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The estimation of implied volatility is a typical PDE inverse problem. In this paper, we propose the 𝑇𝑉 − 𝐿
1 model for identifying

the implied volatility. The optimal volatility function is found by minimizing the cost functional measuring the discrepancy. The
gradient is computed via the adjoint method which provides us with an exact value of the gradient needed for the minimization
procedure. We use the limited memory quasi-Newton algorithm (L-BFGS) to find the optimal and numerical examples shows the
effectiveness of the presented method.

1. Introduction

An option is classified as either a call option or a put option.
A call (or put) option is a contract which gives its holder
the right to buy (or sell) a prescribed asset, known as the
underlying asset, by a certain date (expiration date) for
predetermined price (commonly called the strike price or
exercise price). The revolution in trading and pricing deriva-
tive securities began in the early 1970s. In 1973, Black and
Scholes [1] published their seminal papers on the theory of
option pricing and obtained the partial differential equation
depicting the option prices:
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− 𝑟𝑉 = 0, (1)

where (𝑆, 𝑡) ∈ (0,∞)×(0, 𝑇), and𝑉(𝑆, 𝑡) is the value of option
price. The asset price 𝑆 is modeled to satisfy the Geometric
Brownian motion, 𝜎 is the volatility, 𝑟 is the riskless interest
rate, and 𝑇 is the maturity.

The payoff function at maturity and boundary conditions
are given by

𝑉 (𝑆, 𝑡)|𝑡=𝑇 = (𝑆 − 𝐾)
+
= max (0, 𝑆 − 𝐾) , call option,

𝑉 (0, 𝑡) = 0, (𝑆, 𝑡) ∈ (0,∞) × (0, 𝑇) ,

lim
𝑆→∞

𝑉 (𝑆, 𝑡)

𝑆
= 1,

(2)

where 𝐾 is the strike price. The analytical solution of the
European call option is
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where
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(4)
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The option prices𝑉(𝑆, 𝑡) are functions of five parameters:
𝑆, 𝐾, 𝑟, 𝑇, and 𝜎. Except for the volatility, the other four
parameters 𝑆, 𝐾, 𝑟, and 𝑇 are assumed or can be directly
observed in the market. If the volatility is a constant, (1)
becomes the classical Black-Scholes model. However, in the
actual market volatility is changing [2, 3]. Volatility is a
measure of the amount of flaction in the asset prices, that is,
a measure of the randomness. It is necessary to measure it
accurately in portfolio, asset pricing, risk management, and
monetary policy. The estimation of volatility has been an
important research topic of modern financial markets.

The volatility value implied by an observed option price
is called the implied volatility. In market, empirical studies
have revealed that no constant or merely time dependent
local volatility function is consistent with most sets of market
quotes; such phenomena are commonly called the volatility
smile by market practitioners. In this paper, we are interested
in the inverse problem of option pricing (IPOP). One possi-
bility to explain the volatility smiles in Black-Scholes model
is to use a deterministic function of underlying asset price 𝑆
and time 𝑡; that is, 𝜎 = 𝜎(𝑆, 𝑡). We only discuss the case of
𝜎(𝑆, 𝑡) = 𝜎(𝑆) on European call options.

The inverse problem of option pricing was first consid-
ered by Dupire [4]. He obtained a local volatility formula
for all strike prices and maturities; however it is instable.
Bharadia et al. [5] derived a simple volatility formula that
does not require the option to be exactly at-the-money.
Quasi-iterative technique for computing the implied volatil-
ity was proposed by Chance [6]. Chambers and Nawalkha
[7] restricted Chance’s Taylor expansion to be only in volatil-
ity, improving its accuracy. Utilizing the third-order Taylor
series expansion, Li [8] developed a new close formula of
implied volatility. Ballestra and Cecere [9] proposed a highly
efficient approach to compute the volatility of the Fractional
Brownian Motion implied by American options. Research
results concerning inverse problem of option pricing with
Tikhonov regularization [10] strategies have been intensively
published in recent years; see, for example, Chiarella et al.
[11], Crépey [12], Deng et al. [13], Egger and Engl [14], Isakov
[15], Jiang and Tao [16], Leland [17], Lagnado and Osher [18],
Ngnepieba [19], and references therein. However, the classical
Tikhonov regularization may oversmooth the solution of
the origin problem. If the exact solution is nonsmooth or
even has some singularities, the regularized solution cannot
approximate effectively. These shortcomings will blur the
edge of the restored image in image processing. Based on
the advantage that the total variation (TV) regularization can
preserve the edge of the image, Rudin et al. [20] proposed the
TV − 𝐿

