching between
objects𝑥 and𝑦 on an attribute 𝑎 if one of their attribute values
is missing.

Definition 1. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system. Given that 𝑎 ∈ 𝐴 and 𝑥, 𝑦 ∈ 𝑈, if the value of either
𝑥 or 𝑦 is missing on “𝑎,” probability of matching between 𝑥

and 𝑦 on “𝑎” denoted by 𝜃
𝑎
(𝑥, 𝑦) is defined as the minimum

estimation of probability that 𝑥 and 𝑦 take the same value on
“𝑎” and is given by the following equation:

𝜃
𝑎
(𝑥, 𝑦) =

{{{{{{{{{{{

{{{{{{{{{{{

{

𝜌
𝑎
(𝑥) , if 𝑓

𝑎
(𝑥) ̸= ∗,

𝑓
𝑎
(𝑦) = ∗,

𝜌
𝑎
(𝑦) , if 𝑓

𝑎
(𝑥) = ∗,

𝑓
𝑎
(𝑦) ̸= ∗,

∑

𝑗∈𝑉
𝑎
,𝑗 ̸= ∗

{𝜌
𝑎
(𝑜𝑏
𝑎
(𝑗))}
2

, if 𝑓
𝑎
(𝑥) = ∗,

𝑓
𝑎
(𝑦) = ∗,

(12)

when 𝑥 ̸= 𝑦. Otherwise, 𝜃
𝑎
(𝑥, 𝑦) = 𝜃

𝑎
(𝑥, 𝑥) = 1.

If one of the two objects has a certain value, 𝑓
𝑎
(𝑥), for

example, the least probability value that 𝑓
𝑎
(𝑥) appears in

attribute of 𝑦 is 𝜌
𝑎
(𝑥) assuming that the other objects with

missing values on 𝑎 take another value 𝑗 ̸= 𝑓
𝑎
(𝑥). If both of

them are missing, we take the sum of joint probability on all
values in attribute domain within the same explanation.

It should be noted that 𝜌
𝑎
(𝑥) > 0 and 𝜌

𝑎
(𝑦) > 0 in the case

because 𝑥, 𝑦 ∈ 𝑈, and that 𝜌
𝑎
(𝑜𝑏
𝑎
(𝑗)) > 0 at least for a value

𝑗 ̸= ∗ because we do not assume the case where all objects take
the unknown value for an attribute.They are also less than 1.0,
because 𝑥 or/and 𝑦 takes the missing value. Thus, in the case
of 𝑥 ̸= 𝑦, 0 < 𝜃

𝑎
(𝑥, 𝑦) < 1 is guaranteed.

Take the attribute 𝑎= temperature, for example, in Table 1.
The minimum probability that value 𝑓

𝑎
(𝑥
3
) is the same as

𝑓
𝑎
(𝑥
1
) is 0.375, and the minimum probability that the value

𝑓
𝑎
(𝑥
3
) is similar to 𝑓

𝑎
(𝑥
8
) is 0.1252 + 0.375

2

+ 0.25
2

= 0.219.

4. Extended Tolerance Relation

To define whether objects 𝑥 and 𝑦 are tolerant or not, we
introduce the concept tolerance degree between two objects
by combining two relation indexes. One takes a binary
value representing a binary equivalence relation defined by
attributes with a known value in both the objects.The other is
an index defined by attributes with themissing value in either
of the objects. It is obtained from probability of matching
assuming that 𝜃

𝑎
(𝑥, 𝑦) is independent of each other among

attributes.
Limited tolerance relation was defined basically using

attributes whose values are available in both 𝑥 and 𝑦. We
define a binary function that represents that LT relation can
hold between the objects in the case of𝑂

𝑃
(𝑥)∩𝑂

𝑃
(𝑦) ̸= 𝜙 and

utilize it.

Definition 2. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system and attribute set 𝑃 ⊆ 𝐴 and 𝑥, 𝑦 ∈ 𝑈. Let 𝑂

𝑃
(𝑥) =

{𝑎 | 𝑎 ∈ 𝑃, 𝑓
𝑎
(𝑥) ̸= ∗}; the equivalence existence is defined by

the following function:

Θ
𝑃
(𝑥, 𝑦)

{{{{

{{{{

{

1, if 󵄨󵄨󵄨󵄨𝑂𝑃 (𝑥) ∩ 𝑂
𝑃
(𝑦)

󵄨󵄨󵄨󵄨

> 0 ∧ (∀𝑎 ∈ 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ,

𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦))

0, otherwise;

(13)

Θ
𝑃
(𝑥, 𝑥) = 1 is assumed in any case.

It is clear that objects 𝑥, 𝑦 have LT relation if Θ
𝑃
(𝑥, 𝑦) =

1, but Θ
𝑃
(𝑥, 𝑦) = 1 does not hold necessarily even if 𝑥, 𝑦

have LT relation; for example, in the case where for all 𝑎 ∈

𝑃, 𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦) = ∗ for different 𝑥 and 𝑦.

