
Hindawi Publishing Corporation
Modelling and Simulation in Engineering
Volume 2013, Article ID 694354, 16 pages
http://dx.doi.org/10.1155/2013/694354

Research Article
A Parallel Adaptive Newton-Krylov-SchwarzMethod for
3D Compressible Inviscid Flow Simulations

Marzio Sala,1 Pénélope Leyland,2 and Angelo Casagrande2

1 UBS Investment Bank, 8098 Zurich, Switzerland
2 EPFL STI GR-SCI-IAG, Station 9, 1015 Lausanne, Switzerland

Correspondence should be addressed to Angelo Casagrande; angelo.casagrande�ep�.ch

Received 27 April 2012; Accepted 19 December 2012

Academic Editor: MuDer Jeng

Copyright © 2013 Marzio Sala et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A parallel adaptive pseudo transient Newton-Krylov-Schwarz (𝛼𝛼𝛼NKS)method for the solution of compressible �ows is presented.
Multidimensional upwind residual distribution schemes are used for space discretisation, while an implicit time-marching scheme
is employed for the discretisation of the (pseudo)time derivative.e linear system arising from the Newton method applied to the
resulting nonlinear system is solved by the means of Krylov iterations with Schwarz-type preconditioners. A scalable and efficient
data structure for the 𝛼𝛼𝛼NKS procedure is presented. e main computational kernels are considered, and an extensive analysis is
reported to compare the Krylov accelerators, the preconditioning techniques. Results, obtained on a distributedmemory computer,
are presented for 2D and 3D problems of aeronautical interest on unstructured grids.

1. Introduction

eaimof this paper is to provide an overview of themethods
required for an efficient parallel solution of the compressible
Euler equations (CEE) on unstructured 2D and 3D grids.e
ingredients include space and time discretisation schemes
for the underlying partial differential equations (PDEs), a
nonlinear solver based on the Newton’s method, and a
parallel Krylov accelerator with domain decomposition pre-
conditioners.

Nowadays, unstructured grids are of particular interest
for industrial applications.With respect to structured grids, it
is oen easier to produce unstructured grids of good quality
in domains of complex shape, especially if the unstructured
grid generator can be coupled to a CAD system. is
can provide—at least in principle—a fast process to solve
the problem at hand, with minimal intervention of the
user, once the geometry of the domain and the boundary
conditions have been speci�ed. However, such techniques
imply an almost perfect geometric representation (CAD
level) and automatic grid generation remains a challenge
in computational engineering, especially for moving bound-
aries.

e framework presented here can be successfully applied
to the solution of sets of PDEs problems discretised on
unstructured grids. e focus in this paper is restricted to
the solution of the CEE. In particular, the space discretisation
technique considered is based on the so-called multidimen-
sional upwind residual distribution (MURD) schemes; see for
instance [1–5]. ese schemes are supposed to render higher
accuracy and less spurious numerical anomalies. is is due
to the fact that they take into account the multidirectionality
of the wave structure, rather than being based upon a
summation of one-dimensional Riemann problems, [6, 7].
Firstly developed for a scalar advection equation, MURD
schemes have been extended to homogeneous �ux hyperbolic
systems such as the Euler equations. ey can be interpreted
as Petrov-�alerkin �nite element methods, with compact-
stencil basis functions. is turns out to be of particular
advantage for their parallel implementation, since both �rst-
order and second-order in space schemes share the same
communication pattern.

For compressible �ow simulations, we will consider here
the Euler equations. e steady state solutions are found as
the steady-state of their time-dependent version. e time
derivative is discretised using the backward Euler method.

2 Modelling and Simulation in Engineering

is leads to a nonlinear system to be solved at each time
step. Hence, for these cases, time accuracy is not an issue.
In fact, the pseudo-time derivative is added as a mean to
obtain a “good” initial iterate for the Newton’smethod (which
can even diverge for initial iterates too far-away from the
solution). Moreover, only few steps of the Newton’s method
are considered, and the linear system with the Jacobian
matrix is solved only approximatively.

e Newton’s method for the solution of this nonlinear
system results in a large, ill-conditioned linear system with
the system’s Jacobian matrix. Direct methods appear to be
too computationally expensive, especially in 3D. For our kind
of applications, preconditioned iterative solvers of Krylov
type are a prime choice and can also be associated with
multigrid techniques, another challengingmethod, especially
for compressible �ow simulations. A possible way to derive
the preconditioner is to adopt a domain decomposition
approach [8, 9], and more in particular to use a Schwarz
preconditioner. is means that the computational domain
Ω is decomposed into 𝑀𝑀 overlapping subdomains Ω𝑖𝑖, 𝑖𝑖 𝑖
1,… ,𝑀𝑀, such that ⋃𝑀𝑀

𝑖𝑖𝑖𝑖 Ω𝑖𝑖 = Ω. en, a Dirichlet problem
is solved in each subdomain. Since typically each subdomain
is assigned to a different processor, this leads to a parallel
preconditioner. Further, a coarse level is added, resulting
in an overall—although cheap—communication among the
subdomains. Here, to construct the coarse level, we consider
algebraic procedures based on the concept of aggregation.

e resulting framework is usually addressed to as the
Newton-Krylov-Schwarz framework, a quite generic pro-
cedure that can be applied to nonlinear systems of PDEs
[10–16]. e idea is to obtain (asymptotically) a second-
order convergence in time through the Newton iterations
and a reasonable parallelism thanks to the use of a Krylov
solver complemented with a Schwarz-type preconditioner.
e resulting algorithm will be addressed to as 𝛼𝛼𝛼NKS.

For an efficient and scalable implementation of 𝛼𝛼𝛼NKS
methods, parallel codes have to be developed, extending
their sequential counterparts. Data, like grid structures, the
Jacobian matrix, state variable, and work vectors, must be
partitioned among the processors in order to minimise the
amount of intraprocessor communications. e de�nition
of a distributed data structure, wellsuited for all the com-
putational phases, is the �rst problem to be addressed. �o
that aim, all the main computational kernels of the 𝛼𝛼𝛼NKS
algorithm are analysed, and suitable algorithms are presented
and implemented in order to make use of as much local
data as possible, thus minimising communication. Note that
robust and accurate methods are necessary to treat the large
variety of regimes which may typically arise in aeronautics
which rely on solving the Euler equations. e interest of
these techniques is that many soware packages, such as
PetSc and ISL++, offer these functionalities in a user-friendly
way.

e paper is organised as follows. Section 2 describes
the numerical solution of the compressible Euler equations
and the 𝛼𝛼𝛼NKS scheme. In Section 3 the data structure
used for parallelisation is introduced. Section 4 outlines
the main computational kernels of the 𝛼𝛼𝛼NKS scheme.

Section 5 gives somenumerical results obtained on a SGIOri-
gin 3800 for academic test cases as well as typical full aircra
problems. Although this machine is nowadays replaced by
Linux clusters, the scaling of the results formultiple processor
clusters is signi�cant. Indeed, all techniques and results
described here scale in exactly the sameway on Linux clusters
under MPI. Finally, Section 6 outlines the conclusions.

2. Numerical Solution of the Compressible
Euler Equations

e compressible Euler equations describing nonviscous and
nonheat conducting compressible �uid �ows in a domainΩ ⊂
ℝ3 can be written as

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕1 (𝐰𝐰)
𝜕𝜕𝜕𝜕1

+
𝜕𝜕𝜕𝜕2 (𝐰𝐰)
𝜕𝜕𝜕𝜕2

+
𝜕𝜕𝜕𝜕3 (𝐰𝐰)
𝜕𝜕𝜕𝜕3

= 𝟎𝟎𝟎 (1)

where 𝐰𝐰𝐰𝐰 𝐰𝐰𝐰 𝐰𝐰𝐰𝐰1, 𝜌𝜌𝜌𝜌2, 𝜌𝜌𝜌𝜌3, 𝜌𝜌𝜌𝜌𝜌 is the vector of conservative
variables. For the applications of interest, (1) are posed on
a bounded domain and completed by appropriate boundary
conditions and initial condition 𝐰𝐰𝐰𝐰𝐰𝐰 𝐰𝐰𝐰𝐰𝐰 0 (see for
instance [17]).