2 model (also called the ROF model):

min
𝑢∈Ω

𝜆

2

𝑢 − 𝑓


2

𝐿
2
(Ω)

+ |∇𝑢|𝐿1(Ω). (5)

Considering the jump, overnight, and weekend effect [21,
22] of volatility, the total variation regularization might be
able to depict the properties of volatility better. So whether
the TV regularization strategy could be applied to identify the
implied volatility is a question worth pondering.

𝐿
1 fidelity-based model has many desirable and unex-

pected consequences in applications, such as data-driven

parameter selection and multiscale image decomposition.
Since the TV regularization should be used in the second
step in order to reconstruct jump discontinuities in inverse
problem, the reasonable choice of fidelity in the first step is
the 𝐿1 fidelity. In this paper, we consider the minimization
of TV regularization under 𝐿1 fidelity. The adjoint method
provides us with an exact value of the gradient needed for the
minimization procedure.

This paper is organized as follows. In the next section,
we put forward the TV − 𝐿

1 model for determining the
implied volatility. In Section 3, we deduce the semidiscrete
form of the Black-Scholes equation and introduce the adjoint
model. Time discretization and the L-BFGS algorithm [23]
are given in Section 4. In Section 5, we present a selection of
numerical examples. In the last section, we give some remarks
to conclude the paper.

2. Total Variation Regularization Model

Let X and Y be Hilbert spaces. The standard form of an
inverse problem is as follows. Give 𝑦 ∈ Y and 𝐹 :

𝐷(𝐹) ⊂ X → Y ; find 𝑎 ∈ 𝐷(𝐹) such that 𝐹(𝑎) = 𝑦,
where 𝐹 is a nonlinear operator between X and Y . Recall
that an inverse problem is well posed if and only if the
three conditions of Hadamard are satisfied: the existence,
uniqueness, and continuous dependence of the solutions.
Most inverse problems are ill posed.

We assume that only noisy data 𝑦𝛿 of the exact data 𝑦
is available. To obtain a well-posed problem, the classical
Tikhonov regularization strategy is minimizing

𝐽
𝛿

𝛼
(𝑎) =


𝐹(𝑎) − 𝑦

𝛿

2

+ 𝛼
𝑎 − 𝑎0



2

, 𝑎 ∈ 𝐷 (𝐹) . (6)

In this section we consider the problem of inferring a
local volatility function 𝜎(𝑆) from the observed option prices
(take call option for example). Equation (1) is described in an
infinite domainR+ × (0, 𝑇) which makes it difficult to obtain
numerical solutions. We replace the region R+ × (0, 𝑇) with
the finite rectangle Ω := [0, 𝑆max] × [0, 𝑇], where 𝑆max is the
suitable chosen positive number representing the final value
of the asset price; then we have
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− 𝑟𝑉 = 0, (𝑆, 𝑡) ∈ Ω,

𝑉 (0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑉 (𝑆, 𝑇) = (𝑆 − 𝐾)
+
, 𝑆 ∈ [0, 𝑆max] ,

𝑉 (𝑆max, 𝑡) = (𝑆max − 𝐾)
+

, 𝑡 ∈ [0, 𝑇] .