Now, we define a tolerance degree between 𝑥 and 𝑦

by combining the equivalence existence with probability of
matching defined in the previous section.

Definition 3. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system and attribute set 𝑃 ⊆ 𝐴 and 𝑥, 𝑦 ∈ 𝑈. The
parameterized tolerance degree of 𝑥 and 𝑦 in terms of 𝑃 is
defined as follows:

𝜑
𝑚

𝑃
(𝑥, 𝑦)

=

{{{{{{

{{{{{{

{

0,

if ∃𝑎 ∈ 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙, 𝑓

𝑎
(𝑥) ̸= 𝑓

𝑎
(𝑦) ,

𝑚 ∏

∀𝑎∈𝑃−(𝑂𝑃(𝑥)∩𝑂𝑃(𝑦))

𝜃
𝑎
(𝑥, 𝑦)+ (1 − 𝑚)Θ

𝑃
(𝑥, 𝑦) ,

otherwise,
(14)

where 𝑚 is a parameter taking a value in (0, 0.5]. If 𝑂
𝑃
(𝑥) ∩

𝑂
𝑃
(𝑦) = 𝑃,∏

∀𝑎∈𝑃−(𝑂
𝑃
(𝑥)∩𝑂

𝑃
(𝑦))

𝜃
𝑎
(𝑥, 𝑦) = 1 is assumed. Thus,

𝜑
𝑚

𝑃
(𝑥, 𝑦) = 1 in the case. Obviously, 𝜑𝑚

𝑃
(𝑥, 𝑥) = 1 and

𝜑
𝑚

𝑃
(𝑥, 𝑦) = 𝜑

𝑚

𝑃
(𝑦, 𝑥).Then, the reason why 𝑚 ∈ (0, 0.5] shall

be explained below.
In (14), when Θ

𝑃
(𝑥, 𝑦) = 1, that is, when 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦)

for all 𝑎 ∈ 𝑂
𝑃
(𝑥)∩𝑂

𝑃
(𝑦), it is satisfied that 1−𝑚 < 𝜑

𝑚

𝑃
(𝑥, 𝑦) ≤

1.0. 𝜑
𝑚

𝑃
(𝑥, 𝑦) = 1 holds only in two cases; one is the case
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Table 3: Tolerance degree among objects in terms of all attributes.

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
1

0 0.547 0 0 0 0 0.035
𝑥
2

0 0 0 0 0 0.531
𝑥
3

0 0 0 0 0
𝑥
4

0.750 0 0 0.594
𝑥
5

0 0 0.047
𝑥
6

0 0.547
𝑥
7

0

where 𝑥 = 𝑦, and the other is the case where𝑂
𝑃
(𝑥)∩𝑂

𝑃
(𝑦) =

𝑃 and ∀𝑎 ∈ 𝑃, 𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦).

When Θ
𝑃
(𝑥, 𝑦) = 0, there are two cases; one is a case

where there is 𝑎 ∈ 𝑂
𝑃
(𝑥)∩𝑂

𝑃
(𝑦) ̸= 𝜙 such that 𝑓

𝑎
(𝑥) ̸= 𝑓

𝑎
(𝑦).

In this case,𝜑𝑚
𝑃
(𝑥, 𝑦) = 0.The other is the casewhere𝑂

𝑃
(𝑥) ∩

𝑂
𝑃
(𝑦) = 𝜙. In this case, 0 < 𝜑

𝑚

𝑃
(𝑥, 𝑦) < 𝑚, considering that

0 < 𝜃
𝑎
(𝑥, 𝑦) < 1 for 𝑥 ̸= 𝑦. Therefore,𝑚 could be understood

as a value that separates the following cases:

(a) 𝜑𝑚
𝑃
(𝑥, 𝑦) > 1 − 𝑚: 𝑂

𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙 and 𝑥, 𝑦 have

the same value for all attributes in 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦);

(b) 𝑚 > 𝜑
𝑚

𝑃
(𝑥, 𝑦) > 0: 𝑂

𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) = 𝜙;

(c) 𝜑𝑚
𝑃
(𝑥, 𝑦) = 0: 𝑂

𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙 and 𝑥, 𝑦 have a

different value at least for an attribute in 𝑂
𝑃
(𝑥) ∩

𝑂
𝑃
(𝑦).

