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The optimal pricing and remanufacturing decisions problem of a fuzzy closed-loop supply chain is considered in this paper.
Particularly, there is one manufacturer who has incorporated a remanufacturing process for used products into her original
production system, so that she can manufacture a new product directly from raw materials or from collected used products. The
manufacturer then sells the new product to two different competitive retailers, respectively, and the two competitive retailers are in
charge of deciding the rates of the remanufactured products in their consumers’ demand quantity. The fuzziness is associated with
the customer’s demands, the remanufacturing and manufacturing costs, and the collecting scaling parameters of the two retailers.
The purpose of this paper is to explore how the manufacturer and the two retailers make their own decisions about wholesale price,
retail prices, and the remanufacturing rates in the expected value model. Using game theory and fuzzy theory, we examine each
firm’s strategy and explore the role of the manufacturer and the two retailers over three different game scenarios. We get some
insights into the economic behavior of firms, which can serve as the basis for empirical study in the future.

1. Introduction

In recent years, the management of closed-loop supply
chains has gained growing attention from both business
and academic research because of environmental conscious-
ness, environmental concerns, and stringent environmental
laws, for example, the legislation on producer responsibility,
requiring companies to take back products from customers
and to organize for proper recovery and disposal.This legisla-
tion is partially due to increased awareness of environmental
issues. However, smart companies have also understood that
used products often contain lots of value to be recovered.
Theymanage closed-loop supply chains simply because it is a
profitable business proposition. It is said that the costs derived
from reverse-logistics activities in the USA exceed $35 billion
per year; remanufacturing is a $53 billion industry in theUSA
[1].

Without a doubt, closed-loop supply chains has become
a matter of strategic importance: an element that companies
must consider in decision-making processes concerning the
design and development of their supply chains [2]. A specific

type of closed-loop supply chains is product manufacturing
and remanufacturing supply chain. Product remanufacturing
is the process that restores used products or product parts to
an “as good as new” condition, after which they can be resold
on the market of new products. The industrial operations
involved with remanufacturing are of a very uncertain nature
due to the uncertainty in timing, quantity, and quality of col-
lected products. So one of the important management issues
in product manufacturing and remanufacturing closed-loop
supply chains is to effectively match demand, and supply by
dealing with the uncertainty of the quality and quantities of
the collected products and of the market demand.

In fact, in order to make effective closed-loop supply
chain management, the uncertainties that happen in the real
world cannot be ignored. Those uncertainties are usually
associated with the product supply, used product collecting,
the customer demand, and so on. Traditional probabilistic
concepts have been used to model the various parameters
among today’smany studies published on the reverse logistics
[3–5]. However, the probability-based approachesmay not be
sufficient enough to reflect all uncertainties that may arise
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in a real world manufacturing and remanufacturing closed-
loop supply chains.Modelers may face some difficulties while
trying to build a valid model of a manufacturing and reman-
ufacturing closed-loop supply chains, in which the related
costs cannot be determined precisely. For example, costs
may be dependent on some foreign monetary unit, current
interest rate, stock keeping unit’smarket price, and the quality
of collected product, which may not be known precisely.
Since some uncertainty within manufacturing and reman-
ufacturing closed-loop supply chains cannot be considered
appropriately using concepts of probability theory, the quan-
titative demand forecasts based on manager’s judgements,
intuitions, and experience seem to be more appropriate, and
fuzzy theory rather than probability theory should be applied
tomodel this kind of uncertainties [6]. Fuzzy theory provides
a reasonable way to deal with the possibility and linguistic
expressions. Zadeh [7] initialized the concept of a fuzzy set
via membership function. From then on, many researchers
such asNahmias [8] andKaufmann andGupta [9]made great
contributions to this field. Recently, Liu [10] B. Liu and Y.
K. Liu [11] laid a new foundation for optimization problems
in the fuzzy environment, in which the expected value was
proposed to deal with optimization problems.

In recent supply chain studies, some researchers have
already adopted fuzzy theory to depict uncertainties in supply
chain models [12–16]. Li et al. [17] obtained the optimal
order quantity for the fuzzy newsboy models through fuzzy
ordering of fuzzy numbers with respect to their total integral
values. Mukhopadhyay and Ma [18] addressed the issue of
a hybrid system where both used and new parts can serve
as inputs in the production process to satisfy an uncertain
market demand. Kao and Hsu [19] proposed a newsboy
model for cases of fuzzy demand. They obtained the optimal
policy to minimize the total cost by adopting a method for
ranking fuzzy numbers.

Although some researches on the forward supply chain
have been given through considering the supply chain’s fuzzy
uncertainties, little researches on the reverse supply chain
considering the fuzzy uncertainties has been established to
our knowledge. So, in this paper, we consider a fuzzy manu-
facturing and remanufacturing closed-loop supply chainwith
onemanufacturer and two competitive retailers; the fuzziness
is associated with the consumer demand, the manufacturing
and remanufacturing costs of new product, and the collecting
cost of the used product. In the forward supply chain, the
manufacturer has incorporated a remanufacturing process
for used products into her original production system, so
that she can manufacture a new product directly from raw
materials, or remanufacture part or whole of a collected unit,
and wholesales the new products to the two competitive
retailers who then sell them to the end consumers. For the
the reverse supply chain, the two competitive retailers are in
charge of collecting the used products from the consumers,
respectively. Using game theory and fuzzy theory, the optimal
decisions for each supply chain participant are explored in the
expected value model. Some management insights are given
in this paper.

The rest of the paper is organized as follows. Section 2
gives the problem description and notations, and Section 3

details our key analytical results. Numerical studies are given
in Section 4. Concluding remarks are presented in Section 5.