In (1), 𝜌𝜌 is the density, 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3 are the 𝑥𝑥1-, 𝑥𝑥2-, and
𝑥𝑥3-components of the velocity vector 𝐯𝐯, and 𝑒𝑒 is the speci�c
total energy. e quantities 𝐅𝐅𝑖𝑖 = (𝜌𝜌𝜌𝜌𝑖𝑖, 𝜌𝜌𝜌𝜌𝜌 𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖ℎ), 𝑖𝑖 𝑖
{1, 2, 3} are homogeneous functions of 𝐰𝐰, called �uxes. Here
𝛿𝛿𝑖𝑖𝑖𝑖𝑖 is the Kronecker symbol, 𝑝𝑝 is the (static) pressure, and ℎ is
the speci�c enthalpy. e gas is considered to be a calorically
perfect gas [18, Chapter 2], therefore

𝑒𝑒 (𝑇𝑇) = 𝐶𝐶𝑣𝑣𝑇𝑇𝑇𝑇 (𝑇𝑇) = 𝐶𝐶𝑝𝑝𝑇𝑇𝑇 (2)

with C𝑣𝑣 and C𝑝𝑝 being the speci�c heat coefficient at constant
volume and constant pressure, respectively.

e space discretisation of (1) is conducted usingMURD
schemes, which are based on the quasilinear form as

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐺𝐺1 (𝐰𝐰)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

+ 𝐺𝐺2 (𝐰𝐰)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐺𝐺3 (𝐰𝐰)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕3

= 𝟎𝟎𝟎 (3)

with

𝐺𝐺𝑖𝑖 (𝐰𝐰) =
𝜕𝜕𝜕𝜕𝑖𝑖
𝜕𝜕𝜕𝜕

. (4)

e basis idea of MURD schemes is to compute the
residual at element level, de�ned as

𝐑𝐑(𝑇𝑇𝑇 (𝐰𝐰)

= 󵐐󵐐
𝑇𝑇
󶁅󶁅𝐺𝐺1 (𝐰𝐰)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕1

+ 𝐺𝐺2 (𝐰𝐰)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐺𝐺3 (𝐰𝐰)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕3

󶁕󶁕 𝑑𝑑𝑑𝑑𝑑

(5)

en, the main idea is to redistribute this quantity to the
nodes of the element, according to the choice of the scheme.

Wewill not describeMURDschemes, referring the reader
to, for example, [19–24] and the references therein. Here, we
just give a very broad overview of the schemes.

Modelling and Simulation in Engineering 3

At their beginning,MURD schemes have been developed
for scalar equations. e extension to system schemes is
straightforward if the system is diagonalisable. In this case,
scalar schemes can be used for each scalar equation of the
diagonalised system. For nondiagonalisable systems, like the
CEE, three main orientations are identi�ed. One consists in
the formal extension of the scalar scheme. is leads, for
instance, to the system N-scheme [4]. A second orientation
was introduced by Roe in 1986 [25] and consists in decom-
posing the initial residual as a sum of simple wave solutions.
e last one, initially proposed by Deconinck and coworkers,
see [26], is an elliptic/hyperbolic splitting, which decompose
theCEE into an acoustic subsystemof three equations (for 3D
problems), plus two advection equations, one of them being
the entropy advection. e last approach is followed here. It
was shown in [27] that this decomposition can lead to numer-
ical methods with minimal spurious entropy production.

MURD schemes are targeted to the solution of advection-
dominated systems on unstructured grids because they are
not constructed by concentrating on any particular direction
of the grid. An advantage is that, at least for scalar equations,
one can construct a fully second-order accurate scheme on
triangular grids with a very compact stencil: only the nodes in
the triangle are used in the evaluation of the �uctuation. Note
that these schemes can be interpreted as Petrov-Galerkin
�nite-element schemes, see [28, Section 4.1].

e spatial discretisation of (1) results in a system of
nonlinear equations of type

𝑆𝑆
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐑𝐑 (𝐔𝐔) = 𝟎𝟎𝟎 (6)

with a convenient initial condition 𝐔𝐔𝐔𝐔𝐔𝐔 𝐔𝐔𝐔𝐔𝐔 0. In (6), 𝑆𝑆
is a nonsingular (lumped) mass matrix. In particular, we seek
for the the steady-state solution of system (6), which will be
one of the roots of

𝐑𝐑 (𝐔𝐔) = 𝟎𝟎𝟎 (7)

Note that the Newton method applied directly to system
(7) does not suffice, since an initial iterate sufficiently near
to the root is generally not available. is is particularly
true for complex �ows containing shock waves and contact
discontinuities, like the ones considered in this paper. Fram-
ing the steady-state equation into a time-dependent setting
constitutes a sort of continuation process, which can be
considered as an attempt to widen the domain of convergence
of Newton method, or as a procedure to obtain sufficiently
close starting points.

System (6) is discretised using a backward Euler scheme.
Starting from a given 𝐔𝐔0, the solution at the pseudotime step
𝑘𝑘 𝑘 𝑘𝑘 𝑘𝑘𝑘 is found by solving the nonlinear system of
equations

𝑆𝑆
𝐔𝐔𝑘𝑘 − 𝐔𝐔𝑘𝑘𝑘𝑘

𝛿𝛿𝑘𝑘
+ 𝐑𝐑 󶀡󶀡𝐔𝐔𝑘𝑘󶀱󶀱 = 𝟎𝟎 (8)

or, equivalently,

𝑆𝑆𝑆𝑆−1𝑘𝑘 𝐔𝐔𝑘𝑘 − 𝑆𝑆𝑆𝑆−1𝑘𝑘 𝐔𝐔𝑘𝑘𝑘𝑘 + 𝐑𝐑 󶀡󶀡𝐔𝐔𝑘𝑘󶀱󶀱 = 𝟎𝟎𝟎 (9)

where 𝛿𝛿𝑘𝑘 is the time increment at step 𝑘𝑘.

A strategy for the de�nition of 𝛿𝛿𝑘𝑘 is needed. As a general
rule, one should keep the time step small until all the main
�ow features are well resolved, then large time steps may be
taken near to obtain superlinear or quadratic convergence of
Newton’smethod. In this paper we have adopted the so-called
exponential rule [29], that is,

𝛿𝛿𝑘𝑘 = min 󶁂󶁂𝛿𝛿0 × (𝜎𝜎)𝑘𝑘,CFLmax󶁒󶁒 , (10)

where 𝛿𝛿0 is the initial time step and 𝜎𝜎 𝜎 𝜎 is a prescribed
growing factor. Other strategies have been proposed in the
literature, like the so-called switched evolution relation rule
(see [29]) or the expert rule (see [30]).

A Newton iteration at time level 𝑘𝑘 for the solution of (9)
would then read

𝐔𝐔𝑘𝑘𝑘𝑘𝑘 = 𝐔𝐔𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 󶁥󶁥𝑆𝑆𝑆𝑆−1𝑘𝑘 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

󶀡󶀡𝐔𝐔𝑘𝑘𝑘𝑘𝑘𝑘𝑘󶀱󶀱󶁵󶁵
−1

× 󶀢󶀢−𝑆𝑆𝑆𝑆−1𝑘𝑘 𝐔𝐔𝑘𝑘𝑘𝑘𝑘𝑘𝑘 − 𝐑𝐑 󶀡󶀡𝐔𝐔𝑘𝑘𝑘𝑘𝑘𝑘𝑘󶀱󶀱 + 𝑆𝑆𝑆𝑆−1𝑘𝑘 𝐔𝐔𝑘𝑘𝑘𝑘󶀲󶀲

(11)

with 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 being the index associated to the Newton
procedure, and 𝐔𝐔𝑘𝑘𝑘𝑘 = 𝐔𝐔𝑘𝑘𝑘𝑘. e Newton iteration should
stop when either a certain tolerance level is reached, or aer a
�xed number of iterations. Although it is possible in principle
to take more Newton correction iterates, convergence results
from [31] show that, for steady-state computations, quadratic
convergence can be eventually achieved using only one step
of process (11), provided that a suitable time-step evolution
strategy for 𝛿𝛿𝑘𝑘 is found. erefore, in the following we are
supposed to take just one Newton iteration. is leads to the
following linear problem:

𝐔𝐔𝑘𝑘 = 𝐔𝐔𝑘𝑘𝑘𝑘 + 󶁥󶁥𝑆𝑆𝑆𝑆−1𝑘𝑘 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

󶀡󶀡𝐔𝐔𝑘𝑘𝑘𝑘󶀱󶀱󶁵󶁵
−1
󶀡󶀡−𝐑𝐑 󶀡󶀡𝐔𝐔𝑘𝑘𝑘𝑘󶀱󶀱󶀱󶀱 (12)

that can be written, dropping the index 𝑘𝑘, as

𝐴𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴 (13)

where 𝐴𝐴 𝐴 𝐴𝑛𝑛𝑛𝑛𝑛 and 𝐮𝐮𝐮𝐮𝐮𝐮𝐮 𝑛𝑛. More precisely,

𝐴𝐴 𝐴 󶁥󶁥𝑆𝑆𝑆𝑆−1𝑘𝑘 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

󶀡󶀡𝐔𝐔𝑘𝑘𝑘𝑘󶀱󶀱󶁵󶁵 ,

𝐮𝐮𝐮 󶀡󶀡𝐔𝐔𝑘𝑘 − 𝐔𝐔𝑘𝑘𝑘𝑘󶀱󶀱 ,

𝐟𝐟𝐟𝐟𝐟𝐟 󶀡󶀡𝐔𝐔𝑘𝑘𝑘𝑘󶀱󶀱 .