In order to separate the cases between (a) and (b), 𝑚
should satisfy 1 − 𝑚 ≥ 𝑚. From those above, we have the
constraint of 𝑚 ∈ (0, 0.5]. If 𝑚 < 0.5, 𝜑𝑚

𝑃
(𝑥, 𝑦) never takes a

value between 𝑚 and 1 − 𝑚. Hence, we define the tolerance
degree by fixing 𝑚 = 0.5, though 𝜑

𝑚

𝑃
(𝑥, 𝑦) never takes the

value of 0.5 as known from the conditions of (a) and (b):

𝜑
𝑃
(𝑥, 𝑦)

=

{{{{{{{

{{{{{{{

{

0,

if ∃𝑎 ∈ 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) , 𝑓

𝑎
(𝑥) ̸= 𝑓

𝑎
(𝑦) ,

1

2
∏

∀𝑎∈𝑃−(𝑂𝑃(𝑥)∩𝑂𝑃(𝑦))

𝜃
𝑎
(𝑥, 𝑦) +

1

2
Θ
𝑃
(𝑥, 𝑦) ,

otherwise.

(15)

The tolerance degree with 𝑚 = 0.5 lets us differentiate
the three cases discussed before by seeing whether the degree
is greater/less than 0.5 or whether it is greater than/equal
to zero. This feature might be useful, because the users can
control conditions of the tolerance based on equivalence
existence and probability of matching with just a threshold
value. This process shall be discussed in the next step.

Table 3 shows the tolerance degree among objects in
terms of all attributes.

In fact, we can choose another probability of matching on
an attribute for (14) and (15). For example, instead of using
𝜃
𝑎
(𝑥, 𝑦) defined in (12), we can choose 𝜃

𝑎
(𝑥, 𝑦) = 1/|𝑉

𝑎
| [5,

6]. The choice might depend on probability distribution of
attribute values in each system.

The probabilistic terms in our tolerance degree look
similar to those used by Stefanowski [6]. However, our

approach uses probabilistic terms as pieces of evidence to
derive tolerance relations. Furthermore, this term is com-
bined with equivalence existence to define the relation. On
the other hand, in probabilistic approach proposed in [6],
the authors suppose a priori assumption that there exists a
uniform probability distribution on every attribute domain
and compute tolerance classes based on the joint probability
distribution.Their aim seems to define approximation spaces
applicable inmany cases. Such tolerance classes could be used
in some applications, but we believe not in most.

Now, we define extended tolerance relation by controlling
tolerance degree with a threshold.

Definition 4. Given that incomplete information system 𝐼 =

(𝑈, 𝐴) and attribute set 𝑃 ⊆ 𝐴 and given a threshold 𝛼, the
extended tolerance relation is defined as follows:

ETR𝛼
𝑃
(𝑥, 𝑦) ⇐⇒ 𝜑

𝑃
(𝑥, 𝑦) ≥ 𝛼. (16)

It is easy to observe that this relation is reflexive and
symmetric but not necessarily transitive. In Table 3, if a
threshold 𝛼 = 0.5 is given, 𝑥

4
is tolerant to 𝑥

5
based on this

relation.
By changing the threshold, we are able to get the same

results as those by the relations discussed in the previous
sections. For example, in the case of tolerance relation, the set
of objects tolerant to 𝑥

5
is {𝑥
4
, 𝑥
5
, 𝑥
8
} in Table 1. FromTable 3,

we also get {𝑥
4
, 𝑥
5
, 𝑥
8
} as the set of objects tolerant to 𝑥

5
using

extended tolerance relation with 𝛼 = 0.01. Similarly, we have
the same result as limited tolerance relation: {𝑥

4
, 𝑥
5
}, if𝛼 = 0.5.

Now, we can formalize these connections by the following
propositions.

Proposition 5. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system. Given that 𝑃 ⊆ 𝐴 and 𝑥 ∈ 𝑈, if 𝛼 → 0, then
ETR𝛼
𝑃
(𝑥, 𝑦) ⇔ TOR

𝑃
(𝑥, 𝑦).

This proposition shows that with 𝛼 → 0, extended
tolerance relation can get the same results as tolerance relation.

Proof. When 𝛼 → 0,ETR𝛼
𝑃
(𝑥, 𝑦) is obtained as

ETR𝛼
𝑃
(𝑥, 𝑦) ⇐⇒ 𝜑

𝑃
(𝑥, 𝑦) > 0

⇐⇒ [𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) = 𝜙 ∧ ∀𝑎 ∈ 𝑃,

𝜃
𝑎
(𝑥, 𝑦) > 0]

∨ [∀𝑎 ∈ 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙, 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦)]

⇐⇒ [∀𝑎 ∈ 𝑃, (𝑓
𝑎
(𝑥) = ∗) ∨ (𝑓

𝑎
(𝑦) = ∗)]

∨ [∀𝑎 ∈ 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙, 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦)]

⇐⇒ TOR
𝑃
(𝑥, 𝑦) .

(17)

Proposition 6. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system. Given that 𝑃 ⊆ 𝐴 and 𝑥 ∈ 𝑈, if 𝛼 = 0.5, then
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𝐸𝑇𝑅
𝛼

𝑃
(𝑥, 𝑦) ⇒ 𝐿𝑇𝑂𝑅

𝑃
(𝑥, 𝑦) for any 𝑥, 𝑦, and 𝐸𝑇𝑅

𝛼

𝑃
(𝑥, 𝑦) ⇐

𝐿𝑇𝑂𝑅
𝑃
(𝑥, 𝑦) except the case such that 𝑂

𝑃
(𝑥) = 𝑂

𝑃
(𝑦) = 𝜙.