2. Problem Description

Consider a closed-loop supply chain in a fuzzy environment
with one manufacturer and two competitive retailers, labeled
retailer 1 and retailer 2. In the following discussion, “he”
represents one of the twomanufacturers, and “she” represents
the retailer. In the forward supply chain, similar to Savaskan
et al. [20], assume that the manufacturer has incorporated a
remanufacturing process for used products into her original
production system, so he can manufacture a new product
directly from raw materials with unit manufacturing cost �̃�

𝑚
,

or from collected products with unit remanufacturing cost
�̃�

𝑟
. �̃�
𝑚
and �̃�

𝑟
are all fuzzy variables. (For the preliminaries

of fuzzy theory used in this paper see the preliminaries in
[16]). The manufacturer wholesales the new product to the
two competitive retailers, respectively, with unit wholesale
price 𝑤, then the two competitive retailers sell them to the
consumers with unit retail price 𝑝

𝑖
, which is a decision

variable of retailer 𝑖. We assume that the two retailers are
equally powerful and compete in one common market,
and all activities occur within a single period. The two
competitive retailers face fuzzy linear consumer demands
that are influenced by the retail prices of the new product
made by the two retailers, respectively. The manufacturer
and the two competitive retailers must make their pricing
strategies in order to achieve optimal expected profits and
behave as if they have perfect information of the demands and
the cost structures of other channel members. In the reverse
supply chain, the two competitive retailers are in charge of
deciding the collecting rates of the remanufactured products
in the consumers’ demand quantity, denoted as 𝜏

𝑖
, and taking

back the used products from the end consumers with taking
back cost 𝑐(𝜏

𝑖
) (𝑖 = 1, 2), according to our survey results;

assume that 𝑐(𝜏
𝑖
) =

̃

𝑘

𝑖
𝜏

2

𝑖
, where ̃𝑘

𝑖
is a scaling parameter,

which is a fuzzy variable. The manufacturer will take back all
the used products collected by the two competitive retailers
with unit transfer cost �̃�

𝑓
, which is a fuzzy variable.

We define the retailer 𝑖’s price-dependent demand a

𝐷

𝑖
(𝑝

𝑖
, 𝑝

𝑗
) = �̃� − 𝑝

𝑖
+

̃

𝛽𝑝

𝑗
, 𝑖 = 1, 2, 𝑗 = 3 − 𝑖, (1)

where �̃�, ̃𝛽 are nonnegative fuzzy variables, �̃� denotes the
primary demand of retailer 𝑖’s product, ̃𝛽denotes themeasure
of the responsiveness of each retailer’s product’s market
demand to its competitor’s price. We assume that the fuzzy
linear demand (1) is symmetrical. This represents a situation
in which two retailers have equal competing power in a
duopolistic marketplace. We assume that 𝐸[̃𝛽] < 1, which
ensures that the response functions are negatively sloped
which, in turn, ensures the existence of the equilibrium
solutions. This seems reasonable since sales are relatively
more sensitive to price at a retailer’s own outlet(s) than at
the competing retailer’s outlets. In the past, similar demand
function has been used widely in marketing research litera-
ture (see [21–24]) and in some economic literature (see [25–
27]). Moreover, in this paper, assume that fuzzy variables �̃�

𝑚
,
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�̃�

𝑟
, �̃�, ̃𝛽, �̃�

𝑓
, ̃𝑘
1
, ̃𝑘
2
are all independently nonnegative, which is

reasonable in the real world.
In our models, the manufacturer can influence the

demand by setting the new product’s wholesale price; the
two competitive retailers can independently decide the retail
price of the new product and the collecting rate of the used
product. We do not assume any collusion or cooperation
among firms; this assumption is typical in analytical model,
although it overstates the information climate of the real
world. The logistic cost components of the manufacturer
and two retailers (e.g., carrying cost inventory cost, etc.) are
without consideration for analytical convenience.

Assume each channel member has the same goal: to
maximize his/her own expected profit. From the above
descriptions, the two competitive retailers’ objectives are to
maximize their own expected profits (denoted as 𝐸[𝜋

𝑟𝑖
]),

which can be described as follows:

Max
𝑝𝑖,𝜏𝑖

𝐸 [𝜋

𝑟𝑖
] = Max
𝑝𝑖,𝜏𝑖

𝐸 [(𝑝

𝑖
− 𝑤)𝐷

𝑖
(𝑝

𝑖
, 𝑝

𝑗
)

−

̃

𝑘

𝑖
𝜏

2

𝑖
+ �̃�

𝑓
𝜏

𝑖
𝐷

𝑖
(𝑝

𝑖
, 𝑝

𝑗
)] ,

(2)

where

𝜋

𝑟𝑖
= (𝑝

𝑖
− 𝑤)𝐷

𝑖
(𝑝

𝑖
, 𝑝

𝑗
) −

̃

𝑘

𝑖
𝜏

2

𝑖
+ �̃�

𝑓
𝜏

𝑖
𝐷

𝑖
(𝑝

𝑖
, 𝑝

𝑗
) . (3)

The manufacturer’s objective is to maximize his own
expected profit (denoted as 𝐸[𝜋

𝑚
]), which can be described

as follows:

Max
𝑤

𝐸 [𝜋

𝑚
]

= Max
𝑤

𝐸 [(𝑤 − (�̃�

𝑓
− �̃�

𝑚
+ �̃�

𝑟
) 𝜏

1
− �̃�

𝑚
)𝐷

1
(𝑝

1
, 𝑝

2
)

+ (𝑤 − (�̃�

𝑓
− �̃�

𝑚
+ �̃�

𝑟
) 𝜏

2
− �̃�

𝑚
)𝐷

2
(𝑝

2
, 𝑝

1
)] ,

(4)

where

𝜋

𝑚
= (𝑤 − (�̃�

𝑓
− �̃�

𝑚
+ �̃�

𝑟
) 𝜏

1
− �̃�

𝑚
)𝐷

1
(𝑝

1
, 𝑝

2
)

+ (𝑤 − (�̃�

𝑓
− �̃�

𝑚
+ �̃�

𝑟
) 𝜏

2
− �̃�

𝑚
)𝐷

2
(𝑝

2
, 𝑝

1
) .

(5)

Note that so far we have not made any assumptions
regarding the bargaining power possessed by each channel
member. The assumption regarding bargaining power pos-
sessed by each firm can influence how the pricing game is
solved in our model. Variation in bargaining power in a
particular supply chain can create one of the following three
scenarios: (1) Manufacturer Stackelberg: the manufacturer
hasmore bargaining power than the two competitive retailers
and thus is the Stackelberg leader. (2)Retailer Stackelberg: the
two competitive retailers have more bargaining power than
the manufacturer and are the Stackelberg leaders. (3)Vertical
Nash: every firm in the system has equal bargaining power.