(7)

In the current work, we assume that themarket prices𝑉
𝑖𝑗
for a

series of options are known, where𝑉
𝑖𝑗
is the observed market

prices of the options with exercise dates𝑇
𝑖
(𝑇
1
, 𝑇
2
, . . . 𝑇
𝑁
) and

strike prices𝐾
𝑖𝑗
(𝐾
𝑖1
, 𝐾
𝑖2
, . . . 𝐾

𝑖𝑀
𝑖

). We would like to estimate
the volatility function 𝜎(𝑆) that satisfies the Black-Scholes
model (7) using this set of the observations.
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In [18] Lagnado and Osher determined this inverse
problem by using Tikhonov regularization strategy, that is,
attempting to minimise

𝐺 (𝜎) =
1
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)
2

+ ‖∇𝜎‖
2

2
, (8)

where ∇ = (𝜕/𝜕𝑆, 𝜕/𝜕𝑡) denotes the gradient operator. This
regularization strategy proposed by Lagnado and Osher was
just for one fixed value of underlying asset 𝑆

0
, at one fixed

point in time 𝑡 = 0. There is no guarantee that the value of
𝜎 calculated by this approach will be correct either for other
underlying assets or at future times; there is also no guarantee
that volatility will be positive everywhere.

Based on their work, Chiarella et al. [11] modified the
objective functional as follows:
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,

(9)

where 𝑇cur is the current time.
As we know, Tiknonov regularization may oversmooth

the solution, so it cannot preserve the singularities of the
solution well. In image processing this shortcoming will blur
the edge of the restored image. To over this defect, Rudin et
al. [20] proposed the total variation regularization strategy.
Considering the jump, overnight, and weekend effect of the
volatility, we introduce the following optimal control problem
(TV − 𝐿

1 model):

min
𝜎

𝐽 (𝜎) =
1

2
∫
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0


𝑉 − 𝑉
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0

|∇𝜎| 𝑑𝑆, (10)

where 𝛼 denotes the regularization parameter, 𝑉
𝑖𝑗
is the

corresponding observations, 𝑉 is the related vector of prices
in the Black-Scholes model with volatility function 𝜎(𝑆), and
∇ denotes the gradient, in this paper, |∇𝜎| = |𝜎(𝑆)|.

To avoid the case |∇𝜎| ≈ 0 in the flat area, as is done in
image processing, the problem (10) is usually approximated
by using the problem
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(11)

where 𝜀
1
and 𝜀
2
are two positive parameters which should

usually be taken as a constant, for example, 𝜀
1
= 𝜀
2
= 10
−6.

3. Semidiscretization and Adjoint Model

The vega 𝜕𝑉/𝜕𝜎 will appear in the optimal necessary con-
dition if we compute the gradient of cost function ∇

𝜎
𝐽(𝜎)

directly. The vega (sometimes called kappa) of derivatives is
the rate of change of its value with respect to the volatility of

the underlying asset. Chiarella et al. [11] determined the vega
by using the Black-Scholes formula as an approximation:
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1
/2

√2𝜋
;

(12)

however, it is not an exact value. In this paper, we introduce
the adjointmethod [19] which provides us with an exact value
of the gradient needed for the minimization procedure.

We apply a uniform grid for the computational domain
[0, 𝑆max] × [0, 𝑇]; let

Δ𝑇 =
𝑇

𝑁
𝑇

, Δ𝑆 =
𝑆max
𝑁
𝑆

. (13)

Moreover, we use the notation

𝑉
𝑛

𝑖
= 𝑉 (𝑆

𝑖
, 𝑡
𝑛
) , (14)

where

𝑆
𝑖
= 𝑖Δ𝑆, 𝑡

𝑛
= 𝑛Δ𝑇,

𝑖 = 0, 1, 2, . . . , 𝑁
𝑆
, 𝑛 = 0, 1, 2, . . . , 𝑁

𝑇
.