This proposition notices that with 𝛼 = 0.5, extended
tolerance relation is an expansion of limited tolerance relation.

Proof. When 𝛼 = 0.5, ETR𝛼
𝑃
(𝑥, 𝑦) is obtained as

ETR𝛼
𝑃
(𝑥, 𝑦) ⇐⇒ 𝜑

𝑃
(𝑥, 𝑦) ≥ 0.5 ⇐⇒ Θ

𝑃
(𝑥, 𝑦) = 1

⇐⇒ [𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙]

∧ [∀𝑎 ∈ 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) , 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦)]

󳨐⇒ LTOP
𝑃
(𝑥, 𝑦) .

(18)

Then, it is evident that LTOR
𝑃
(𝑥, 𝑦) ⇒ ETR𝛼

𝑃
(𝑥, 𝑦)

except the case where 𝑂
𝑃
(𝑥) = 𝑂

𝑃
(𝑦) = 𝜙.

Proposition 7. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system. Given that 𝑃 ⊆ 𝐴 and 𝑥 ∈ 𝑈, if 𝛼 = 1.0, then
𝐸𝑆𝑅
𝛼

𝑃
(𝑥, 𝑦) ⇔ 𝐸𝑄𝑈

𝑃
(𝑥, 𝑦) if 𝑥 ̸= 𝑦.

This proposition shows that with 𝛼 = 1.0, extended
tolerance relation is able to get the same results as equivalence
relation.

Proof. Consider that

ESR𝛼
𝑃
(𝑥, 𝑦) ⇐⇒ 𝜑

𝑃
(𝑥, 𝑦) = 1. (19)

As discussed before, 𝜑
𝑃
(𝑥, 𝑦) = 1 holds only in the two

cases where 𝑥 = 𝑦 and where 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) = 𝑃 and for

all 𝑎 ∈ 𝑃, 𝑓
𝑎
(𝑥) = 𝑓

𝑎
(𝑦), which is equivalent to EQU

𝑃
(𝑥, 𝑦).

It should be noted that similarity/tolerance relations
discussed in this paper are introduced to cope with incom-
plete information. However, we could also define those
relations even in complete information tables. For example,
the relation “subclass-of ” is a similarity relation. It is clearly
transitive, but not necessarily symmetric. We can also take
the relation “friend-of ” as an example of tolerance relation
and examine its properties in the same way.

Definition 8. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system. Given that 𝑃 ⊆ 𝐴 and 𝑥, 𝑦, 𝑧 ∈ 𝑈, if 𝜑

𝑃
(𝑦, 𝑥) >

𝜑
𝑃
(𝑧, 𝑥), then 𝑦 is more tolerant to 𝑥 than 𝑧 based on

extended tolerance relation.

Property 1. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system. Given that 𝑃 ⊆ 𝐴 and 𝑥, 𝑦, 𝑧 ∈ 𝑈, if 𝑂

𝑃
(𝑥) ∩

𝑂
𝑃
(𝑦) ̸= 𝜙, for all 𝑎 ∈ 𝑂

𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦), 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦), and

𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑧) = 𝜙, then 𝑦 is more tolerant to 𝑥 than 𝑧 based

on extended tolerance relation.

Proof. Since 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑦) ̸= 𝜙, for all 𝑎 ∈ 𝑂

𝑃
(𝑥) ∩

𝑂
𝑃
(𝑦), 𝑓

𝑎
(𝑥) = 𝑓

𝑎
(𝑦), from (15) we have 𝜑

𝑃
(𝑦, 𝑥) >

0.5. Also, from (15) with 𝑂
𝑃
(𝑥) ∩ 𝑂

𝑃
(𝑧) = 𝜙, we have

𝜑
𝑃
(𝑧, 𝑥) < 0.5. Hence, 𝜑

𝑃
(𝑦, 𝑥) > 𝜑

𝑃
(𝑧, 𝑥). This is

defined as 𝑦 is more tolerant to 𝑥 than 𝑧 based on extended
tolerance relation.

Now, with a relation, we can derive a neighbourhood,
which consists of successor and predecessor sets, of an object
[19, 20]. Due to symmetric property of extended tolerance
relation, successor is the same set as predecessor. Hence, for
this relation, we can introduce for any object 𝑥 ∈ 𝑈 a tolerant
set:

ET𝛼
𝑃
(𝑥) = {𝑦 ∈ 𝑈 | ETR𝛼

𝑃
(𝑦, 𝑥)} . (20)

In the example shown in Table 1, given the threshold 𝛼 =

0.04, 𝑃 = 𝐴, from Table 3, we have

ET0.04
𝐴

(𝑥
8
) = {𝑥

2
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
8
} . (21)

Property 2. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system, 𝑃 ⊆ 𝐴. Then, for all 𝑥 ∈ 𝑈, if 𝛼 ≤ 𝛽, then ET𝛼

𝑃
(𝑥) ⊇

ET𝛽
𝑃
(𝑥).