(14)

A preliminary analysis of the memory requirements and
the computational time required by for direct 𝐿𝐿𝐿𝐿 techniques
suggests the use of an iterative solver of Krylov type for the
solution of (13).

e problem with iterative methods is that their con-
vergence rate depends on the spectral properties of the
coefficientmatrix, in particular the condition number 𝜅𝜅𝜅𝜅𝜅𝜅𝜅
‖𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴−1‖, where ‖ ⋅ ‖ is a matrix norm. To obtain a more
favourable condition number, one can solve the modi�ed
system 𝑃𝑃−1𝐴𝐴𝐴𝐴 𝐴𝐴𝐴 −1𝐟𝐟, where 𝑃𝑃 is a nonsingular matrix.
𝑃𝑃 should approximate 𝐴𝐴−1 as closely as possible, so that

4 Modelling and Simulation in Engineering

𝜅𝜅𝜅𝜅𝜅−1𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴𝐴, while still being reasonably cheap to
compute both in memory and CPU time requirements. Also,
it should be optimal, that is, 𝜅𝜅𝜅𝜅𝜅−1𝐴𝐴𝐴 does not depend on
the problem dimension, and scalable, that is, 𝜅𝜅𝜅𝜅𝜅−1𝐴𝐴𝐴 does
not depend on the number of processor used. Indeed, one of
the main aims of a preconditioner is to transform the system
into a system such that the matrix 𝑃𝑃−1𝐴𝐴 is close to an identity
matrix.

Many parallel preconditioners have been proposed in the
literature. Here, we have resorted to preconditioners based on
the domain decomposition (DD) approach. e basic idea of
DD methods is to decompose the computational domain Ω
into 𝑀𝑀 smaller parts Ω𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖, called subdomains,
such that ⋃𝑀𝑀

𝑖𝑖𝑖𝑖 Ω𝑖𝑖 = Ω. Next, the original problem can be
reformulated within each subdomainΩ𝑖𝑖, of smaller size.is
family of subproblems is coupled one to the other through
the values of the unknown solution at subdomain interface.
is coupling is then removed at the expense of introducing
an iterative process which involves, at each step, solutions on
theΩ𝑖𝑖 with additional interface conditions on 𝜕𝜕𝜕𝑖𝑖 ⧵ 𝜕𝜕𝜕.

We will focus on overlapping domain decomposition
methods, also known as Schwarz methods. In these methods,
the computational domain is subdivided into overlapping
subdomains, and local Dirichlet-type problems are then
solved on each subdomain. e communication between the
solutions on the different subdomains is here guaranteed by
the overlapping region.

ese DD methods are usually rather inefficient when
used as solvers of the linear problem; however, they can be
reformulated as efficient parallel preconditioners. To express
the preconditioner, we need to �x some notation. �et 𝑅𝑅𝑖𝑖 ∶
Ω → Ω𝑖𝑖 be a rectangular matrix which returns a vector
de�ned on the nodes internal to Ω𝑖𝑖 from a global vector
de�ned on Ω, 𝐴𝐴𝑖𝑖 = 𝑅𝑅𝑖𝑖𝐴𝐴𝐴𝐴

𝑇𝑇
𝑖𝑖 the local matrix, and �nally

𝐵𝐵𝑖𝑖 = 𝑅𝑅𝑇𝑇𝑖𝑖 𝐴𝐴
−1
𝑖𝑖 𝑅𝑅𝑖𝑖 the correction on subdomain Ω𝑖𝑖. Using this

notation, the one-level (additive) Schwarz method can be
written as

𝑃𝑃−1𝑆𝑆 =
𝑀𝑀
󵠈󵠈
𝑖𝑖𝑖𝑖
𝐵𝐵𝑖𝑖. (15)

is preconditioner is particularly well suited for the class
of problems considered here. It is quite easy to implement and
has reduced memory requirements. However, since 𝑃𝑃𝑆𝑆 acts
only locally, its scalability is hindered by the weak coupling
between far away subdomains. Its performances degrade
rapidly as the number of subdomains increases.

is behaviour is typical of all one-level precondition-
ers, which, by construction, are composed only by local
corrections on the subdomains. In fact, all the state-of-
art DD preconditioners consist of local correction and a
global components. e local part, acting at the subdomain
level, captures the strong couplings that appear between
neighbouring subdomains, while the global part provide an
overall—although inexpensive—communication among the
subdomains.e global component is usually referred to as a
“coarse space correction,” since it is usually de�ned on a space
that is coarse with respect to the �ne space containing the

solution. e complexity of this auxiliary problem is much
lower than that of the original problem, and its role is to
diffuse information among the subdomains. In an analogous
manner to multigrid methods, this coarse space is used to
correct the “smooth” part of the error, whereas the local
preconditioner is used to dump the “high-frequency” part of
the error.

In all generality, the global correction term has the form
𝐵𝐵0 = 𝑅𝑅

𝑇𝑇
0 𝐴𝐴

−1
0 𝑅𝑅0, where𝐴𝐴0 corresponds to the discretisation of

the original PDE problem on a coarse space𝑉𝑉0, and 𝑅𝑅0 is the
restriction operator from the �ne space to the coarse space.
e resulting preconditioner reads as

𝑃𝑃−1𝐶𝐶𝐶add = 𝐵𝐵0 + 𝑃𝑃
−1
𝑆𝑆 =

𝑀𝑀
󵠈󵠈
𝑖𝑖𝑖𝑖
𝐵𝐵𝑖𝑖. (16)

is preconditioner is fully additive since all the corrections
on the subdomains and on the coarse space are added
together. Alternatively, an hybrid preconditioner can be used
as

𝑃𝑃−1𝐶𝐶𝐶hybrid =𝑃𝑃
−1
𝑆𝑆 + 𝐵𝐵0 − 𝑃𝑃

−1
𝑆𝑆 𝐴𝐴𝐴𝐴0. (17)

Roughly speaking, preconditioner (17) is called hybrid
because the corrections on the subdomains are treated in an
additive way (the term 𝑃𝑃−1𝑆𝑆 +𝐵𝐵0), as well as in a multiplicative
way (the term 𝑃𝑃−1𝑆𝑆 𝐴𝐴𝐴𝐴0). For more details, the reader is
referred to [9].

e key element to obtain a scalable and efficient pre-
conditioner is the proper de�nition of the coarse space. e
general approach is to discretise the original problem on a
coarse grid. However, the construction of the coarse grid
and of the corresponding restriction operator 𝑅𝑅0 can be
difficult or computationally expensive for problems de�ned
on unstructured grids in domain of complex shape, as typical
in aeronautical applications. For this reason, here we consider
agglomeration procedures to construct the coarse matrix
for a two-level Schwarz preconditioner. e procedure is
completely algebraic and very wellsuited for unstructured
grids.

We now detail the procedure used to de�ne the coarse
space𝑉𝑉0, referring the reader formore details to [28, 32]. Our
approach is based on the concept of aggregation [33–35]. On
each subdomainΩ𝑖𝑖 we build 𝑛𝑛0,𝑖𝑖 aggregates 𝜗𝜗𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖,
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0,𝑖𝑖. An aggregate is a set of contiguous vertices, see
a 2D examples in Figure 1.e value 𝑛𝑛0 = ∑

𝑀𝑀
𝑖𝑖𝑖𝑖 𝑛𝑛0,𝑖𝑖 represents

the dimension of the coarse space. is means that we split
the degrees of freedom 𝑛𝑛0 among the 𝑀𝑀 subdomains, for
example, simply setting 𝑛𝑛0,𝑖𝑖 = 𝑛𝑛0/𝑀𝑀. Finally, inside Ω𝑖𝑖, each
aggregate is associated to a vector 𝜼𝜼𝑠𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0,𝑖𝑖, whose
elements are built following the rule

𝜼𝜼𝑠𝑠𝑠𝑠𝑠 (𝑘𝑘) = 󶁆󶁆
1 if 𝑘𝑘 belongs to 𝜗𝜗𝑠𝑠𝑠𝑠𝑠
0 otherwise.

(18)

e algorithmuses a simple procedure to build the opera-
tors 𝑅𝑅0 and 𝑅𝑅

𝑇𝑇
0 and to form the coarse matrix as

𝐴𝐴0 = 𝑅𝑅0𝐴𝐴𝐴𝐴
𝑇𝑇
0 . (19)

Modelling and Simulation in Engineering 5

F 1: Examples of aggregates for a 2D domain. e nodes marked with “■,” “○”, and “⬤” belong to three different aggregates.

For a comparison between the de�nition of the coarse space
using a coarse grid and using aggregation, the reader is
referred to [36], or [28, Chapter 3], where the authors
compare the two approaches for a model problem.

e development of a scalable parallel 𝛼𝛼𝛼NKS code requires
the de�nition of an efficient distributed data structure. is
data structure must efficiently handle the preconditioning
phase, which is probably the most important aspect of the
𝛼𝛼𝛼NKS solver, as well as all the other computational kernels
of the scheme.

roughout our description, we make the following
assumptions.

(i) e parallel computer is of multiple instruction mul-
tiple data (MIMD) architecture.

(ii) e parallel computer is assumed to use distributed
memory architecture. In fact, this is not a restriction
at all since it can be emulated on almost every
type of parallel computers including shared memory
computers.

(iii) Communications are achieved using a message pass-
ing interface, like MPI [37]. is is not a limitation
since message passing libraries are currently available
on almost every type of architecture.