3. Model Analysis

To analyze our model, we follow a game theory approach.
The leader in each scenario makes his decision to maximize

his/her own expected profit, conditioned on the follower’s
response.The problem can be solved backwards.We begin by
first solving for the decision of the follower of the game, given
that he/she has observed the leader’s decision. For example, in
Manufacturer Stackelberg, the two competitive retailers’ deci-
sions are derived first, given that the two competitive retailers
have observed the decision made by the manufacturer (on
wholesale price). Then, the manufacturer solves his problem
given that he knows how the two competitive retailers would
react to his decision.

3.1. Manufacturer Stackelberg

3.1.1. Retailers’ Decisions. In the Manufacturer Stackelberg
game case, the manufacturer first announces his wholesale
prices of the new product. The two competitive retailers
observe the wholesale price and then simultaneously decide
the retail prices they are going to charge for their own product
and the collecting rates of the used products. Note that the
two competitive retailers move simultaneously.Therefore, we
need to calculate the Nash decisions between them first.

Proposition 1. The two competitive retailers’ optimal retail
prices and optimal collecting rates of used products, given
earlier decision 𝑤made by the manufacturer, are

𝑝

∗

1
=

𝐵

1

𝐴

𝑤 +

𝐵

2

𝐴

,
(6)

𝑝

∗

2
=

𝐵

3

𝐴

𝑤 +

𝐵

4

𝐴

,
(7)

𝜏

∗

1
= 𝐸

1
𝑤 + 𝐸

2
, (8)

𝜏

∗

2
= 𝐸

3
𝑤 + 𝐸

4
, (9)

where

𝐴 = (2𝐸 [

̃

𝑘

2
] 𝐸 [

̃

𝛽] − 𝐸 [�̃�

𝑓

̃

𝛽] 𝐸 [�̃�

𝑓
])

× (2𝐸 [

̃

𝑘

1
] 𝐸 [

̃

𝛽] − 𝐸 [�̃�

𝑓

̃

𝛽] 𝐸 [�̃�

𝑓
])

− (𝐸

2

[�̃�

𝑓
] − 4𝐸 [

̃

𝑘

1
]) (𝐸

2

[�̃�

𝑓
] − 4𝐸 [

̃

𝑘

2
]) ,

𝐵

1
= 2𝐸 [

̃

𝑘

1
] (𝐸

2

[�̃�

𝑓
] − 4𝐸 [

̃

𝑘

2
])

− 2𝐸 [

̃

𝑘

2
] (2𝐸 [

̃

𝑘

1
] 𝐸 [

̃

𝛽] − 𝐸 [�̃�

𝑓

̃

𝛽] 𝐸 [�̃�

𝑓
]) ,

𝐵

2
= (2𝐸 [

̃

𝑘

1
] 𝐸 [�̃�] − 𝐸 [�̃�

𝑓
�̃�] 𝐸 [�̃�

𝑓
])

× (𝐸

2

[�̃�

𝑓
] − 4𝐸 [

̃

𝑘

2
])

− (2𝐸 [

̃

𝑘

2
] 𝐸 [�̃�] − 𝐸 [�̃�

𝑓
�̃�] 𝐸 [�̃�

𝑓
])

× (2𝐸 [

̃

𝑘

1
] 𝐸 [

̃

𝛽] − 𝐸 [�̃�

𝑓

̃

𝛽] 𝐸 [�̃�

𝑓
]) ,
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𝐵

3
= 2𝐸 [

̃

𝑘

2
] (𝐸

2

[�̃�

𝑓
] − 4𝐸 [

̃

𝑘

1
])

− 2𝐸 [

̃

𝑘

1
] (2𝐸 [

̃

𝑘

2
] 𝐸 [

̃

𝛽] − 𝐸 [�̃�

𝑓

̃

𝛽] 𝐸 [�̃�

𝑓
]) ,

𝐵

4
= (2𝐸 [

̃

𝑘

2
] 𝐸 [�̃�] − 𝐸 [�̃�

𝑓
�̃�] 𝐸 [�̃�

𝑓
])

× (𝐸

2

[�̃�

𝑓
] − 4𝐸 [

̃

𝑘

1
])

− (2𝐸 [

̃

𝑘

1
] 𝐸 [�̃�] − 𝐸 [�̃�

𝑓
�̃�] 𝐸 [�̃�

𝑓
])

× (2𝐸 [

̃

𝑘

2
] 𝐸 [

̃

𝛽] − 𝐸 [�̃�

𝑓

̃

𝛽] 𝐸 [�̃�

𝑓
]) ,

𝐸

1
=

1

𝐸 [�̃�

𝑓
]

(1 −

2𝐵

1

𝐴

+

𝐸 [

̃

𝛽] 𝐵

3

𝐴

) ,

𝐸

2
=

1

𝐸 [�̃�

𝑓
]

(𝐸 [�̃�] −

2𝐵

2

𝐴

+

𝐸 [

̃

𝛽] 𝐵

4

𝐴

) ,

𝐸

3
=

1

𝐸 [�̃�

𝑓
]

(1 −

2𝐵

3

𝐴

+

𝐸 [

̃

𝛽] 𝐵

1

𝐴

) ,

𝐸

4
=

1

𝐸 [�̃�

𝑓
]

(𝐸 [�̃�] −

2𝐵

4

𝐴

+

𝐸 [

̃

𝛽] 𝐵

2

𝐴

) .

(10)

Proof. Using (3), we can have the expected value of 𝜋
𝑟𝑖
as

follows:

𝐸 [𝜋

𝑟𝑖
] = (𝑝

𝑖
− 𝑤) (𝐸 [�̃�] − 𝑝

𝑖
+ 𝐸 [

̃

𝛽] 𝑝

𝑗
) − 𝐸 [

̃

𝑘

𝑖
] 𝜏

2

𝑖

+ 𝐸 [�̃�

𝑓
�̃�] 𝜏

𝑖
− 𝐸 [�̃�

𝑓
] 𝜏

𝑖
𝑝

𝑖
+ 𝐸 [�̃�

𝑓

̃

𝛽] 𝜏

𝑖
𝑝

𝑗
.