Proof. Consider the following:

ET𝛼
𝑃
(𝑥) = {𝑦 ∈ 𝑈 | ETR𝛼

𝑃
(𝑦, 𝑥)}

= {𝑦 ∈ 𝑈 | 𝜑
𝑃
(𝑦, 𝑥) ≥ 𝛼}

= {𝑦 ∈ 𝑈 | 𝜑
𝑃
(𝑦, 𝑥) ≥ 𝛽}

∪ {𝑦 ∈ 𝑈 | 𝛼 ≤ 𝜑
𝑃
(𝑦, 𝑥) < 𝛽}

= ET𝛽
𝑃
(𝑥) ∪ {𝑥 ∈ 𝑈 | 𝛼 ≤ 𝜑

𝑃
(𝑦, 𝑥) < 𝛽} ⊇ ET𝛽

𝑃
.

(22)

Hence, the cardinality of the tolerance set of 𝑥 shall
decrease if we increase the threshold to control the tolerance
degree.

5. Lower and Upper Approximations

For complete decision tables, lower and upper approxima-
tions are defined on the basis of indiscernibility relation [1, 2].
They can also be defined in different ways, for example,
using set elements or concepts represented by subsets. In
the case of nonequivalence relations, which may not need to
be reflexive, symmetric nor transitive, approximation spaces
defined in such different waysmay lead to variant results [14].
This section shall introduce lower and upper approximation
definitions based on singleton, subset, and concept methods
which are first studied and generalized by Grzymala-Busse
[14, 19].

5.1. Singleton Definition. Singleton lower approximation is

SingleAppr𝛼
𝑃

𝑋 = {𝑥 ∈ 𝑈 | ET𝛼
𝑃
(𝑥) ⊆ 𝑋} . (23)

Singleton upper approximation is

SingleAppr
𝛼

𝑃
𝑋 = {𝑥 ∈ 𝑈 | ET𝛼

𝑃
(𝑥) ∩ 𝑋 ̸= 𝜙} . (24)
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In the example shown in Table 1, given the threshold 𝛼 =

0.6 and 𝑃 = 𝐴, from Table 3, we have approximation space
for the concept𝑋 = {𝑥 ∈ 𝑈 | Decison(𝑥) = no}:

SingleAppr0.6
𝑃

𝑋 = {𝑥
3
, 𝑥
6
, 𝑥
7
} ,

SingleAppr
0.6

𝑃
𝑋 = {𝑥

3
, 𝑥
4
, 𝑥
5
, 𝑥
6
, 𝑥
7
} .

(25)

5.2. Subset Definition. Subset lower approximation is

SubAppr𝛼
𝑃

𝑋 = ⋃{ET𝛼
𝑃
(𝑥) | 𝑥 ∈ 𝑈,ET𝛼

𝑃
(𝑥) ⊆ 𝑋} . (26)

Subset upper approximation is

SubAppr
𝛼

𝑃
𝑋 = ⋃{ET𝛼

𝑃
(𝑥) | 𝑥 ∈ 𝑈,ET𝛼

𝑃
(𝑥) ∩ 𝑋 ̸= 𝜙} . (27)

5.3. Concept Definition. Concept lower approximation is

ConAppr𝛼
𝑃

𝑋 = ⋃{ET𝛼
𝑃
(𝑥) | 𝑥 ∈ 𝑋,ET𝛼

𝑃
(𝑥) ⊆ 𝑋} . (28)

Concept upper approximation is

ConAppr𝛼
𝑃
𝑋 = ⋃{ET𝛼

𝑃
(𝑥) | 𝑥 ∈ 𝑋,ET𝛼

𝑃
(𝑥) ∩ 𝑋 ̸= 𝜙} .

(29)

The difference between subset and concept definitions
may bemissed easily. In subset definition, extended tolerance
classes of all elements in the universal set are examined,
while only elements in𝑋 are examined in the case of concept
definition.

Obviously, singleton lower and upper approximations of
𝑋 are subsets of the subset lower and upper approximations
of 𝑋, respectively. The subset lower approximation is the
same set as the concept lower approximation. The concept
upper approximation, however, is a subset of the subset upper
approximation.

Rough set approximations could be generalized with
some other approaches [20–22]. Actually, the above three def-
initions are classified as constructive rough set formulations
by Yao [20], where rough set formulations are divided into
two different groups: constructive and algebraic methods.
The notion of singleton definition is indeed the same as
the element based definition suggested by Yao. Meanwhile,
subset definition is an expansion of concept definition and
also undoubtedly is the same as the granule based definition
in the Yao study. These definitions are special cases of the
subsystem based definition by Yao when the covering is the
set of equivalence/similarity/tolerance classes.