(15)

The first-order and second-order finite differences are used to
approximate the space partial derivative 𝜕𝑉/𝜕𝑆 and 𝜕2𝑉/𝜕𝑆2
in Black-Scholes equation:
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𝑖
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𝑖
for convenience sake)

𝜕𝑉

𝜕𝑡
+
1

2
𝜎
2

𝑖
(𝑖Δ𝑆)
2
(
𝑉
𝑖+1

(𝑡) − 2𝑉
𝑖
(𝑡) + 𝑉

𝑖−1
(𝑡)

Δ𝑆2
)

+ (𝑟 − 𝑞) 𝑖Δ𝑆
𝑉
𝑖+1

(𝑡) − 𝑉
𝑖
(𝑡)

Δ𝑆
− 𝑟𝑉
𝑖
= 0;

(17)

this leads to the following semidiscrete equation:
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Indeed 𝑎
𝜎

𝑖,𝑗
≤ 0 for 𝑖 ̸= 𝑗; this property guarantees that the

space discretization does not cause undesired oscillations into
the numerical solution. Equation (18) can be written as

𝜕𝑉

𝜕𝑡
= 𝐴
𝜎
𝑉. (20)

The directional derivative of option price 𝑉, also called
the sensitivity in financial theory context, is
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𝛽
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Introducing the adjoint variable 𝑃, we have
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by using integration by parts, the above equation is integrated
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If we define 𝑃, the adjoint variable is the solution of the
equation
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+ [𝐴
𝜎
]
𝑇

𝑃 =
1

2

𝑉 − 𝑉
𝑖𝑗

√

𝑉 − 𝑉

𝑖𝑗



2

+ 𝜀
2

1

;

𝑃 (𝑇) = 0,

(26)

then we have

1

2
∫

𝑇

0

⟨

𝑉−𝑉
𝑖𝑗

√

𝑉 − 𝑉

𝑖𝑗



2

+ 𝜀
2

1

, �̂�⟩𝑑𝑡

= ⟨ℎ, −∫

𝑇

0

𝑉
𝑇
[
𝜕𝐴
𝜎

𝜕𝜎
]

𝑇

𝑃𝑑𝑡⟩ .

(27)
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So the directional derivative of the cost function can be
written as follows:

𝐽 (𝜎, ℎ) = ⟨ℎ, ∇
𝜎
𝐽⟩ = ⟨ℎ, −∫

𝑇

0

𝑉
𝑇
[
𝜕𝐴
𝜎

𝜕𝜎
]

𝑇

𝑃𝑑𝑡⟩

+ 𝛼⟨−

𝜎

((𝜎

)
2

+ 𝜀
2

2
) − (𝜎


)
2

((𝜎)
2

+ 𝜀
2

2
)
3/2

, ℎ⟩ ;

(28)

thus, the gradient of the cost function 𝐽(𝜎)with respect to the
control variable 𝜎 is

∇
𝜎
𝐽 (𝜎) = −𝛼

𝜎

((𝜎

)
2

+ 𝜀
2

2
) − (𝜎


)
2

((𝜎)
2

+ 𝜀
2

2
)
3/2

− ∫

𝑇

0

𝑉
𝑇
[
𝜕𝐴
𝜎

𝜕𝜎
]

𝑇

𝑃𝑑𝑡.

(29)

4. Time Discretization and Algorithm

Considering the stability and high accuracy of the Crank-
Nicolson time discretization scheme which can be inter-
preted as the average of the explicit and implicit Euler
schemes, the time discretization of the semidiscrete equation
(20) can be written as

𝑉
𝑛+1

− 𝑉
𝑛

Δ𝑇
= 𝐴
𝜎
(
𝑉
𝑛+1

+ 𝑉
𝑛

2
) ; (30)

then we have

(𝐼 +
Δ𝑇

2
𝐴
𝜎
)𝑉
𝑛
= (𝐼 −

Δ𝑇

2
)𝑉
𝑛+1

. (31)

The above discrete scheme is second-order accurate and
unconditionally stable. Let the boundary condition 𝑃𝑛

0
= 0,

𝑃
𝑛

𝑁
𝑆

= 0, 𝑛 = 0, 1, . . . , 𝑁
𝑇
; we also use this scheme for the

discrete of adjoint equation (26):