We also suppose that the starting grid, of moderate size,
say, up to a million of elements for an inviscid solution,
has been generated on a sequential computer. More re�ned
grids will be obtained by the means of parallel adaptation
techniques, as described in paper [38].

e �rst step is the partition of the grid among the
𝑀𝑀 processors. To that aim, we have used the 𝑘𝑘-way graph
partitioning algorithms [39]. Given a graph 𝐺𝐺 𝐺 𝐺𝐺𝐺𝐺 𝐺𝐺𝐺 with
|𝑉𝑉𝑉𝑉 𝑉𝑉, we partition 𝑉𝑉 into 𝑘𝑘 subsets 𝑉𝑉1,𝑉𝑉2,… ,𝑉𝑉𝑘𝑘 such
that 𝑉𝑉𝑖𝑖 ∩ 𝑉𝑉𝑗𝑗 = ∅, |𝑉𝑉𝑖𝑖| =𝑛𝑛 𝑛𝑛𝑛 on average, and ⋃𝑖𝑖 𝑉𝑉𝑖𝑖 =
𝑉𝑉, and the number of edges of 𝐸𝐸 whose incident vertexes
belong to different subsets is minimised. A k-way partition
is commonly represented by a partition vector 𝐩𝐩 of length 𝑛𝑛,
such that for every vertex 𝑣𝑣 𝑣 𝑣𝑣, 𝑃𝑃𝑃𝑃𝑃𝑃 is an integer between

1 and 𝑘𝑘, indicating the partition to which vertex 𝑣𝑣 belongs
to. Given a partition 𝑃𝑃, the number of edges whose incident
vertexes belong to different subsets 𝑖𝑖 is called the edge-cut of
the partition.

e 𝑘𝑘-way algorithm can be used to decompose the
direct graph or the dual graph of the grid, leading to vertex-
oriented (VO) or element-oriented (EO) decompositions.
In the former, each vertex of the grid is assigned to a
different processor, while in the latter the decomposition
is at element wise. A numerical comparison between the
two approaches for the compressible Euler equations using
explicit time-marching scheme can be found in [40], while
results concerning implicit time-marching schemes can be
found in [41].

We have followed a VO decomposition. As a result of the
VO decomposition, each vertex of the computational grid is
assigned to a unique processor, whereas there exist elements
shared by more processors. ese elements are called cut
elements—since their edges have been intersected—and they
form a layer of elements that actually belong to more than
one processor. e cut elements are stored on all processors
which have at least one node of the element in their update
set. For example, in Figure 2 the shaded elements are stored
on both processor 𝑃𝑃1 and processor 𝑃𝑃2. e nodes assigned
to processor 𝑖𝑖 form its update set, whose size is 𝑛𝑛𝑖𝑖. Clearly,
∑𝑀𝑀
𝑖𝑖𝑖𝑖 𝑛𝑛𝑖𝑖 =𝑛𝑛 , 𝑛𝑛 being the global dimension of the problem.

e nodes belonging to the subdomain, but not to the update
set, are called external nodes. e size of this set is 𝑛𝑛𝐸𝐸𝐸𝐸𝐸.

From the point of view of the parallel application, grid
generation and graph partitioning result in𝑀𝑀 input �les [40];
each input �le contains a list of elements (grid connectivity
and spatial coordinates of each vertex) and a list of the
(physical) boundary nodes, grouped in the so-called patches.
Each patch corresponds to a part of the boundary, like,
for instance, the nacelle, the wing, or the symmetry plane,
on which the same boundary conditions are imposed. e
grid is represented in terms of element-based data structure.
Also, a local-to-global mapping must be provided, to enable
communication among the processors.

Aer convergence of the 𝛼𝛼𝛼NKS solver, each processor
writes the solution corresponding to its update set as a
part of the global data. Oen, these partitioned data are

6 Modelling and Simulation in Engineering

F 2: Vertex-oriented decomposition. Example of the overlapping stripe and respective mapping onto processors p and q, update and
external nodes. For processor 𝑃𝑃1, “○” represents the internal nodes, “□” the border nodes, and “■” the external nodes. For processor 𝑃𝑃2, “⬤”
represents the internal nodes, “■” the border nodes, and “□” the external nodes.

merged into a single �le for global solution analysis and
visualisation. However, certain packages also work directly
on the partitioned solution and can alsomonitor the solution.
We will not consider automatic visualisation issues in the
following, since we have used stand-alone soware tools.

4. 𝛼𝛼𝛼NKS Solver Main Operations Analysis

emain computational kernels of our solver are as follows:

(1) construction of the distributed matrix;
(2) vector updates and AXPY operations;
(3) vector-vector products;
(4) matrix-vector products;
(5) application of the preconditioner.

In this section we analyse these operations.
Let us focus on the construction of the distributed matrix.

As typical, the �nite-elementmatrix is constructed by looping
over all the elements of the local grid, to compute the
elemental matrix 𝐴𝐴(𝑇𝑇𝑇, corresponding to each element 𝑇𝑇. On
processor 𝑖𝑖, the contribution of𝐴𝐴(𝑇𝑇𝑇 will be considered only if
the corresponding row is contained in the update set of 𝑖𝑖.is
means that𝐴𝐴 is constructed in a distributed way, that is, each
row of 𝐴𝐴 is stored on a unique processor. In an analogous
way, every vector, say 𝐮𝐮, is distributed: each processor will
store only 𝐮𝐮𝑖𝑖, the vector composed by the components of 𝐮𝐮
which correspond to its update set, and of size 𝑛𝑛𝑖𝑖.

An AXPY operations (i.e., 𝐮𝐮 𝐮 𝐮𝐮 𝐮 𝐮𝐮𝐮𝐮 for 𝐮𝐮 and 𝐯𝐯 two
given vectors and 𝛼𝛼 a given real number) are done as follows.
First, one has to verify that all processors have the same value
of 𝛼𝛼; then, for all the elements of the local vector 𝐮𝐮𝑖𝑖, one do
𝐮𝐮𝑖𝑖 ← 𝐮𝐮𝑖𝑖 +𝛼𝛼𝛼𝛼𝑖𝑖. Apart from the synchronisation of the value of
𝛼𝛼 (step which is oen avoided), no communication occurs in
vector updates and AXPY operations.

e vector-vector product 𝛽𝛽 𝛽 𝛽𝛽𝛽𝛽 𝛽𝛽𝛽 on processor 𝑖𝑖 reads
as follows: (1) compute the local value 𝛽𝛽𝑖𝑖 =⟨ 𝐮𝐮𝑖𝑖,𝐯𝐯 𝑖𝑖⟩; (2) sum
up the local contributions of all the processors: 𝛽𝛽 𝛽 𝛽𝑀𝑀

𝑖𝑖𝑖𝑖 𝛽𝛽𝑖𝑖.

Note that communication is required only in the second
step. �efore computing the �nal value of 𝛽𝛽, all processors
must have �nished the computations in the �rst step. For
this reason, vector-vector product always act, in a parallel
environment as synchronisation points and require, global
communications.

In the matrix-vector product 𝐲𝐲 𝐲𝐲𝐲 𝐲𝐲, a processor 𝑖𝑖 com-
putes only the elements of 𝐲𝐲 in its update set, that is, in 𝐲𝐲𝑖𝑖.
Hence, the local parallel matrix-vector product reads as

𝐲𝐲𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐱𝐱𝑖𝑖 + 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐱𝐱𝐸𝐸𝐸𝐸𝐸, (20)

where 𝐱𝐱𝑖𝑖 and 𝐱𝐱𝐸𝐸𝐸𝐸𝐸 are the values of 𝐱𝐱 corresponding to its
update and external set, respectively, 𝐴𝐴𝑖𝑖 is the submatrix
representing the in�uence of update nodes on themselves,
while 𝐴𝐴𝐸𝐸𝐸𝐸𝐸, the action of external nodes on update ones.

From (20), the steps required to perform the parallel
matrix product are (1) the exchange of boundary data, that
is, the update the value of the external nodes 𝐱𝐱𝐸𝐸𝐸𝐸𝐸; (2) the
computation of the the local matrix-vector product 𝐲𝐲𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐱𝐱𝑖𝑖;
(3) the computation of the external matrix-vector product
𝐲𝐲𝑖𝑖 ← 𝐲𝐲𝑖𝑖 + 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐱𝐱𝐸𝐸𝐸𝐸𝐸.

Steps (1) and (2) can be overlapped. Note that an efficient
implementation of step (1) is particularly important to obtain
a scalable matrix-vector product. As a general rule, data
to be sent to a processor should be packed and sent using
only one MPI call to avoid latency problems occurring
within the network. However, since the grid discretisation
is unstructured, it is not trivial to determine the owner of
an external set and, moreover, all the nodes belonging to a
certain processor are not necessarily stored contiguously in
the vector 𝐱𝐱𝐸𝐸𝐸𝐸𝐸. is operation of packing data into a buffer
creates contiguous messages from irregularly spaced data
structure and requires a preprocessing of the matrix, plus the
de�nition of a certain number of data structures.