5.4. Properties of Approximations. Approximation spaces
defined based on extended tolerance relation have some prop-
erties suggested by Pawlak [1, 2] as well as other properties.
We discuss them in detail below.

Property 3. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system, 𝑋,𝑌 ⊆ 𝑈, and 𝑃,𝑄 ⊆ 𝐴. Table 4 shows which
properties of the original rough set model are satisfied with
singleton, subset, and concept definitions.

These properties within our approach can be proved
the same as those in the Grzymala-Busse and Wojciech
Rzasa study [19] and the Pawlak research [2]. Approximation
spaces of those definition methods, in general, do not have
properties 7a–7d. However, they are likely to satisfy the
weaker versions of 7a–7d, which are defined by Yao [21].

Besides this, our tolerance relation is controlled by the
threshold of tolerance degree. Thus, new properties for the
threshold can be introduced as shown below.

Property 4. Let 𝐼 = (𝑈, 𝐴) be an incomplete information
system, 𝑋 ⊆ 𝑈, and 𝑃 ⊆ 𝐴. The following properties
shall hold for arbitrary lower approximation appr𝛼

𝑃

𝑋 and
upper approximation appr𝛼

𝑃
𝑋 defined by singleton, subset,

and concept methods:

(9a) if 𝛼 ≤ 𝛽 ⇒ appr𝛼
𝑃

𝑋 ⊆ appr𝛽
𝑃

𝑋,

(9b) if 𝛼 ≤ 𝛽 ⇒ appr𝛼
𝑃
𝑋 ⊇ appr𝛽

𝑃
𝑋.

Proofs.

Proof of (9a). Take an element 𝑥 ∈ appr𝛼
𝑃

𝑋. From any
of the lower approximation definitions, ET𝛼

𝑃
(𝑥) ⊆ 𝑋 is

derived. Since ET𝛼
𝑃
(𝑥) ⊇ ET𝛽

𝑃
(𝑥) from Property 2, we get that

ET𝛽
𝑃
(𝑥) ⊆ 𝑋, and then 𝑥 ∈ appr𝛽

𝑃

𝑋. Thus, if 𝑥 ∈ appr𝛼
𝑃

𝑋, then
𝑥 ∈ appr𝛽

𝑃

𝑋 (note that 𝑥 ∈ ET𝛼
𝑃
𝑋).

Proof of (9b). Take an element 𝑥 ∈ appr𝛽
𝑃
𝑋. From any of the

upper approximation definitions, ET𝛽
𝑃
(𝑥) ∩ 𝑋 ̸= 𝜙 is derived.

Since ET𝛼
𝑃
(𝑥) ⊇ ET𝛽

𝑃
(𝑥) fromProperty 2, we get that ET𝛼

𝑃
(𝑥)∩

𝑋 ̸= 𝜙, and then 𝑥 ∈ appr𝛼
𝑃
𝑋. Thus, if 𝑥 ∈ appr𝛽

𝑃
𝑋, then 𝑥 ∈

appr𝛼
𝑃
𝑋 (note that 𝑥 ∈ 𝐸𝑇

𝛼

𝑃
𝑋).

6. Reducts and Core

The concept of reducts and core was introduced by Pawlak
[2] for complete information system. In this section, we shall
propose a method to derive reduct and core for incomplete
information systems based on extended tolerance relation.
A subset of conditional attributes 𝑃 ⊆ 𝐴 is a reduct of
an incomplete information system, if the tolerance classes
induced by 𝑃 are the same as the tolerance classes induced by
all attributes in set 𝐴 and no attribute can be removed from
set 𝑃 without changing the tolerance classes.

Definition 9. Thecomparison, Boolean function between two
relations in terms of two attribute sets 𝑃,𝑄 ⊆ 𝐴 in an
incomplete information system is defined as

𝜛
𝛼

(𝑃, 𝑄)

= (∀ (𝑥, 𝑦) ∈ 𝑈 × 𝑈,ETR𝛼
𝑃
(𝑥, 𝑦) ⇐⇒ ETR𝛼

𝑄
(𝑥, 𝑦)) .

(30)

If 𝜛𝛼(𝑃, 𝑄) = 1, the two relations developed from two
different attribute sets 𝑃,𝑄make the same tolerance classes.
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Table 4: Properties of approximations based on the three definitions.