(11)

From (11), the first order partial derivatives of 𝐸[𝜋
𝑟1
] to 𝑝
1
, 𝜏
1

and 𝐸[𝜋
𝑟2
] to 𝑝
2
, 𝜏
2
can be shown as

𝜕𝐸 [𝜋

𝑟1
]

𝜕𝑝

1

= 𝑤 − 2𝑝

1
+ 𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

2
− 𝐸 [�̃�

𝑓
] 𝜏

1
,

𝜕𝐸 [𝜋

𝑟1
]

𝜕𝜏

1

= − 2𝐸 [

̃

𝑘

1
] 𝜏

1
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐸 [�̃�

𝑓
] 𝑝

1
+ 𝐸 [�̃�

𝑓

̃

𝛽] 𝑝

2
,

𝜕𝐸 [𝜋

𝑟2
]

𝜕𝑝

2

= 𝑤 − 2𝑝

2
+ 𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

1
− 𝐸 [�̃�

𝑓
] 𝜏

2
,

𝜕𝐸 [𝜋

𝑟2
]

𝜕𝜏

2

= − 2𝐸 [

̃

𝑘

2
] 𝜏

2
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐸 [�̃�

𝑓
] 𝑝

2
+ 𝐸 [�̃�

𝑓

̃

𝛽] 𝑝

1
.

(12)

Then, we can have the first order conditions as follows:

𝑤 − 2𝑝

1
+ 𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

2
− 𝐸 [�̃�

𝑓
] 𝜏

1
= 0,

−2𝐸 [

̃

𝑘

1
] 𝜏

1
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐸 [�̃�

𝑓
] 𝑝

1
+ 𝐸 [�̃�

𝑓

̃

𝛽] 𝑝

2
= 0,

𝑤 − 2𝑝

2
+ 𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

1
− 𝐸 [�̃�

𝑓
] 𝜏

2
= 0,

−2𝐸 [

̃

𝑘

2
] 𝜏

2
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐸 [�̃�

𝑓
] 𝑝

2
+ 𝐸 [�̃�

𝑓

̃

𝛽] 𝑝

1
= 0.

(13)

Solving (13), simultaneously, we can easily have (6)–(9),
so Proposition 1 is proven.

3.1.2. Manufacturer’s Decision. The manufacturer in this
game is the Stackelberg leader. He announces his new
product’s wholesale price𝑤. Using the retailers’ decisions, we
can derive themanufacturer’s optimal wholesale price.This is
carried out bymaximizing themanufacturer’s expected profit
𝐸[𝜋

𝑚
], given the two competitive retailers’ decisions, which

are given as in Proposition 1. The manufacturer chooses the
wholesale price 𝑤 to maximize his own individual expected
profit 𝐸[𝜋

𝑚
], which can be given as follows:

Max
𝑤

𝐸 [𝜋

𝑚
]

= Max
𝑤

𝐸 [(𝑤 − (�̃�

𝑓
− �̃�

𝑚
+ �̃�

𝑟
) 𝜏

∗

1
− �̃�

𝑚
)𝐷

1
(𝑝

∗

1
, 𝑝

∗

2
)

+ (𝑤 − (�̃�

𝑓
− �̃�

𝑚
+ �̃�

𝑟
) 𝜏

∗

2
− �̃�

𝑚
)𝐷

2
(𝑝

∗

2
, 𝑝

∗

1
)] ,

(14)

where 𝑝∗
1
, 𝑝∗
2
, 𝜏∗
1
, 𝜏∗
2
are defined as in (6)–(9), respectively.

Proposition 2. In the Manufacturer Stackelberg game case,
themanufacturer’s optimal decision (denoted as𝑤∗

𝑚
) is satisfied

as follows:

2𝐸 [�̃�] +

(𝐵

2
+ 𝐵

4
) (𝐸 [

̃

𝛽] − 1)

𝐴

+ 2 (𝐸 [

̃

𝛽] − 1)

𝐵

1
+ 𝐵

3

𝐴

𝑤

∗

𝑚

− (

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [𝑎 �̃�

𝑚
]

+

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)𝐸

1

+ 𝐸 [�̃�

𝑚
]

𝐵

1

𝐴

−

𝐵

3

2𝐴

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

− (

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [�̃� �̃�

𝑚
]

+

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)𝐸

3
+ 𝐸 [�̃�

𝑚
]

𝐵

3

𝐴

−

𝐵

1

2𝐴

× ∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼 + (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
])

× (

2𝐵

3
𝐸

3
+ 2𝐵

1
𝐸

1

𝐴

𝑤

∗

𝑚
+

𝐵

4
𝐸

3
+ 𝐵

3
𝐸

4
+ 𝐵

1
𝐸

2
+ 𝐵

2
𝐸

1

𝐴

)

− (

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼

−𝐸 [

̃

𝛽�̃�

𝑚
] +

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)

× (

2𝐵

1
𝐸

3
+ 2𝐵

3
𝐸

1

𝐴

𝑤

∗

𝑚

+

𝐵

1
𝐸

4
+ 𝐵

2
𝐸

3
+ 𝐵

3
𝐸

2
+ 𝐵

4
𝐸

1

𝐴

) = 0,

(15)
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where 𝐴, 𝐵
1
, 𝐵
2
, 𝐵
3
, 𝐵
4
, 𝐸
1
, 𝐸
2
, 𝐸
3
, 𝐸
4
are defined as in

Proposition 1, respectively.

Proof. With some manipulations, the expected value 𝐸[𝜋
𝑚
]

of 𝜋
𝑚
, defined in (5), can be rewritten as follows:

𝐸 [𝜋

𝑚
] = (2𝐸 [�̃�] + (𝐸 [

̃

𝛽] − 1) (𝑝

1
+ 𝑝

2
))𝑤

− (

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [�̃� �̃�

𝑚
]

+

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼) 𝜏

1

+ (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
]) 𝑝

1
𝜏

1

− (

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [

̃

𝛽�̃�

𝑚
]

+

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)𝑝

2
𝜏

1

−

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼 + 𝐸 [�̃�

𝑚
] 𝑝

1

−

𝑝

2

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

− (

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [�̃� �̃�

𝑚
]

+

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼) 𝜏

2

+ (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
]) 𝑝

2
𝜏

2

− (

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [

̃

𝛽�̃�

𝑚
]

+

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)𝑝

1
𝜏

2

−

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼 + 𝐸 [�̃�

𝑚
] 𝑝

2

−

𝑝

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼.