𝑃
𝑛
− 𝑝
𝑛−1

𝑑𝑡
+ [𝐴
𝜎
]
𝑇𝑃
𝑛
+ 𝑃
𝑛−1

2
=
1

2

𝑉
𝑛
− 𝑉
𝑖𝑗

√

𝑉𝑛 − 𝑉

𝑖𝑗



2

+ 𝜀
2

1

,

𝑃
𝑁
𝑇
+1
= 0;

(32)

thus

(𝐼 +
Δ𝑇

2
[𝐴
𝜎
]
𝑇

)𝑃
𝑛
− Δ𝑇

1

2

𝑉
𝑛
− 𝑉
𝑖𝑗

√

𝑉𝑛 − 𝑉

𝑖𝑗



2

+ 𝜀
2

1

= (𝐼 −
Δ𝑇

2
[𝐴
𝜎
]
𝑇

)𝑃
𝑛−1

;

𝑃
𝑁
𝑇
+1
= 0,

(33)

Let 𝐵𝜎 = (Δ𝑇/2)[𝐴𝜎]𝑇; (33) can be written as

(𝐼 − 𝐵
𝜎
) 𝑃
𝑛−1

= (𝐼 + 𝐵
𝜎
) 𝑃
𝑛
−
Δ𝑇

2

𝑉
𝑛
− 𝑉
𝑖𝑗

√

𝑉𝑛 − 𝑉

𝑖𝑗



2

+ 𝜀
2

1

,

𝑃
𝑁
𝑇
+1
= 0;

(34)

𝐵
𝜎
= [𝑏
𝜎

𝑖𝑗
] is a tridiagonal matrix with nonzero elements:

𝑏
𝜎

𝑖,𝑖−1
= −

Δ𝑇

2
(
1

2
𝜎
2

𝑖−1
(𝑖 − 1)

2
+ (𝑟 − 𝑞) (𝑖 − 1)) ,

𝑏
𝜎

𝑖,𝑖
=
Δ𝑇

2
[(𝜎
𝑖
𝑖)
2

+ (𝑟 − 𝑞) 𝑖 + 𝑟] ,

𝑏
𝜎

𝑖,𝑖+1
= −

Δ𝑇

2
[
1

2
𝜎
2

𝑖+1
(𝑖 + 1)

2
] , 𝑖 = 1, 2, 3, . . . , 𝑁

𝑆
.

(35)

The discrete form of the gradient ∇
𝜎
𝐽(𝜎) is given by

∇
𝜎
𝑘

𝐽 (𝜎)

= −𝛼

𝜎

((𝜎

)
2

+ 𝜀
2

2
) − (𝜎


)
2

((𝜎)
2

+ 𝜀
2

2
)
3/2

− ∫

𝑇

0

𝑉
𝑇
[
𝜕𝐴
𝜎

𝜕𝜎
]

𝑇

𝑃𝑑𝑡

= Δ𝑇

𝑁
𝑇

∑

𝑛=1

𝑁
𝑆

∑

𝑖=1

[𝑉
𝑛

𝑖−1
+ 𝑉
𝑛+1

𝑖−1
− 2 (𝑉

𝑛

𝑖
+ 𝑉
𝑛+1

𝑖
)

+ 𝑉
𝑛

𝑖+1
+ 𝑉
𝑛+1

𝑖+1
] 𝜎
𝑖
𝑖
2
𝑃
𝑛

𝑖
× (2)
−1

− 𝛼(
𝜎
𝑘+1

− 2𝜎
𝑘
+ 𝜎
𝑘−1

Δ𝑆2
[(

𝜎
𝑘+1

− 𝜎
𝑘

Δ𝑆
)

2

+ 𝜀
2

2
]

− (
𝜎
𝑘+1

− 𝜎
𝑘

Δ𝑆
)

2

)

× (((
𝜎
𝑘+1

− 𝜎
𝑘

Δ𝑆
)

2

+ 𝜀
2

2
)

3/2

)