Properties Singleton Subset Concept
1a appr𝛼

𝑃

𝑋 ⊆ 𝑋 ✓ ✓ ✓

1b 𝑋 ⊆ appr𝛼
𝑃
𝑋 ✓ ✓ ✓

2a appr𝛼
𝑃

𝜙 = 𝜙 ✓ ✓ ✓

2b appr𝛼
𝑃
𝜙 = 𝜙 ✓ ✓ ✓

3a appr𝛼
𝑃

𝑈 = 𝑈 ✓ ✓ ✓

3b appr𝛼
𝑃
𝑈 = 𝑈 ✓ ✓ ✓

4a 𝑋 ⊆ 𝑌 ⇒ appr𝛼
𝑃

𝑋 ⊆ appr𝛼
𝑃

𝑌 ✓ ✓ ✓

4b 𝑋 ⊆ 𝑌 ⇒ appr𝛼
𝑃
𝑋 ⊆ appr𝛼

𝑃
𝑌 ✓ ✓ ✓

5a appr𝛼
𝑃

(𝑋 ∪ 𝑌) ⊇ appr𝛼
𝑃

𝑋 ∪ appr𝛼
𝑃

𝑌 ✓ ✓ ✓

5b appr𝛼
𝑃
(𝑋 ∪ 𝑌) = appr𝛼

𝑃
𝑋 ∪ appr𝛼

𝑃
𝑌 ✓ ✓

6a appr𝛼
𝑃

(𝑋 ∩ 𝑌) = appr𝛼
𝑃

𝑋 ∩ appr𝛼
𝑃

𝑌 ✓

6b appr𝛼
𝑃
(𝑋 ∩ 𝑌) ⊆ appr𝛼

𝑃
𝑋 ∩ appr𝛼

𝑃
𝑌 ✓ ✓ ✓

7a appr𝛼
𝑃

𝑋 = appr𝛼
𝑃

(appr𝛼
𝑃

𝑋) ✓ ✓

7b appr𝛼
𝑃

𝑋 = appr𝛼
𝑃
(appr𝛼

𝑃

𝑋)

7c appr𝛼
𝑃
𝑋 = appr𝛼

𝑃
(appr𝛼

𝑃
𝑋)

7d appr𝛼
𝑃
𝑋 = appr𝛼

𝑃

(appr𝛼
𝑃
𝑋)

8a appr𝛼
𝑃

𝑋 =∼(appr𝛼
𝑃
(∼𝑋)) ✓ ✓ ✓

8b appr𝛼
𝑃
𝑋 =∼(appr𝛼

𝑃

(∼𝑋)) ✓ ✓ ✓

“✓” indicates that the property is satisfied. appr𝛼
𝑃

𝑋 and appr𝛼
𝑃
𝑋 are lower and upper approximations that can be defined by singleton, subset, and concept

methods.
∼ 𝑋: denotes a complementary set of𝑋.

Definition 10. In the incomplete decision table, the function
𝜕
𝑃
: 𝑈 → 𝐹(𝑉

𝑑
), where 𝑃 ⊆ 𝐴 and 𝐹(𝑉

𝑑
) is the power set of

𝑉
𝑑
, is defined as

𝜕
𝛼

𝑃
(𝑥) = {𝑖 | 𝑖 = f

𝑑
(𝑦) , 𝑦 ∈ ETR𝛼

𝑃
(𝑥)} , (31)

where 𝑓
𝑑
(𝑦) is the decision value of an object 𝑦.

Definition 11. Thecomparison Boolean function between two
relations in terms of attribute sets 𝑃,𝑄 ⊆ 𝐴 in an incomplete
decision table is defined as

𝜛
󸀠𝛼

(𝑃, 𝑄) = (∀ (𝑥, 𝑦) ∈ 𝑈 × Γ
𝑥

,

ETR𝛼
𝑃
(𝑥, 𝑦) ⇐⇒ ETR𝛼

𝑄
(𝑥, 𝑦)) ,

(32)

where

Γ
𝑥

= {𝑧 ∈ 𝑈 : 𝑑 (𝑧) ∉ 𝜕
𝛼

𝑃
(𝑥)} . (33)

Proposition 12. The attribute 𝑎 ∈ 𝐴 is indispensable in 𝐴 if
and only if 𝜛𝛼(𝐴 − {𝑎}, 𝐴) = 0 for incomplete information
system and 𝜛

󸀠𝛼

(𝐴 − {𝑎}, 𝐴) = 0 for incomplete decision tables.

This proposition is applied to both incomplete informa-
tion systems and incomplete decision tables. Consider that
𝜛
𝛼

(𝐴 − {𝑎}, 𝐴) = 0 or 𝜛󸀠𝛼(𝐴 − {𝑎}, 𝐴) = 0 means that if 𝑎
is removed from 𝐴, the tolerance classes based on extended
tolerance relation in terms of 𝐴 − {𝑎} are different from the
tolerance classes based on 𝐴. Hence, 𝑎 is indispensable in 𝐴.