(16)

With (6)–(9) and (16), the first order derivative of 𝐸[𝜋
𝑚
]

to 𝑤 can be shown as

𝜕𝐸 [𝜋

𝑚
]

𝜕𝑤

= 2𝐸 [�̃�] + (𝐸 [

̃

𝛽] − 1) (𝑝

∗

1
+ 𝑝

∗

2
) + 𝑤 (𝐸 [

̃

𝛽] − 1)

× (

𝜕𝑝

∗

1

𝜕𝑤

+

𝜕𝑝

∗

2

𝜕𝑤

) − (

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [�̃��̃�

𝑚
]

+

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)

𝜕𝜏

∗

1

𝜕𝑤

+ (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
]) (𝜏

∗

1

𝜕𝑝

∗

1

𝜕𝑤

+ 𝑝

∗

1

𝜕𝜏

∗

1

𝜕𝑤

)

− (

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [

̃

𝛽�̃�

𝑚
]

+

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)

× (𝜏

∗

1

𝜕𝑝

∗

2

𝜕𝑤

+ 𝑝

∗

2

𝜕𝜏

∗

1

𝜕𝑤

) + 𝐸 [�̃�

𝑚
]

𝜕𝑝

∗

1

𝜕𝑤

−

𝜕𝑝

∗

2

𝜕𝑤

×

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

− (

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [�̃� �̃�

𝑚
]

+

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)

𝜕𝜏

∗

2

𝜕𝑤

+ (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
]) (𝜏

∗

2

𝜕𝑝

∗

2

𝜕𝑤

+ 𝑝

∗

2

𝜕𝜏

∗

2

𝜕𝑤

)

− (

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [

̃

𝛽�̃�

𝑚
]

+

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼)(𝜏

∗

2

𝜕𝑝

∗

1

𝜕𝑤

+ 𝑝

∗

1

𝜕𝜏

∗

2

𝜕𝑤

)

+ 𝐸 [�̃�

𝑚
]

𝜕𝑝

∗

2

𝜕𝑤

−

𝜕𝑝

∗

1

𝜕𝑤

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼.

(17)

Therefore, by setting (17) to zero, we can easily have (15).

Proposition 3. In the Manufacturer Stackelberg game case,
the two competitive retailers’ optimal retail prices (denoted as
𝑝

∗

𝑚1
and 𝑝∗

𝑚2
, resp.) and the optimal collecting rates (denoted

as 𝜏∗
𝑚1

and 𝜏∗
𝑚2
, resp.) are

𝑝

∗

𝑚1
=

𝐵

1

𝐴

𝑤

∗

𝑚
+

𝐵

2

𝐴

,

𝑝

∗

𝑚2
=

𝐵

3

𝐴

𝑤

∗

𝑚
+

𝐵

4

𝐴

,

𝜏

∗

𝑚1
= 𝐸

1
𝑤

∗

𝑚
+ 𝐸

2
,

𝜏

∗

𝑚2
= 𝐸

3
𝑤

∗

𝑚
+ 𝐸

4
,

(18)

where 𝐴, 𝐵
1
, 𝐵
2
, 𝐵
3
, 𝐵
4
, 𝐸
1
, 𝐸
2
, 𝐸
3
, 𝐸
4
are defined as in

Proposition 1, respectively. 𝑤∗
𝑚
is defined as in (15).

Proof. By Propositions 1 and 2, we can easily see that Propo-
sition 3 holds.

3.2. Retailer Stackelberg. The Retailer Stackelberg scenario
arises in markets where the two competitive retailers’ sizes
are larger compared to their manufacturer. Because of their
sizes, the two competitive retailers canmaintain their margin
on sales while squeezing profit from their suppliers. Similar
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game-theoretic framework as applied in the Manufacturer
Stackelberg case is implemented to solve this problem. First,
the manufacturer’s problem is solved to derive the decision
conditional on the retail prices and collecting rates chosen by
the two competitive retailers. The two competitive retailers’
problems are then solved given that the two competitive
retailers know how the manufacturer would react to their
retail prices and collecting rates.

Without loss of generality, let𝑚
𝑖
be the margin of retailer

𝑖 enjoyed by selling the new product, namely,

𝑝

𝑖
= 𝑤 + 𝑚

𝑖
, 𝑖 = 1, 2, (19)

where𝑚
𝑖
> 0.

3.2.1. Manufacturer’s Decision. Since the two competitive
retailers move first in this game, we need to calculate
the manufacturer’s decision. The manufacturer is trying to
maximize his own expected profit𝐸[𝜋

𝑚
], where𝜋

𝑚
is defined

as in (16).

Proposition 4. In the Retailer Stackelberg game case, the
manufacturer’s optimal decision, given retail prices 𝑝

1
and 𝑝

2

and the collecting rates 𝜏
1
and 𝜏
2
, is

𝑤

∗

= 𝐹

1
−

1

2

𝑝

1
−

1

2

𝑝

2
+ 𝐹

2
(𝜏

1
+ 𝜏

2
) , (20)

where

𝐹

1
=

𝐸 [�̃�] + 𝐸 [�̃�

𝑚
] − (1/2) ∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

1 − 𝐸 [

̃

𝛽]

,

𝐹

2
= (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
] −

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼

−

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼 + 𝐸 [

̃

𝛽�̃�

𝑚
])

× (2 (1 − 𝐸 [

̃

𝛽]))

−1

.

(21)

Proof. Using (16), we have the first order derivative of 𝐸[𝜋
𝑚
]

to 𝑤 as follows:

𝜕𝐸 [𝜋

𝑚
]

𝜕𝑤

= 2𝐸 [�̃�] + (𝐸 [

̃

𝛽] − 1) (𝑝

1
+ 𝑝

2
) + 2 (𝐸 [

̃

𝛽] − 1)𝑤

+ (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
]) (𝜏

1
+ 𝜏

2
)

− (

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼 − 𝐸 [

̃

𝛽�̃�

𝑚
] + 2𝐸 [�̃�

𝑚
]

+

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼) (𝜏

1
+ 𝜏

2
)

−

1

2

∫

1

0

(�̃�

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+ �̃�

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

+ 𝐸 [�̃�

𝑚
] 𝑝

2
−

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼.

(22)

We can easily see that Proposition 4 holds, by setting (22)
to zero and solving it.