−1

,

(36)

where ∇
𝜎
𝐽(𝜎) = (∇

𝜎
1

𝐽(𝜎), ∇
𝜎
2

𝐽(𝜎), . . . , ∇
𝜎
𝑁𝑆

𝐽(𝜎)).
The solution of the minimization problem (11) could be

computed by Newton’s method:

𝜎
(𝑘+1)

= 𝜎
(𝑘)
− [∇
2

𝜎
𝐽 (𝜎
(𝑘)
)]
−1

⋅ ∇
𝜎
𝐽 (𝜎
(𝑘)
) , (37)

where the inverse Hessian [∇
2

𝜎
𝐽(𝜎
(𝑛)
)]
−1 is approximated by

L-BFGS formula.
We first need to introduce some notations. The iterates

will be denoted by 𝜎
𝑘
and we define 𝑠

𝑘
= 𝜎
𝑘+1

− 𝜎
𝑘
, 𝑔
𝑘
=

∇
𝜎
𝑘

𝐽(𝜎), 𝑦
𝑘
= 𝑔
𝑘+1

− 𝑔
𝑘
. The method uses the inverse BFGS

formula in the form

𝐻
𝑘+1

= V𝑇
𝑘
𝐻
𝑘
V
𝑘
+ 𝜌
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘
, (38)

where 𝜌
𝑘
= 1/𝑦

𝑇

𝑘
𝑠
𝑘
and V
𝑘
= 1 − 𝜌

𝑘
𝑦
𝑘
𝑠
𝑇

𝑘
.

Algorithm 1 (TV−L1model for solving the implied volatility).

Step 1. Choose a function 𝜎
0
(𝑆). This will be the initial

approximation to the true volatility 𝜎ex(𝑆).

Step 2. Give the initialization value 𝛼,𝑇,𝑁
𝑆
,𝑁
𝑇
,𝐾, 𝑆max, 𝜀1 =

𝜀
2
= 10
−6, 0 < 𝛽 < 1/2 < 𝛽 < 1, and𝐻

0
= 𝐼.

Step 3. Determine 𝑉𝑁𝑇
𝑖

= (𝑖Δ𝑆 − 𝐾)
+ and 𝑉

𝑖𝑗
by the Black-

Scholes formula using 𝜎 = 𝜎ex(𝑆):

𝑉 (𝑆, 𝑡) = 𝑆𝑁 (𝑑
1
) − 𝐾𝑒

−𝑟(𝑇−𝑡)
𝑁(𝑑
2
) . (39)
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Step 4. Let 𝜎 = 𝜎
𝑘
; 𝑃 is the solution of the following linear

equation:

(𝐼 − 𝐵
𝜎
) 𝑃
𝑛−1

= (𝐼 + 𝐵
𝜎
) 𝑃
𝑛
−
Δ𝑇

2

𝑉
𝑛
− 𝑉
𝑖𝑗

√

𝑉𝑛 − 𝑉

𝑖𝑗



2

+ 𝜀
2

1

,

𝑃
𝑁
𝑇
+1
= 0,

(40)

and 𝑉𝑛(𝑛 = 𝑁
𝑇
, 𝑁
𝑇
− 1, . . . , 2, 1) is computed by

(𝐼 +
Δ𝑇

2
𝐴
𝜎
)𝑉
𝑛
= (𝐼 −

Δ𝑇

2
)𝑉
𝑛+1

, (41)

where 𝐴𝜎 and 𝐵𝜎 are defined in (19) and (35).

Step 5. Compute 𝑔
𝑘
= ∇
𝜎
𝐽(𝜎
𝑘
), 𝑑
𝑘
= −𝐻
𝑘
𝑔
𝑘
; then

𝜎
𝑘+1

= 𝜎
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, (42)

where 𝛼
𝑘
satisfies the Wolfe condition:

𝐽 (𝜎
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝐽 (𝜎

𝑘
) + 𝛽

𝛼
𝑘
𝑔
𝑇

𝑘
𝑑
𝑘
, (43)

𝑔 (𝜎
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≥ 𝛽𝑔

𝑇

𝑘
𝑑
𝑘
. (44)

We always try the step length 𝛼
𝑘
= 1 first.