Proof. 𝑎 is indispensable in 𝐴 if and only if (∃(𝑥) ∈

𝑈,ET𝛼
𝐴−{𝑎}

(𝑥) ̸=ET𝛼
𝐴
(𝑥)) if and only if (∃(𝑥, 𝑦) ∈ 𝑈 ×

𝑈,ETR𝛼
𝐴−{𝑎}

(𝑦, 𝑥) 󴀉󴁙󴀡 ETR𝛼
𝑃
(𝑦, 𝑥)) 𝜛

𝛼

(𝐴 − {𝑎}, 𝐴) = 0, from
Definition 9, or 𝜛󸀠𝛼(𝐴 − {𝑎}, 𝐴) = 0 from Definition 11.

Definition 13. The core of 𝐴 is the set of all indispensable
attributes and defined by core(𝐴) = {𝑎 ∈ 𝐴 | 𝜛

𝛼

(𝐴−{𝑎}, 𝐴) =

0} for incomplete information system and core(𝐴) = {𝑎 ∈ 𝐴 |

𝜛
󸀠𝛼

(𝐴 − {𝑎}, 𝐴) = 0} for incomplete decision table.

Proposition 14. A subset 𝑃 ⊆ 𝐴 is a reduct of the incomplete
information system (or decision table) with threshold 𝛼 if and
only if

(i) 𝜛𝛼(𝑃, 𝐴) = 1 for incomplete information systems (or
𝜛
󸀠𝛼

(𝑃, 𝐴) = 1 for decision tables);
(ii) For all 𝑎 ∈ 𝑃, 𝜛

𝛼

(𝑃 − {𝑎}, 𝑃) = 0 for incomplete
information systems (or ∀𝑎 ∈ 𝑃, 𝜛

󸀠𝛼

(𝑃 − {𝑎}, 𝑃) = 0

for decision tables).

Proof. Following the definition of reducts stated at the begin-
ning of Section 6, 𝑃 ⊆ 𝐴 is a reduct if and only if

(i) the tolerance classes induced by 𝑃 are the same as the
tolerance classes induced by all attributes in set 𝐴;

(ii) no attribute can be removed from set 𝑃 without
changing the tolerance classes.

Based onDefinitions 9 and 10, we have (i)⇔ 𝜛
𝛼

(𝑃, 𝐴) = 1

for incomplete information systems (or ⇔ 𝜛
󸀠𝛼

(𝑃, 𝐴) = 1 for
decision tables).

For the second condition, (ii) means all attributes in 𝑃

are indispensable. Consequently, (ii) ⇔for all 𝑎 ∈ 𝑃, 𝜛
𝛼

(𝑃 −
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{𝑎}, 𝑃) = 0 for incomplete information systems (or ⇔

for all 𝑎 ∈ 𝑃, 𝜛
󸀠𝛼

(𝑃 − {𝑎}, 𝑃) = 0 for decision tables),
according to Proposition 12.

In the example shown in Table 1, given the threshold 𝛼 =

0.6, using themethod of deriving core, all attributes including
temperature, headache, and nausea are indispensable. Hence,
in this system, temperature, headache, nausea is the core. The
core also happens to be the only one reduct of this incomplete
information system with 𝛼 = 0.6.

7. Conclusion

This paper studies a rough set theory for incomplete infor-
mation systems and establishes a new model based on tol-
erance degree called extended tolerance relation based rough
set model. Frequency of attribute values appearing in the
decision table is used to estimate the probability of matching
among data items on an attribute. Then, tolerance degree is
calculated based on the existence of equivalence on some
attributes and probability of matching. Given a threshold to
control tolerance degree, a tolerance relation is defined.

The approach is an extension of some rough set models
and could solve the problem existing in tolerance relation
of Kryszkiewicz. By adjusting the threshold, we are able
to get the same results as tolerance, limited tolerance, and
equivalence relations. The variable threshold also gives us a
means to widen or thin the boundary region between lower
and upper approximations. Actually, various lower and upper
approximations are obtained using the approach, and the user
can choose a threshold that suits his/her requirements.

The paper also discussed the mathematical properties
of extended tolerance relation based rough set model and
proposed a method to derive reducts and core.

Further research includes finding an algorithm to collect
rules within the approach discussed. That is a significant
application of rough set theory in knowledge acquisition
from data.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] Z. Pawlak, “Rough sets,” International Journal of Computer &
Information Sciences, vol. 11, no. 5, pp. 341–356, 1982.

[2] Z. Pawlak, Rough Sets. Theoretical Aspects of Reasoning About
Data, Kluwer Academic Publishers, 1991.

[3] M. Kryszkiewicz, “Rough set approach to incomplete informa-
tion systems,” Information Sciences, vol. 112, no. 1–4, pp. 39–49,
1998.

[4] M. Kryszkiewicz, “Rules in incomplete information systems,”
Information Sciences, vol. 113, no. 3-4, pp. 271–292, 1999.

[5] J. Stefanowski and A. Tsoukias, On the Extension Ofrough Sets
under Incomplete Information, vol. 1711 of Lecture Notes in
ArtificialIntelligence, 1999.

[6] J. Stefanowski and A. Tsoukiàs, “Incomplete information tables
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