3.2.2. Retailers’ Decisions. Having the information about the
decision of the manufacturer, each retailer would then use
it to maximize her own expected profit 𝐸[𝜋

𝑟𝑖
], where 𝜋

𝑟𝑖
is

defined as in (11).
Note that the two competitive retailers move simulta-

neously. Therefore, we need to calculate the Nash decisions
between them first.

Proposition 5. In the Retailer Stackelberg game case, the
optimal retail price and collecting rate (denoted as 𝑝∗

𝑟1
and 𝜏∗
𝑟1
,

resp.) of retailer 1 and the optimal retail price and collecting rate
(denoted as 𝑝∗

𝑟2
and 𝜏∗
𝑟2
, resp.) of retailer 2 are given as follows:

𝑝

∗

𝑟1
=

𝐺

1
𝐺

5
− 𝐺

3
𝐺

4

𝐺

3
𝐺

6
− 𝐺

2
𝐺

5

, (23)

𝑝

∗

𝑟2
=

𝐺

1
𝐺

6
− 𝐺

2
𝐺

4

𝐺

2
𝐺

5
− 𝐺

3
𝐺

6

, (24)

𝜏

∗

𝑟1
=

𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�]

2𝐸 [

̃

𝑘

1
]

+

𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽]

2𝐸 [

̃

𝑘

1
]

𝑝

∗

𝑟2

+

𝐹

2
− 𝐸 [�̃�

𝑓
]

2𝐸 [

̃

𝑘

1
]

𝑝

∗

𝑟1
,

(25)

𝜏

∗

𝑟2
=

𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�]

2𝐸 [

̃

𝑘

2
]

+

𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽]

2𝐸 [

̃

𝑘

2
]

𝑝

∗

𝑟1

+

𝐹

2
− 𝐸 [�̃�

𝑓
]

2𝐸 [

̃

𝑘

2
]

𝑝

∗

𝑟2
,

(26)

where

𝐹

1
=

𝐸 [�̃�] + 𝐸 [�̃�

𝑚
] − (1/2) ∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

1 − 𝐸 [

̃

𝛽]

,

(27)

𝐹

2
= (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
] −

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼

−

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼 + 𝐸 [

̃

𝛽�̃�

𝑚
])

× (2 (1 − 𝐸 [

̃

𝛽]))

−1

,
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𝐺

1
= 𝐹

1
+

3

2

𝐸 [�̃�] +

𝐹

2
(𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�])

2𝐸 [

̃

𝑘

2
]

+

(𝐹

2
− 𝐸 [�̃�

𝑓
]) (𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�])

2𝐸 [

̃

𝑘

1
]

,

𝐺

2
=

𝐹

2
(𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽])

2𝐸 [

̃

𝑘

2
]

+

(𝐹

2
− 𝐸 [�̃�

𝑓
])

2

2𝐸 [

̃

𝑘

1
]

− 3,

(28)

𝐺

3
=

3𝐸 [

̃

𝛽] − 1

2

+

(𝐹

2
− 𝐸 [�̃�

𝑓
]) (𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽])

2𝐸 [

̃

𝑘

1
]

+

𝐹

2
(𝐹

2
− 𝐸 [�̃�

𝑓
])

2𝐸 [

̃

𝑘

2
]

,

𝐺

4
= 𝐹

1
+

3𝐸 [�̃�]

2

+

(𝐹

2
− 𝐸 [�̃�

𝑓
]) (𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�])

2𝐸 [

̃

𝑘

2
]

+

𝐹

2
(𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�])

2𝐸 [

̃

𝑘

1
]

,

𝐺

5
=

𝐹

2
(𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽])

2𝐸 [

̃

𝑘

1
]

+

(𝐹

2
− 𝐸[�̃�

𝑓
])

2

2𝐸 [

̃

𝑘

2
]

− 3,

𝐺

6
=

3𝐸 [

̃

𝛽] − 1

2

+

(𝐹

2
− 𝐸 [�̃�

𝑓
]) (𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽])

2𝐸 [

̃

𝑘

2
]

+

𝐹

2
(𝐹

2
− 𝐸 [�̃�

𝑓
])

2𝐸 [

̃

𝑘

1
]

.

(29)

Proof. By (11) and (20), we have the first order partial
derivatives of 𝐸[𝜋

𝑟1
] to 𝑝

1
and 𝜏
1
and the first order partial

derivatives of 𝐸[𝜋
𝑟2
] to 𝑝
2
and 𝜏
2
as

𝜕𝐸 [𝜋

𝑟1
]

𝜕𝑝

1

= 𝑤

∗

−

5

2

𝑝

1
+

3

2

(𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

2
)

− 𝐸 [�̃�

𝑓
] 𝜏

1
,

𝜕𝐸 [𝜋

𝑟1
]

𝜕𝜏

1

= (𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽]) 𝑝

2
+ (𝐹

2
− 𝐸 [�̃�

𝑓
]) 𝑝

1

− 2𝐸 [

̃

𝑘

1
] 𝜏

1
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�] ,

𝜕𝐸 [𝜋

𝑟2
]

𝜕𝑝

2

= 𝑤

∗

−

5

2

𝑝

2
+

3

2

× (𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

1
) − 𝐸 [�̃�

𝑓
] 𝜏

2
,

𝜕𝐸 [𝜋

𝑟2
]

𝜕𝜏

2

= (𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽]) 𝑝

1

+ (𝐹

2
− 𝐸 [�̃�

𝑓
]) 𝑝

2
− 2𝐸 [

̃

𝑘

2
] 𝜏

2

+ 𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�] ,

(30)

where 𝑤∗ is defined in (20).
We can get the first order conditions as follows:

𝑤

∗

−

5

2

𝑝

1
+

3

2

(𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

2
) − 𝐸 [�̃�

𝑓
] 𝜏

1
= 0,

(𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽]) 𝑝

2
+ (𝐹

2
− 𝐸 [�̃�

𝑓
]) 𝑝

1

− 2𝐸 [

̃

𝑘

1
] 𝜏

1
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�] = 0,

𝑤

∗

−

5

2

𝑝

2
+

3

2

(𝐸 [�̃�] + 𝐸 [

̃

𝛽] 𝑝

1
) − 𝐸 [�̃�

𝑓
] 𝜏

2
= 0,

(𝐸 [�̃�

𝑓

̃

𝛽] − 𝐹

2
𝐸 [

̃

𝛽]) 𝑝

1
+ (𝐹

2
− 𝐸 [�̃�

𝑓
]) 𝑝

2

− 2𝐸 [

̃

𝑘

2
] 𝜏

2
+ 𝐸 [�̃�

𝑓
�̃�] − 𝐹

2
𝐸 [�̃�] = 0.