We want to underline the fact that for both �rst-order
and second-orderMURD schemes, the computational stencil
of a generic vertex 𝑖𝑖 is compact, that is, it only depends on
information from vertexes that are one edge-distance away
in the grid structure.erefore, the Jacobian matrix will have

Modelling and Simulation in Engineering 7

nonzero elements only for the contributions corresponding
to the �rst-order neighbouring nodes even for second-order
schemes. is simpli�es considerably the communication
and allows the use of the same data structure for �rst-order
and second space discretisation schemes.

Finally, let us consider the application of the Schwarz
preconditioner. Using the VO decomposition outlined in
Section 3, it is particularly easy to implement a one-level
Schwarz preconditioner 𝑃𝑃𝑆𝑆 with minimal overlap, that is,
with an overlap among the subdomains of one element only.
Referring again to Figure 2, the overlapping region among the
subdomains is represented by the elements in shaded colour.

On processor 𝑖𝑖, the computation of the preconditioned
residual 𝐳𝐳 𝐳 𝐳𝐳−1𝑆𝑆 𝐫𝐫 simply reads as

𝐳𝐳𝑖𝑖 = 𝐴𝐴
−1
𝑖𝑖 𝐫𝐫𝑖𝑖. (21)

Matrix 𝐴𝐴𝑖𝑖 is already stored and formed in the local memory
of processor 𝑖𝑖. Note that Schwarz preconditioners with wider
overlaps will require communication. In general, the optimal
amount of overlap is clearly a compromise between the
effectiveness of the preconditioner and its computational
complexity. For this class of problems, we have found it
convenient to use the minimal overlap version. is is
equivalent to a block-Jacobi procedure, where the blocks
have size 𝑛𝑛𝑖𝑖. An ILU(0) or BILU(0) factorisation (using a
reverse Cuthill-McKee reorder) of the block matrices gives
satisfactory results (in terms of CPU times) with respect
to other “richer” incomplete factorisations [41]. In fact,
compared with other variants, ILU(0) is computationally fast
and memory efficient.

Now, let us focus on the two-level Schwarz precondi-
tioner described in Section 2, with a coarse space based on
aggregation. We show that this preconditioner makes use of
information at subdomain level. To obtain a representation
of matrix 𝑅𝑅0, we order the set of nodes putting before the
nodes in Ω1, and then the nodes of the domain subdomains
in the other subdomains. Analogously, we order the degree
of freedom of 𝑉𝑉0. As a result, 𝑅𝑅

𝑇𝑇
0 ∈ ℝ𝑛𝑛0×𝑛𝑛 has the following

block structure:

𝑅𝑅𝑇𝑇0 =

󶀄󶀄󶀔󶀔

󶀜󶀜

𝜼𝜼𝑇𝑇1,1 𝟎𝟎 𝟎 𝟎𝟎

𝜼𝜼𝑇𝑇2,1 𝟎𝟎 𝟎 𝟎𝟎
⋮ 𝟎𝟎 𝟎 𝟎𝟎
𝜼𝜼𝑇𝑇𝑛𝑛0,1,1 𝟎𝟎 𝟎 𝟎𝟎

𝟎𝟎 𝟎𝟎𝑇𝑇1,2 ⋯ 𝟎𝟎
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎𝑇𝑇𝑛𝑛0,2,2 ⋯ 𝟎𝟎
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎 𝟎𝟎𝑇𝑇1,𝑝𝑝
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 𝟎 𝟎𝟎𝑇𝑇𝑛𝑛0,𝑝𝑝

󶀅󶀅󶀕󶀕

󶀝󶀝

. (22)

Note that each vector 𝜼𝜼𝑠𝑠𝑠𝑠𝑠 can be constructed at the
subdomain level, using only the local information about the

grid ofΩ𝑖𝑖 (hence no communications). Very oen, the graph
of the local matrix 𝐴𝐴𝑖𝑖 can furnish the information required
to produce the aggregates, and henceforth grid data are not
required by the algorithm. is is notably the case of �nite-
element codes with ℙ1 basis function, as used in this paper.
Note moreover that the vectors 𝜼𝜼𝑠𝑠𝑠𝑠𝑠 are not explicitly required
by the algorithm. We use one integer vector 𝐩𝐩, so that 𝑝𝑝𝑖𝑖
represents the (local) degree of freedom associated to the
aggregate 𝜗𝜗𝑠𝑠𝑠𝑠𝑠. e vector 𝐩𝐩 will be of size 𝑛𝑛𝑖𝑖 + 𝑛𝑛𝐸𝐸𝐸𝐸𝐸. First,
communications occur to exchange the actual values of 𝐩𝐩𝐸𝐸𝐸𝐸𝐸
among the processors. en, in the aggregation procedure to
compute the coarse matrix as in (19), no communication will
be required to compute, on each subdomain, the rows of 𝐴𝐴0
corresponding to the degree of freedom of 𝑉𝑉0 contained in
that subdomain.

5. Numerical Results

In this section the 𝛼𝛼𝛼NKS solver presented previously
is validated. e underlying Euler code we have used is
called THOR, developed within the BRITE-EURAM project
IDeMAS. e basic code was provided by the project co-
ordinator, the von Karman Institute VKI (Belgium), and
includes contributions from the partners, DASSAULT AVI-
ATION (France), ALENIA (Italy), DASA/EADS (Germany),
INRIA (France), and EPFL (Switzerland). THOR involves
several high-level numerical schemes aiming to produce
highly accurate multidimensional upwinding techniques, see
[5]. e graph partitioning is based on the public domain
soware METIS [42] and its parallel counterpart ParMETIS
[43]. e linear systems involved are solved using the library
AZTEC [44], developed at the Sandia National Laboratories
(USA). e Schwarz algorithms and the Krylov solvers have
been implemented by the authors.

e numerical results have been obtained on a SGI-
Origin 3800, equipped with 128MIPS R14000 500Mhz
processors. Each processor has 512Mbytes of RAM, with
32Kbytes and 8Kbytes of �rst level and second level cache
memory, respectively. is type of machine can be replaced
by Linux cluster-type machines, the results being signi�cant
for both types of architectures. e parallel communication
paradigm used is MPI [37].

ree test cases taken of aeronautical interest have been
selected to illustrate the variation of the performancewith the
various parameters within the algorithm and validate the full
𝛼𝛼𝛼NKS cycle.

In all the numerical tests, 𝑃𝑃𝑆𝑆 indicates the one-level
Schwarz preconditioner, with ILU(0) factorisations and min-
imal overlap among the subdomains. 𝑃𝑃𝐶𝐶𝐶hybrid denotes the
two-level Schwarz preconditioner, as detailed in Section 2.
e local dimension of the coarse space (i.e., the number of
aggregates assigned to each processor) is 𝑛𝑛0/𝑀𝑀. e coarse
problem is solved redundantly on each processor, using a
direct LU decomposition.

5.1. Falcon Aircra at 𝑀𝑀∞ = 0.45 and 𝛼𝛼 𝛼𝛼 ∘. We have
studied the in�uence of the Krylov accelerator on a small
3D test case, namely, a Falcon aircra with a computational

8 Modelling and Simulation in Engineering

0 20 40 60 80 100 120 140

Krylov iterations

FALCON. P_S using 32 processors.

GMRES(25)
Bi−CGSTAB
TFQMR

CGS
GMRES(60)

106

104

102

100

10− 2

10− 4

10− 6

10− 8

F 3: FALCON aircra. Convergence history at the 10th time level using 32 processors and various Krylov accelerators.

0 2 4 6 8 10 12 14 16

10

20

30

40

50

60

70

80

90

Time level

G
M

R
E

S
 i

te
r
a
ti

o
n

s

F 4: FALCON aircra. Iterations to converge at each time iterations, using 𝑃𝑃𝑆𝑆, 𝑃𝑃𝐶𝐶𝐶add and 𝑃𝑃𝐶𝐶𝐶hybrid, and 16 processors. 𝑛𝑛0 denotes the
dimension of the coarse space for the aggregates.

grid composed of 45387 nodes and 255944 elements, with
�ight conditions of 𝑀𝑀∞ = 0.45 and 𝛼𝛼 𝛼 𝛼∘. is test case
is representative of a complete aeronautical con�guration of
an industrial airplane, with body, wing, and nacelles. is is
the only subsonic test case. e mesh is quite coarse, and we
have used this test case to validate the Krylov accelerators and
the basic properties of the preconditioners (see also [23, 45]
for a more extensive analysis on this subject).

Slip boundary conditions are imposed on the airplane.
Since the problem is symmetric, as well as the boundary
conditions, the mesh is represented by half a sphere, where

we have imposed far-�eld and symmetry-plane bound-
ary conditions. Referring to equation (10), we have used
CFL0 = 1.0, 𝜎𝜎 𝜎 𝜎, and CFLmax = 106. For this test case,
only the �rst-order N-scheme for systems was used, since the
aim of this test case was to validate the choice of the Krylov
accelerator.

Figure 3 reports the norm of the residual (scaled by
the norm of the initial residual) versus the linear system
solver iterations, for the 10th time step. e accelerators
considered are, Bi-CGSTAB, CGS, TFQMR, GMRES(25),
and GMRES(60). e preconditioner is 𝑃𝑃𝑆𝑆.