Step 6. If ‖𝜎
𝑘+1

− 𝜎ex‖∞ ≤ 𝜏, end; else go to next step.

Step 7. Let �̂� = min{𝑘,𝑚 − 1}; update𝐻
0
�̂� + 1 times using

the pairs {𝑦
𝑗
, 𝑠
𝑗
}
𝑘

𝑗=𝑘−�̂�
; that is, let

𝐻
𝑘+1

= (𝑉
𝑇

𝑘
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−�̂�
)𝐻
0
(𝑉
𝑘−�̂�

⋅ ⋅ ⋅ 𝑉
𝑘
)

+ 𝜌
𝑘−�̂�

(𝑉
𝑇

𝑘
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−�̂�+1
) 𝑠
𝑘−�̂�

⋅ 𝑠
𝑇

𝑘−�̂�
(𝑉
𝑘−�̂�+1

⋅ ⋅ ⋅ 𝑉
𝑘
)

+ 𝜌
𝑘−�̂�+1

(𝑉
𝑇

𝑘
⋅ ⋅ ⋅ 𝑉
𝑇

𝑘−�̂�+2
) 𝑠
𝑘−�̂�+1

⋅ 𝑠
𝑇

𝑘−�̂�+1
(𝑉
𝑘−�̂�+2

⋅ ⋅ ⋅ 𝑉
𝑘
)

...

+ 𝜌
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘
.

(45)

Step 8. Set 𝑘 = 𝑘 + 1 and go to Step 4.

In this paper, we only discuss the estimation of implied
volatility on European call options. The TV − 𝐿

1 model and
adjoint method are still valid in the case of put options.

5. Numerical Experiments

In this section, we present numerical experiments to illustrate
the TV − 𝐿

1 model and adjoint method presented in the
previous sections. First, we assume that the true volatility
function 𝜎ex(𝑆) is defined as

𝜎ex (𝑆) = {
𝜎 = 0.1𝑒

−0.01𝑆
+ 0.02, 𝑆 ∈ [0, 50] ;

𝜎 = 0.1𝑒
−0.01𝑆

− 0.02, 𝑆 ∈ (50, 100] .
(46)

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

Asset price (S)

Vo
la

til
ity

Exact

Figure 1: Volatility function 𝜎ex(𝑆, 𝑡).
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Figure 2: The observed market prices 𝑉
𝑖𝑗
.

In numerical experiments, the interest rate 𝑟 = 0.25,
𝑆max = 100; we consider only one time to option maturity
𝑇 = 5. We take Δ𝑆 = 1, Δ𝑇 = 0.01,𝑁

𝑆
= 100,𝑁

𝑇
= 500, and

𝐾 = 50. Figure 1 displays the true volatility function.
The observed market prices 𝑉

𝑖𝑗
are obtained by solving

the Black-Scholes equation with the true volatility. Figure 2
displays 𝑉

𝑖𝑗
.

We solve the optimal volatility by Algorithm 1; Figure 3
shows the comparison between the true volatility 𝜎ex(𝑆) and
the optimal estimated 𝜎(𝑆),.

Our total variation regularization strategy has three
advantages: the first one is it contains no terms involving
the Dirac delta function [24] compared with Lagnado and
Osher’s model [18]; the second is that the total variation
regularization can maintain the singularities of the solution
better (𝑆 = 50); the third is that the gradient is computed via
the adjoint method which provides us with an exact value of
the gradient needed for the minimization.
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Figure 3: Volatility estimation.

6. Conclusion

A lot of research works have been made to determine the
implied volatility by regularization strategies. Based on the
advantages and great success of the total variation regulariza-
tion strategy in image processing, in this paper, we propose
the TV−𝐿1model for solving the implied volatility under the
framework of the Black-Scholes model. We estimate implied
volatility by solving an optimal control problem and the
gradient is computed via the adjoint method. We use the
limited memory quasi-Newton algorithm (L-BFGS) to find
the optimal solution. Furthermore, the results of numerical
experiments are presented.
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