(31)

Solving (31), simultaneously, we can easily see that Proposi-
tion 5 holds.

Proposition 6. In the Retailer Stackelberg game case, the
manufacturer’s optimal decision (denoted as 𝑤∗

𝑟
) is

𝑤

∗

𝑟
= 𝐹

1
−

1

2

𝑝

∗

𝑟1
−

1

2

𝑝

∗

𝑟2
+ 𝐹

2
(𝜏

∗

𝑟1
+ 𝜏

∗

𝑟2
) , (32)

where 𝑝∗
𝑟1
, 𝑝∗
𝑟2
, 𝜏∗
𝑟1
, 𝜏∗
𝑟2
are defined as in (23)–(26), respectively,

and

𝐹

1
=

𝐸 [�̃�] + 𝐸 [�̃�

𝑚
] − (1/2) ∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑚𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑚𝛼
) 𝑑𝛼

1 − 𝐸 [

̃

𝛽]

,

(33)

𝐹

2
= (𝐸 [�̃�

𝑓
] − 𝐸 [�̃�

𝑚
] + 𝐸 [�̃�

𝑟
] −

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑓𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑓𝛼
) 𝑑𝛼

−

1

2

∫

1

0

(

̃

𝛽

𝑈

𝛼
�̃�

𝐿

𝑟𝛼
+

̃

𝛽

𝐿

𝛼
�̃�

𝑈

𝑟𝛼
) 𝑑𝛼 + 𝐸 [

̃

𝛽�̃�

𝑚
])

× (2 (1 − 𝐸 [

̃

𝛽]))

−1

.

(34)

Proof. By Propositions 4 and 5, we can easily see that
Proposition 6 holds.
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Table 1: Relation between linguistic expression and triangular fuzzy variable.

Linguistic expression Triangular fuzzy variable
Low (about 7) (6, 7, 9)

Remanufacturing cost �̃�
𝑟

Medium (about 11) (9, 11, 14)
High (about 16) (14, 16, 19)
Low (about 17) (15, 17, 20)

Manufacturing cost �̃�
𝑚

Medium (about 23) (20, 23, 25)
High (about 29) (25, 29, 35)

Market base �̃� Large (about 400) (300, 400, 450)
Small (about 200) (150, 200, 280)

Price elasticity ̃𝛽 Very sensitive (about 0.8) (0.6, 0.8, 0.9)
Sensitive (about 0.5) (0.3, 0.5, 0.6)

Low (about 2) (1, 2, 3)
Taking back transfer cost �̃�

𝑓
Medium (about 4) (3, 4, 5)
High (about 6) (5, 6, 8)
Low (about 500) (450, 500, 650)

Scaling parameter ̃𝑘
1

Medium (about 800) (700, 800, 1000)
High (about 1100) (1000, 1100, 1300)
Low (about 550) (400, 550, 650)

Scaling parameter ̃𝑘
2

Medium (about 850) (650, 850, 1000)
High (about 1200) (1000, 1200, 1300)

3.3. Vertical Nash. In the Vertical Nashmodel, every firm has
equal bargaining power and thus they make their decisions
simultaneously. This scenario arises in a market in which
there are relatively small- to medium-sized manufacturers
and retailers. Since a manufacturer cannot dominate the
market over the two competitive retailers, his price decision
is conditioned on how the two competitive retailers price the
newproduct. On the other hand, the two competitive retailers
must also condition their own retail price and own collecting
rate decisions on the wholesale price.

Consider that the decisions of the two competitive
retailers and the manufacturer are already derived in the
Manufacturer Stackelberg and Retailer Stackelberg game
cases, respectively. From theManufacturer Stackelberg game,
the two competitive retailers’ decisions for given wholesale
price 𝑤 are given in (6)–(9). From the Retailer Stackelberg
game, the manufacturer’s decision for given retail prices 𝑝

1

and 𝑝
2
and the collecting rates 𝜏

1
and 𝜏
2
is given in (20).

Solving (6)–(9) and (20) simultaneously yields the Nash
decision solution.The optimal Nash decisions can be derived
and be given Proposition 7.

Proposition 7. In the Vertical Nash case, the optimal retail
prices (denoted as 𝑝∗

𝑛1
and 𝑝∗

𝑛2
) chosen by retailer 1 and retailer

2, respectively, the optimal collecting rates (denoted as 𝜏∗
𝑛1

and 𝜏∗
𝑛2
) chosen by retailer 1 and retailer 2, respectively, and

the optimal wholesale price (denoted as 𝑤∗
𝑛
) chosen by the

manufacturer are

𝑤

∗

𝑛
=

𝐴𝐹

1
+ 𝐹

2
(𝐵

2
+ 𝐵

4
) + 𝐴𝐹

3
(𝐸

2
+ 𝐸

4
)

𝐴 − 𝐹

2
(𝐵

1
+ 𝐵

3
) − 𝐴𝐹

2
(𝐸

1
+ 𝐸

3
)

,

𝑝

∗

1
=

𝐵

1

𝐴

𝑤

∗

𝑛
+

𝐵

2

𝐴

,

Table 2: Optimal expected profits of the manufacturer and the two
retailers.

Game scenario 𝐸[𝜋

𝑚
] 𝐸[𝜋

𝑟1
] 𝐸[𝜋

𝑟2
]

Manufacturer Stackelberg 95194 15161 15159
Retailer Stackelberg 76463 26996 27519
Vertical Nash 91005 21868 21865

𝑝

∗

2
=

𝐵

3

𝐴

𝑤

∗

𝑛
+

𝐵

4

𝐴

,

𝜏

∗

1
= 𝐸

1
𝑤

∗

𝑛
+ 𝐸

2
,

𝜏

∗

2
= 𝐸

3
𝑤

∗

𝑛
+ 𝐸

4
,

(35)

where 𝐴, 𝐵
1
, 𝐵
2
, 𝐵
3
, 𝐵
4
, 𝐸
1
, 𝐸
2
, 𝐸
3
, 𝐸
4
, 𝐹
1
, 𝐹
2
, 𝐹
3
are defined

as in Propositions 1 and 4, respectively.