Modelling and Simulation in Engineering 9

4 8 16 32

4

8

16

32

FALCON-speedup at 10 th time level

Number of processors

GMRES(25)
TFQMR
ideal

F 5: FALCON aircra. Relative speedup curves taken at the 10th time level.

Figure 4 reports the iterations to converge to a tolerance
on the relative residual of 10−5 at each time iteration, using
𝑃𝑃𝑆𝑆, 𝑃𝑃𝐶𝐶𝐶add, and 𝑃𝑃𝐶𝐶𝐶hybrid. From the �gure, it is evident that
the CFL number has a strong in�uence on the iterations to
converge. In fact, as the CFL number increases, the linear
system becomes more skew-symmetric and less diagonal-
dominant, and hencemore iterations are required to converge
to the desired accuracy. Note that, for low values of the CFL
number, the number of iterations to converge is almost the
samewith one-level and two-level methods.ismay suggest
to adapt the preconditioner for the problem to be solved,
introducing the coarse problem only for certain values of the
CFL number.

For any combination of solver and preconditioner, con-
vergence of the linear system solver is reached at any time
step. GMRES is slightly faster than the other methods; it
takes more iterations to converge, but the single iteration
is faster, since it requires only one matrix-vector product,
instead of two as in the other methods. However, it is quite
sensitive to the dimension of the Krylov space, especially as
the number of processor used in the computation increases.
e convergence history at the 10th time step (when the CFL
number is 10240) reveals that TFQMR has a quite erratic
convergence, while the one provided by CGS is (unexpect-
edly) quite regular. Bi-CGSTAB performs quite well but it is
still erratic.e differences among theKrylov accelerators are
particularly evident as the number of processors grows. is
may re�ect the fact that the Schwarz preconditioners with
no coarse correction worsen their performances with many
subdomains.

As a result of this analysis, GMRES appear to be the
most interesting among the iterative schemes for our class
of problems. is con�rms what was already pointed out
in [23]. e only drawback of GMRES is represented by

the memory requirements. erefore, if it is the case to use
Krylov subspaces of “low” dimension, one may consider
other iterative schemes, like TFQMR or Bi-CGSTAB.

e results also show a reasonable scalability as illustrated
in Figure 5.e whole convergence process is autoregulating;
however, in general, 20–200 linear system iterations are
performed 4 to 16 time levels as illustrated in Figure 6.

5.2. X29 Aircra at 𝑀𝑀∞ = 0.75 and 𝛼𝛼 𝛼𝛼 ∘. e next test
case is a X29 experimental aircra, �ying at almost transonic
speed. It represents the experimental Grumman Model 712,
designated X-29A by the �SAF, a single-seat �et aircra �tted
with awingmounted at the rear of the fuselage, swept forward
at 35∘, and with canards �ust behind the cockpit. e �ight
conditions are 𝑀𝑀∞ = 0.75, 𝛼𝛼 𝛼𝛼 ∘. Equation (10) is used,
with CFL0 = 0.2, 𝜎𝜎 𝜎𝜎 , CFLmax = 1000.

e initial grid is composed by 136767 nodes and 726713
elements. e �rst-order N-scheme for systems was used on
the nonadapted grid, while a second-order blended scheme
was used on the adapted grids. In all the computations, the
�acobian matrix is formed starting from �rst-order space
approximation to save computational time, because the
evaluation of second order distribution residual is more time
consuming with respect to �rst-order method.

In Table 1, the cost of the following adaptation sequence is
reported.e complete solution is required at least 8 hours on
16 processors, and less than one hour on 64 processors. is
result is mainly due to the speci�c architecture of the SGI-
Origin, which allows a processor to use (when required) the
memory of another processor. is is notably the case of the
X29 test case when run with only 16 processors, due to the
size of the problem; while by using 64 processors, then only
the local processor memory was used.

10 Modelling and Simulation in Engineering

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

Time levels

L
in

ea
r

sy
st

em
 it

er
at

io
n

s

FALCON_45k with 32 processors

GMRES(60)

Bi−CGSTAB

CGS

TFMQR

GMRES(25)

F 6: FALCON aircra. Comparison of number of iterations per time level for 32 processors.

(a) (b)

F 7: X29 aircra. Before and aer optimisation and smoothing. In particular, the symmetry plane grid on the le picture shows an
excessive neighbour number elements. is is no longer present in the right picture, aer optimisation and smoothing.

e 𝛼𝛼𝛼NKS cycle is as follows. Starting from an initial
grid 𝒯𝒯(0), 2 steps of re�nement and dere�nement and
structural optimisation gave the grid 𝒯𝒯(1). en smoothing
optimisation is performed on 𝒯𝒯(1) to obtain 𝒯𝒯(2). en on
𝒯𝒯(2) large scale, re�nement and optimisation gave a �nal grid
of 1.47 million nodes and 8.7 million elements, 𝒯𝒯(3), which
is a very interesting performance test case.

e effect of the smoothing optimisation can be seen
in Figure 7. Figure 8 details the solutions on these �rst
re�nements. e mesh re�nement criteria taken here are
segment length and Mach gradients and are detailed in [38].

A comparison of iterations to converge and CPU times is
reported in Table 2 for the �rst 14 iterations of the 𝛼𝛼𝛼NKS
procedure. In the table, iters indicates the sum of Krylov
iterations at each backward Euler time step, and CPU time
the sum of the (elapsed) CPU times (in seconds) to solve the
Jacobian linear system. More detailed results about one-level
and two-level Schwarz preconditioners are reported in Table
3.As previously noted, theCFLnumber has a strong in�uence
on the convergence. One may note that 𝑃𝑃𝐶𝐶𝐶hybrid performs
better than𝑃𝑃𝐶𝐶𝐶add. For small problems, large dimension of𝑉𝑉0
have to be preferred, while bigger problems re�uired a �ne
tuning of 𝑛𝑛0/𝑀𝑀 to obtain the best numerical results.

Modelling and Simulation in Engineering 11

(a) (b)

F 8: X29 aircra. �oom over part of the re�nement and Mach number distribution on the body for the gridℳ1.

T 1: X29 aircra. Time for successive adaptations using 8 and
16 processors.

78 secs. Grid
dere�nement�re�nement

First cycle𝒯𝒯(1)

2 cycles 𝑀𝑀 𝑀 𝑀 690 secs. Regularisation and
optimisation

132 secs. Overheads

854 secs. Grid
dere�nement�re�nement

Final Grid𝒯𝒯(3)

2 cycles 𝑀𝑀 𝑀 𝑀𝑀 2860 secs. Regularisation and
optimisation

1002 secs. Overheads

T 2: X29 aircra. Comparison of𝑃𝑃𝑆𝑆 and𝑃𝑃𝐶𝐶𝐶hybrid using different
number of processors for the non-adapted grid, is made up of
136767 nodes and 726713 elements. Both CPU-time and iterations
refer to the �rst 14 time iterations of the backward Euler method.
For the coarse correction 𝑛𝑛0/𝑀𝑀 𝑀 𝑀.

𝑀𝑀 𝑀 𝑀 𝑀𝑀 𝑀 𝑀𝑀 𝑀𝑀 𝑀 𝑀𝑀 𝑀𝑀 𝑀 𝑀𝑀
iters

𝑃𝑃𝑆𝑆 270 310 369 347
𝑃𝑃𝐶𝐶𝐶hybrid — 199 210 171
(𝑃𝑃𝑆𝑆 − 𝑃𝑃𝐶𝐶𝐶hybrid)/𝑃𝑃𝐶𝐶𝐶hybrid ∗ 100 — 55.7 75.1 102.9

CPU-time
𝑃𝑃𝑆𝑆 4995.1 1461.2 451.6 202.9
𝑃𝑃𝐶𝐶𝐶hybrid — 1253.3 434.3 189.1
(𝑃𝑃𝑆𝑆 − 𝑃𝑃𝐶𝐶𝐶hybrid)/𝑃𝑃𝐶𝐶𝐶hybrid ∗ 100 — 16.58 3.98 7.29

It is worth to note that the efficiency of the 𝑃𝑃𝐶𝐶𝐶hybrid
preconditioner clearly outperforms 𝑃𝑃𝑆𝑆 in terms of iterations,
while as concerns CPU-times there is an improvement of
about 10%. is is due to the following facts:

(i) 𝑃𝑃𝐶𝐶𝐶hybrid requires a matrix-vector product to be per-
formed, and this is computationally expensive;

(ii) the solution of the coarse problem requires intensive
communications among theprocessors.

T 3: X29 aircra. Comparison among different preconditioners
for different values of theCFL number. 16, 32 and 64 processors have
been used in the computations.

