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This paper researched three definitions of Gauss map and found that the definition of “Gauss map” in the paper of Arasomwan
and Adewumi may be incoherent with other publications. In addition, we analyzed the difference of continuous Gauss map and
the floating-point Gauss map, and we pointed out that the floating-point simulation behaved significantly differently from the
continuous Gauss map.

1. Introduction

Paper [1] is very welcome. The authors investigated the effect
of nine chaotic maps on the performance of two variants
of particle swarm optimization (PSO) algorithm as random
inertia weight PSO (RIW-PSO) and linear decreasing inertia
weight PSO (LDIW-PSO). Their simulation results showed
that “the performances of those two variants were improved by
many of the chaotic maps.”

However, the authors give an inappropriate definition of
Gauss map (Gaussian map) that some readers may get the
mistaken understanding. There are currently three different
types of Gauss maps for different disciplines. We will discuss
them in what follows.

Definition 1. Thefirst definition is used in differential geome-
try, where the “Gauss map”maps a surface in Euclidean space
𝑅
3 to the unit spheres 𝑆2; that is, given a surface𝑋 lying in𝑅3,

the Gauss map is a continuous map 𝑁 : 𝑋 → 𝑆2 such that
𝑁(𝑝) is a unit vector orthogonal to𝑋 at𝑝, namely, the normal
vector to𝑋 at 𝑝.

Definition 2. The second definition of Gauss map is related
to continued fractions and is used in programming, chaos,
ergodic theory, and so forth. Its form is

𝑓 (𝑧) =

{{

{{

{

0, 𝑧 = 0,

1

𝑧
− ⌊
1

𝑧
⌋ , otherwise,

(1)

where the ⌊⌋ represents the floor function. Note that Corless
[2] investigated this Gauss map and commented on it, “The
Gauss map has been shown to be a good example of a
chaotic discrete dynamical system”; however, “The numerical
simulation of the map behaves significantly differently, in that
the numerical simulation is not chaotic” (a more detailed
discussion is offered in the Appendix).

Definition 3. The third definition of Gauss map is a chaotic
series with the definition (Formula 3.42 in Anagnostopoulos
[3] and Formula 3.3 in Saha and Das [4]) of

𝑥
𝑛+1
= exp (−𝛼𝑥2

𝑛
) + 𝛽. (2)
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(a) 𝛼 = 4.9
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Figure 1: Bifurcation of Gauss/mouse map of Definition 2 (𝑥(0) = 0.1).

This type of definition is also called “mouse map,” since its
bifurcation map resembles a mouse (see Figure 1).

Arasomwan’s Definition. In Section 3.3, formula (9), page 3,
Arasomwan and Adewumi [1] stated the following.

“3.3. Gaussian.Thismap is also known asGauss ormousemap.
It is defined as

𝑥
𝑘+1
=

{{

{{

{

0, 𝑥
𝑘
= 0,

1

𝑥
𝑘

mod (1) , 𝑥𝑘 ∈ (0, 1) ,
(9)

where (1/𝑥
𝑘
) mod (1) = (1/𝑥

𝑘
) − ⌊1/𝑥

𝑘
⌋ and ⌊𝑧⌋ denotes the

largest integer less than 𝑧 which acts as a shift on the continued
fraction representation of numbers.”

2. Discussion

Arasomwan’s definition of “Gauss map” [1] contains a para-
dox. From the context (“The map is also known as Gauss or
mouse map”), we guess the third definition was appropriate,
because this kind of Gauss map has a nickname of “Mouse
map.” From formula (9), we guess the second definition was
appropriate, because formula (9) was similar to formula (1).
It is suggested that the authors either remove the phrase of
“Mouse map” or replace formula (9) with formula (2).

3. Conclusion

In spite of this issue, [1] is one of the best papers that we have
ever read. We enjoyed reading it, which gave many thought-
provoking and informative ideas especially in the results that
“intermittencymap” performed best among all chaotic maps.

Appendix

Suppose Arasomwan and Adewumi [1] used Definition 2
(in what follows, the Gauss map denotes Definition 2);
another paradox was raised between the continuous model

(see formula (1)) and the floating-point simulation. Unlike
common sense, formidable difficulties and considerable
changes happen in simulating the Gauss map. To support it,
let us revisit the two important properties of the continuous
Gauss map [5].

(C1) The orbit of {𝑥
𝑘
} of every rational initial point 𝑥

0
goes

to zero in a finite number of iterations.

(C2) The Lyapunov exponent of the map is, for almost
all initial points, 𝜋2/(6 log 2) = 2.3731 . . . but is
undefined for rational initial points and is different for
each quadratic irrational initial point.

The first property is proved by “Gauss’s continuous
fraction.” In the second property, the Lyapunov exponent
characterizes the rate of separation of infinitesimally close
trajectories in a dynamical system, and a positive maximal
Lyapunov exponent indicates the system is chaotic. For the
floating-point simulation, we found the two properties of
continuous model were changed by the following facts.

(S1) On a HP28S calculator, starting from 𝑥
0
= 0.73

(it is a rational number) and using 105 iterations of
the floating-point Gauss map, we get a computed
Lyapunov exponent equal to 2.36992 [5].

(S2) Irrational points are impossible to be represented in a
floating-point machine, remembering the concept of
smallest machine representable number.

From the conflicts between (C1) and (S1) and between
(C2) and (S2), we guess the reason is that the floating-point
arithmetic destroys the inherit chaos while the round-off
error introduces the spurious chaos, when transforming the
continuous Gauss map to a floating-point simulation.

Let us revisit [1], in which they used floating-point
simulation in the experiment while giving a continuous
mathematicalmodel of (9) in themethodology. It is suggested
that the authors should give a detailed description of the
transform from continuous Gauss map model to floating-
point Gauss map model in their future work.



Mathematical Problems in Engineering 3

Conflict of Interests

The authors have no conflict of interests to disclose with
regard to the subject matter of this paper.

Acknowledgments

Theauthors give their thanks to the editors for giving them an
opportunity to share their ideas with the readers. This paper
was supported by NSFC (no. 610011024), Program of Natural
Science Research of Jiangsu Higher Education Institutions
of China (no. 14KJB520021), Jiangsu Key Laboratory of
3D Printing Equipment and Manufacturing (BM2013006),
and Nanjing Normal University Research Foundation for
Talented Scholars (no. 2013119XGQ0061).

References

[1] A. M. Arasomwan and A. O. Adewumi, “An investigation into
the performance of particle swarm optimization with various
chaotic maps,”Mathematical Problems in Engineering, vol. 2014,
Article ID 178959, 17 pages, 2014.

[2] R. M. Corless, “Continued fractions and chaos,” The American
Mathematical Monthly, vol. 99, no. 3, pp. 203–215, 1992.

[3] K. N. Anagnostopoulos, Computational Physics: A Practical
Introduction to Computational Physics and Scientific Computing,
2014.

[4] L. M. Saha and M. K. Das, “Bifurcation and chaos measure in
some discrete dynamical systems,” Journal of Mathematical and
Computational Science, vol. 3, no. 1, pp. 150–166, 2013.

[5] R. M. Corless, “What good are numerical simulations of
chaotic dynamical systems?” Computers & Mathematics with
Applications, vol. 28, no. 10–12, pp. 107–121, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