Proof. Solving (6)–(9) and (20), simultaneously, we can see
that Proposition 7 holds.

4. Numerical Studies

In this section, we compare the results obtained from the
above three different decision scenarios using numerical
approach and study the behavior of firms facing changing
environment. By the results obtained from the above three
different decision scenarios, we can easily see the expressions
of the optimal wholesale price, retail prices, collected rates,
and optimal expected profits under different decision
scenarios.
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Table 3: Optimal decisions of retail prices, wholesale price, and collecting rates.

Game scenario 𝑝

∗

1
𝑝

∗

2
𝑤

∗

𝜏

∗

1
𝜏

∗

2

Manufacturer Stackelberg 503.0028 503.0108 380.8939 0.3296 0.3247
Retailer Stackelberg 484.3593 481.2045 279.4503 0.6861 0.6988
Vertical Nash 455.7510 455.7604 309.0691 0.3883 0.3825

Here, assume that the relationship between linguistic
expressions and triangular fuzzy variables for manufacturing
cost, remanufacturing cost, market base, scaling parameter,
collecting transfer cost, and price elasticity is determined by
experts’ experiences as shown in Table 1.

Consider the case that the remanufacturing and manu-
facturing costs �̃�

𝑟
and �̃�
𝑚
are high (�̃�

𝑟
is about 16, �̃�

𝑚
is about

29), the market base �̃� is large (�̃� is about 400), price elasticity
̃

𝛽 is sensitive (̃𝛽 is about 0.5), taking back transfer cost �̃�
𝑓
is

medium (�̃�
𝑓
is about 4), and scaling parameters ̃𝑘

1
and ̃𝑘

2

are medium (̃𝑘
1
is about 800, ̃𝑘

2
is about 850). Using Table 1,

�̃�

𝑟
= (14, 16, 19), �̃�

𝑚
= (25, 29, 35), �̃� = (300, 400, 450), ̃𝛽 =

(0.3, 0.5, 0.6), �̃�
𝑓
= (3, 4, 5), ̃𝑘

1
= (700, 800, 1000), ̃𝑘

2
=

(650, 850, 1000).The expected values are𝐸[�̃�
𝑟
] = (14+2×16+

19)/4 = 65/4, 𝐸[�̃�
𝑚
] = (25 + 2 × 29 + 35)/4 = 118/4, 𝐸[�̃�] =

(300+2×400+450)/4 = 1550/4,𝐸[̃𝛽] = (0.3+2×0.5+0.6)/4 =
1.9/4, 𝐸[�̃�

𝑓
] = (3 + 2 × 4 + 5)/4 = 4, 𝐸[̃𝑘

1
] = (700 + 2 × 800 +

1000)/4 = 3300/4,𝐸[̃𝑘
2
] = (650+2×850+1000)/4 = 3350/4.

The 𝛼-optimistic value and 𝛼-pessimistic value of �̃�
𝑟
, �̃�
𝑚
, �̃�
𝑓
,

̃

𝛽 and �̃� are �̃�𝐿
𝑟𝛼
= 14+ 2𝛼, �̃�𝑈

𝑟𝛼
= 19− 3𝛼, �̃�𝐿

𝑚𝛼
= 25+ 4𝛼, �̃�𝑈

𝑚𝛼
=

35−6𝛼, ̃𝛽
𝐿

𝛼
= 0.3+0.2𝛼, ̃𝛽

𝑈

𝛼
= 0.6−0.1𝛼, �̃�𝐿

𝑓𝛼
= 3+𝛼, �̃�𝑈

𝑓𝛼
= 5−𝛼,

�̃�

𝐿

𝛼
= 300 + 100𝛼, �̃�𝑈

𝛼
= 450 − 50𝛼, respectively. The results of

expected profits and optimal decisions are shown as in Tables
2 and 3.

5. Observation

From Tables 2 and 3, we have the following results.

(1) For the three decentralized decision cases, the firm
who is the leader in the supply chain has the advantage
to get the higher profit; for example, the manufac-
turer’s profit under Manufacturer Stackelberg game
scenario is higher than that underRetailer Stackelberg
game scenario and the Vertical Nash game case.
For the two competitive retailers, they have their
own minimal expected profits under Manufacturer
Stackelberg game scenario.

(2) The new product’s optimal retail prices charged by the
two competitive retailers, respectively, under Vertical
Nash decision case are lower than those under the
Manufacturer Stackelberg and Retailer Stackelberg
decision cases, and the optimal retail prices achieve
the biggest value under Manufacturer Stackelberg
game scenario.

(3) The new product achieves the highest wholesale
price in theManufacturer Stackelberg game, followed
by the Vertical Nash game and then the Retailer
Stackelberg game case.

(4) The optimal collecting rates of the used products
charged by the two competitive retailers, respectively,
achieve the highest wholesale price in the Retailer
Stackelberg game, followed by the Vertical Nash game
and then the Manufacturer Stackelberg game case.

6. Conclusions

Different from the conventional studies, this paper explores
the roles of the two competitive retailers and the manufac-
turer and their bargaining powers by examining the supply
chain in a fuzzy environment over three different game
scenarios. We derive the expressions for optimal retail prices,
wholesale price, and collecting rates with expected value
model. By analyzing a numerical example, we further analyze
the analytical solutions and give some managerial analysis.

Compared to the traditional approach used in the study
of closed-loop supply chain, the proposed approach in this
paper requires less data to model the fuzziness which is
associated with the consumer demand, the manufacturing
and remanufacturing costs of new product, and the collecting
cost of the used product and can make use of the subjective
estimation based on decision maker’s judgment, experience,
and intuitions. It is appropriate when the situation is ambigu-
ous and lacks historical data.

However, we have made some assumptions that may be
relaxed to improve the model in the future research. One
assumption is that the demand function is linear; further
work is desirable to test whether our conclusions extend to
other forms of demand function. The other assumptions are
that the closed-loop supply chains only with one period and
competition only existing in retail process. Thus, the supply
chain with competitive manufacturers and/or competitive
retailers, and the model over multiple periods can be consid-
ered in the future.
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