Time Level CFL 𝑀𝑀 Prec iters CPU-time
10 102.4 32 𝑃𝑃𝑆𝑆 29 33.26
14 1000.0 32 𝑃𝑃𝑆𝑆 84 54.79
10 102.4 64 𝑃𝑃𝑆𝑆 33 15.57
14 1000.0 64 𝑃𝑃𝑆𝑆 90 25.28
10 102.4 16 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 16 96.69
14 1000.0 16 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 51 117.64
10 102.4 32 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 16 31.38
14 1000.0 32 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 39 37.93
10 102.4 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 20 13.53
14 1000.0 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 79 23.46
10 102.4 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 15 14.77
14 1000.0 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 35 19.45
10 102.4 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 15 12.93
14 1000.0 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀 35 16.86
10 102.4 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀𝑀 15 14.05
14 1000.0 64 𝑃𝑃𝐶𝐶𝐶hybrid, 𝑛𝑛0/𝑀𝑀 𝑀 𝑀𝑀 35 18.82

5.3. ONERA M6 Wing at 𝑀𝑀∞ = 0.84 and 𝛼𝛼 𝛼𝛼𝛼𝛼𝛼 ∘. e
last test case is an ONERA M6 wing at𝑀𝑀∞ = 0.84 and 𝛼𝛼 𝛼
3.06∘. It represents aONERAM6wing, a widely used test case
for 3� �ows from subsonic to transonic regimes.e selected
transonic case is𝑀𝑀∞ = 0.84 and 𝛼𝛼 𝛼𝛼𝛼𝛼𝛼 , which results in
several shock waves over the wing. In the �ow-�eld, a shock
originates at approximatively 80% of the wing span. A second
leading-edge shock is caused by the 30% sweep angle of the
M6 wing. Near the tip of the wing, a lambda-shock structure
is observed.

e �rst-order N-scheme for systems is used to obtain
the solution on the �rst (nonadapted) grid, while the second-
order blended scheme is used for the adapted grids. As for the
X29 test case, the �acobian matrix is formed using the �rst-
order scheme.

e far �eld is represented by a half sphere with a radius
of 12.5 root-chord length. e 𝛼𝛼𝛼NKS procedure has been

12 Modelling and Simulation in Engineering

0 2 4 6 8 10 12

−0.4

−0.6

−0.8

−1

−1.2

−1.4

−1.6

M6_94K pressure at 20 %

1st order no adapt

2nd order no adapt

X

P

(a)

0 2 4 6 8 10 12

−0.4

−0.6

−0.8

−1

−1.2

−1.4

−1.6

M6_94K pressure at 20 %

2nd order no adapt

2nd order adapt

X

P

(b)

F 9: ONERAM6 wing. Pressure coefficient at 20% of wing span, using �rst-order and second-order schemes on a nonadapted grid (a),
and second-order schemes on nonadapted and adapted grid (b).

performed as follows. e starting nonoptimised grid is
composed by 94493 nodes and 666569 elements, and an
initial constant solution is used. en, two steps of re�ning
are performed. Each adaptation phase corresponds to at
least two passes of adaptation (re�nement coarsening and
optimisation). e �nal grid (aer two adaptation cycles) is
composed by 585725 nodes and 3477090 elements.

e pressure coefficient at 20% of the wing span is
reported in Figure 9. e picture on the le shows the
improvement from �rst-order to second-order schemes.

Second-order scheme captures the �rst shoc� wave, near the
leading edge, with much greater precision than �rst-order
schemes.e over- and under-shoots are sensibly reduced by
using adapted grids, as one can notice from the picture on the
right.

An analysis of the �ow �eld on the upper part of the
wing is reported in Figure 10, while Figure 11 reports the
nonadapted grid and the adapted grid.

As regards the convergence of the 𝛼𝛼𝛼NKS scheme, as one
can seen from Figure 12 that in the case of 16 processors,

Modelling and Simulation in Engineering 13

(a) (b) (c)

F 10: ONERA M6 wing. From le� to right, Mach number contours for: a �rst-order solution and a second-order solution on the
nonadapted grid, and a second-order solution on the adapted grid.

(a) (b)

F 11: ONERAM6 wing. Nonadapted grid (a) and adapted grid (b).

0 500 1000 1500 2000 2500 3000 3500 4000
−16

−14

−12

−10

−8

−6

−4

−2

CPU time (s)

First-order, nonadapted grid

Second-order, nonadapted grid

Second-order, adapted grid

F 12: ONERAM6wing. Convergence history of the𝛼𝛼𝛼NKS scheme.On the 𝑥𝑥-axes, CPU time, in seconds. On the𝑦𝑦-axes, the logarithm
of the (Euclidean) norm of the density residual.

14 Modelling and Simulation in Engineering

the �rst-order N-scheme rapidly converges to steady-state
solution very rapidly. In this phase, CFL0 = 10, 𝜎𝜎 𝜎 𝜎𝜎𝜎,
CFLmax = 106, and analytical Jacobian are used. ese initial
iterations are needed to place the shocks in a more or less
correct position, so that they do not have tomove consistently
when second-order schemes are employed. For second-order
schemes, we have used CFL0 = 0.2, 𝜎𝜎 𝜎 𝜎𝜎𝜎, and CFLmax =
1000.

As already reported in [23, 46], the iterative convergence
of second-order schemes is poor; basically, for nonadapted
meshes, the 𝐿𝐿2 density residuals stagnate around 2 to 3
orders of magnitude, where the residual is compared to the
�rst iteration. e situation is slightly improved on adapted
meshes, even if it was not possible to reduce the residualmore
than a certain factor, here about 10−5 with respect to the �rst
iteration on the nonadapted grid.

6. Conclusions

Multidimensional upwind schemes have reached a certain
degree of maturity for the solution of the steady-state com-
pressible Euler equations on unstructured grids made up of
triangles (in 2D) and tetrahedrons (in 3D). ey can be used
for complex aerodynamic �ows, in the subsonic, transonic,
and supersonic regime. Nevertheless, it is clear that the the
full potential of the approach may be revealed only if these
methods could effectively lead to scalable parallel codes. In
particular, this requires, among others, the de�nition and
the implementation of a scalable preconditioner and of a
parallel grid adaption technique to improve the solution
accuracy whilst optimising the computational resources. To
that aim, we have here presented the adaptive pseudotran-
sient Newton-Krylov-Schwarz framework.

Most parallel implementation of MURD schemes are
based on one-level Schwarz preconditioner and do not
include automatically grid adaptation procedure. is paper
aims to present a complete framework which couples
these two aspects with the characteristic aspects of MURD
schemes.

e main kernels of this algorithm have been analysed.
A data structure, based on a vertex-oriented decomposi-
tion of the grid, has been described. is data structure
allows an efficient implementation of all the main compu-
tational kernels. Of particular importance is the de�nition
of the preconditioner. One-level and two-level Schwarz
preconditioners have been presented. e coarse matrix is
constructed automatically and for any computational grid
with no input from the user (except for the matrix 𝐴𝐴 and
the dimension of the coarse space). is simplicity has its
roots mainly in the way the restriction and interpolation
operators are de�ned. e results show an improvement of
performance with respect to the one-level Schwarz method,
which is the preconditioner usually adopted in the lit-
erature for multidimensional upwind residual distribution
schemes.

Numerical results, obtained on distributedmemory com-
puters, are presented for large scale computations in the sense
of complexity and mesh adaptation on parallel machines.

Results show that the conjunction of the Krylov-Schwarz
approach with a grid adaptation procedure leads to an
effective solution of the compressible Euler equations on
unstructured grids.e same techniques apply to the Navier-
Stokes systemof equations solved by similar equivalent �nite-
volume techniques on unstructured grids [18, 47].

Acknowledgments

is paper summarises the activity of the authors, par-
tially �nanced within the BRITE/EURAM European Union
founded project IDeMAS (Contract no. BRPR-CT07-0591)
and the Swiss National Science Foundation project no.
200020-112221. e Swiss Federal Office for Education and
Science (OFES) is also acknowledged for �nancial support.
e authors would like to thank Professor A. Quarteroni
and Professor L. Formaggia for the useful discussions and
help. VKI is acknowledged for the basic THOR code. e
DIT/EPFL is acknowledged for the technical assistance.

References

[1] “Unstructured gridmethods for advection dominated �ows,” In
AGARD, R-987, 1992.

[2] H. Deconinck, K. Sermeus, and R. Abgrall, Status of Multidi-
mensional Upwind Residual Distribution Schemes and Applica-
tions in Aeronautics, AIAA Paper, 2000.

[3] P. L. Roe, “Multidimensional upwinding—motivation and con-
cepts,” in 25th VKI Lecture Series on Computational Fluid
Dynamics, pp. 94–95, VKI, 1994.

[4] P. L. Roe and D. Sildikover, “Optimum positive linear schemes
for advection in two and three dimension,” Tech. Rep., ICASE,
1989.

[5] Brite/Euram (OFES N. 97.04271), “Industrial demonstration of
accurate and efficient multidimensional upwinding algorithms
for aerodynamic simulation IDeMAS,” Tech. Rep., Von Karman
Institute, Rhode Saint Genèse, Belgium, 2001.

[6] P. L. Roe, “Approximate Riemann solvers, parameter vectors,
and difference schemes,” Journal of Computational Physics, vol.
43, no. 2, pp. 357–372, 1981.

[7] P. L. Roe, “Fluctuation and signals—a framework for numerical
evolution problems,” inNumericalMethods For FluidDynamics,
K. W. Morton and M. J. Baines, Eds., pp. 219–257, Academic
Press, 1982.

[8] A. Quarteroni andA. Valli,DomainDecompositionMethods For
Partial Differential Equations, Oxford University Press, Oxford,
UK, 1999.

[9] B. F. Smith, P. Bjorstad, and W. D. Gropp, Parallel Multilevel
Methods For Elliptic Partial Differential Equations, Cambridge
University Press, Cambridge, UK, 1996.

[10] X. C. Cai, D. E. Keyes, and V. Venkatakrishnan, “Newton-
Krylov-Schwarz: an implicit solver for CFD,” in Proceedings
of the 8th International Conference on Domain Decom-position
Methods, R. Glowinski, Ed., pp. 387–400, 1997.

[11] W.D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “High-
performance parallel implicit CFD,” Parallel Computing, vol. 27,
no. 4, pp. 337–362, 2001.

[12] W. Gropp, D. Keyes, L. C. McInnes, and M. D. Tidriri,
“Globalized Newton-Krylov-Schwarz algorithms and soware

Modelling and Simulation in Engineering 15

for parallel implicit CFD,” International Journal of High Per-
formance Computing Applications, vol. 14, no. 2, pp. 102–136,
2000.

[13] E. Nielsen, W. Anderson, R. Walters, and D. E. Keyes, “Appli-
cation of Newton-Krylov methodology to a three-dimensional
unstructured Euler code,” AIAA Paper 95–1733, 1995.

[14] D. A. Knoll and D. E. Keyes, “Jacobian-free Newton-Krylov
methods: a survey of approaches and applications,” Journal of
Computational Physics, vol. 193, no. 2, pp. 357–397, 2004.

[15] C. Y. Huang and F. N. Hwang, “Parallel pseudo-transient
Newton-Krylov-Schwarz continuation algorithms for bifur-
cation analysis of incompressible sudden expansion �ows,”
Applied Numerical Mathematics, vol. 60, no. 7, pp. 738–751,
2010.

[16] G. May, F. Iacono, and A. Jameson, “Efficient algorithms
for high-order discretizations of the euler and navier-stokes
equations,” Tech. Rep., Stanford University, 2009.

[17] C. Hirsch, Numerical Computation of Internal and External
Flow, vol. 2 of Computational Methods for Inviscid and Viscous
Flows, John Wiley & Sons, New York, NY, USA, 1990.

[18] C. Hirsch, Numerical Computation of Internal and External
Flow, vol. 1 of Fundamentals of Numerical Discretization, John
Wiley & Sons, New York, NY, USA, 1989.

[19] H. Paillère, Multidimensional upwind residual distribution
schemes for the Euler and Navier-stokes equations on unstruc-
tured grids [Ph.D. thesis], Université Libre de Bruxelles, Brus-
sels, Belgium, 1995.

[20] R. Struijs, A multi-dimensional upwind discretization method
for the Euler equations on unstructured grids [Ph.D. thesis], e
University of Del, Del, e Netherlands, 1994.

[21] R. Struijs, H. Deconinck, and P. Roe, “Fluctuation Split-
ting Schemes for multidimensional convection problems: an
alternative to �nite volume and �nite element methods,” in
Computational Fluid Dynamics, VKI LS, 1990.

[22] R. Struijs, H. Deconinck, and P. Roe, “Fluctuation splitting
schemes for the 2D Euler equations,” in Computational Fluid
Dynamics, VKI LS, 1991.

[23] E. van derWeide,Compressible �ow simulations on unstructured
grids using multi-dimensional upwind schemes [Ph.D. thesis],
Université Libre de Bruxelles, Brussels, Belgium, 1998.

[24] T.Quintino,M.Ricchiuto,A.Csik,H.Deconinck, and S. Poedts,
“Conservative multidimensional upwind residual distribution
schemes for arbitrary �nite elements,” in Computational Fluid
Dynamics 2002, S. Arm�eld, P. Morgan, and K. Srinivas, Eds.,
Springer, 2003.

[25] P. L. Roe, “Discrete models for the numerical analysis of
time-dependent multidimensional gas dynamics,” Journal of
Computational Physics, vol. 63, no. 2, pp. 458–476, 1986.

[26] H. Deconinck, C. Hirsch, and J. Peuteman, “Characteris-
tics decomposition methods for the multidimensional Euler
equations,” in Proceedings of the International Conference on
Numerical Methods in Fluid Dynamics, vol. 264 of Lecture Notes
in Physics, pp. 216–221, Springer, Berlin, Heidelberg, June 1986.

[27] J. Bastin and G. Rogé, “Amultidimensional �uctuation splitting
scheme for the three dimensional Euler equations,” Mathe-
matical Modelling and Numerical Analysis, vol. 33, no. 6, pp.
1241–1259, 1999.

[28] M. Sala, Domain decomposition preconditioners: theoretical
properties, application to the compressible Euler equations, par-
allel aspects [Ph.D. thesis], Ecole Polytechnique Fédérale de
Lausanne, Lausanne, Switzerland, 2003.

[29] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, “Inexact Newton
methods,” SIAM Journal on Numerical Analysis, vol. 19, pp.
400–408, 1982.

[30] D. Vanderstraeten, Á. Ćsík, and D. Roose, “An expert-system
to control the CFL number of implicit upwind methods,” Tech.
Rep., Katholieke Universiteit Leuven, Department of Computer
Science, Leuven, Belgium, 2000.

[31] C. T. Kelley and D. E. Keyes, “Convergence analysis of pseudo-
transient continuation,” SIAM Journal on Numerical Analysis,
vol. 35, no. 2, pp. 508–523, 1998.

[32] M. Sala and L. Formaggia, “Algebraic coarse grid operators
for domain decomposition based preconditioners,” in Paral-
lel Computational Fluid Dynamics—Practice and eory, P.
Wilders, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, Eds., pp.
119–126, Elsevier, Amsterdam, e Netherlands, 2002.

[33] L. Jenkins, T. Kelley, C. T. Miller, and C. E. Kees, “An
aggregation-based domain decomposition preconditioner for
groundwater �ow,” Tech. Rep. TR00-13, Department of Math-
ematics, North Carolina State University, 2000.

[34] C. Lasser and A. Toselli, “An overlapping domain decom-
position preconditioner for a class of discontinuous Galerkin
approximations of advection-diffusion problems,”Mathematics
of Computation, vol. 72, no. 243, pp. 1215–1238, 2003.

[35] L. Paglieri, A. Scheinine, L. Formaggia, andA.Quarteroni, “Par-
allel conjugate gradient with Schwarz preconditioner applied
to �uid dynamics problems,” in Proceedings of the Parallel
Computational Fluid Dynamics, Algorithms and Results Using
Advanced Computer (CFD ’97), P. Schiano, Ed., pp. 21–30, 1997.

[36] C. Lasser and A. Toselli, “Convergence of some two-level over-
lapping domain decomposition preconditioners with smoothed
aggregation coarse spaces,” Tech. Rep. TUM-M0109, Technis-
che Universität München, 2001.

[37] “Message Passing Interface Forum. MPI: a message-passing
interface standard,” Tech. Rep., 1995.

[38] P. Leyland, A. Casagrande, and Y. Savoy, “Parallel mesh
adaptive techniques illustrated with complex compressible �ow
simulations,” Modelling and Simulation in Engineering, vol.
2012, Article ID 317359, 14 pages, 2012.

[39] G. Karypis and V. Kumar, “A fast and high quality multilevel
scheme for partitioning irregular graphs,” SIAM Journal on
Scienti�c Computing, vol. 20, no. 1, pp. 359–392, 1998.

[40] P. Leyland and R. Richter, “Completely parallel compressible
�ow simulations using adaptive unstructured meshes,” Com-
puter Methods in Applied Mechanics and Engineering, vol. 184,
no. 2–4, pp. 467–483, 2000.

[41] M. Sala and L. Formaggia, “Parallel Schur and Schwarz based
preconditioners and agglomeration coarse corrections for CFD
problems,” Tech. Rep. 15, DMA-EPFL, 2001.

[42] G. Karypis and V. Kumar, “METIS: unstructured graph par-
titioning and sparse matrix ordering system,” Tech. Rep.,
Department of Computer Science, University of Minnesota,
1998.

[43] G. Karypis and V. Kumar, “ParMETIS: parallel graph parti-
tioning and sparse matrix ordering library,” Tech. Rep. 97-060,
Department of Computer Science, University of Minnesota,
1997.

[44] R. Tuminaro, M. Heroux, S. Hutchison, and J. Shadid, “Official
Aztec user’s guide: version 2. 1.,” Tech. Rep. SAND99-8801J,
Sandia National Laboratories, Albuquerque, Nm, USA, 1999.

[45] E. Issman, Implicit solution strategies for compressible �ow
equations on unstructured grids [Ph.D. thesis], Université Libre
de Bruxelles, Brussels, Belgium, 1997.

16 Modelling and Simulation in Engineering

[46] R. Abgrall, “Toward the ultimate conservative scheme: follow-
ing the quest,” Journal of Computational Physics, vol. 167, no. 2,
pp. 277–315, 2001.

[47] G. Degrez, “Implicit time-dependent methods for inviscid and
viscous compressible �ows, with a discussion of the concept of
numerical dissipation,” in Computational Fluid Dynamics, VKI
Lecture Series, 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

