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In a topological sup-semilattice, we established a new existence result for vector quasiequilibrium problems. By the analysis of
essential stabilities ofmaximal elements in a topological sup-semilattice, we prove that for solutions of each vector quasi-equilibrium
problem, there exists a connected minimal essential set which can resist the perturbation of the vector quasi-equilibrium problem.

1. Introduction

Vector equilibriumproblems can unifymany nonlinear prob-
lems such as vector optimization, vector variational inequal-
ity [1], and vector complementarity problems [2]. Recently,
not only vector equilibrium problems [3–7] but also vector
quasiequilibrium problems [8–14] and the system of vector
quasi-equilibrium problems have attracted much attention
[15–19].

Topological vector spaces provide the usualmathematical
framework in the study ofmany problems. To avoid the linear
feature, sup-semilattices may be good choices. In fact, some
results like the existence of KKM points in topological spaces
were established in topological sup-semilattices [20], where
a two-tuple (𝑋, ≤) is said to be a sup-semilattice, if 𝑋 is a
partially ordered set with the partial ordering ≤, in which
every pair (𝑥, 𝑥) has a least upper bound 𝑥 ∨ 𝑥.

The aim of this paper is to study the existence and
essential stability of vector quasi-equilibrium problems in
topological sup-semilattices. In order to achieve this, firstly,
we give a stability result in relation to maximal elements
in a topological sup-semilattice. Secondly, a new existence
result for vector quasi-equilibrium problems is established,
and we show that each vector quasi-equilibrium problem has
a connected minimal essential set in its solution set.

2. Preliminaries
Let (𝑋, ≤) be a sup-semilattice. If 𝑥 and 𝑥 are two elements
in (𝑋, ≤) and 𝑥 ≤ 𝑥, the set [𝑥, 𝑥] = {𝑦 ∈ 𝑋 : 𝑥 ≤ 𝑦 ≤ 𝑥}

is called an order interval. Let 𝐴, 𝐴 be two nonempty finite
subsets of𝑋.Then the setΔ𝐴 = ∪

𝑥∈𝐴
[𝑥, sup𝐴] is well defined

and has the properties: 𝐴 ⊆ Δ𝐴 and Δ𝐴 ⊆ Δ𝐴 if 𝐴 ⊆ 𝐴.

Definition 1 (see [20]). A subset 𝐸 ⊆ 𝑋 is Δ-convex, if for any
nonempty finite subset 𝐴 ⊆ 𝐸, we have Δ 𝐴 ⊆ 𝐸. 𝐸 being a
Δ-convex set is equivalent to the following conditions:

(a) if 𝑥, 𝑥 ∈ 𝐸, then its least upper bound 𝑥 ∨ 𝑥 ∈ 𝐸.
(b) if 𝑥, 𝑥 ∈ 𝐸 and 𝑥 ≤ 𝑥, then the order interval

[𝑥, 𝑥] ⊂ 𝐸.

It is easy to check that the intersection of two Δ-convex
sets is Δ-convex as well.

A topological space 𝑋 is said to be a topological sup-
semilattice if 𝑋 is equipped with a sup-semilattice as its
partial ordering denoted by ≤, for which 𝑓 : 𝑋 × 𝑋 → 𝑋

with (𝑥, 𝑥) → 𝑥 ∨ 𝑥 is a continuous function.
Let𝑌 be a topological vector space and 𝜃 the zero element

in 𝑌. A subset𝐶 ⊂ 𝑌 is called a cone if, for any 𝑦 ∈ 𝐶 and real
number 𝑡 > 0, 𝑡𝑦 ∈ 𝐶. A cone𝐶 is convex if𝐶 is a convex set.
If 𝐶 ∩ −𝐶 = {𝜃}, it is called a pointed cone.

Definition 2 (see [18]). Let𝑋 be a topological sup-semilattice,
𝑌 a topological vector space with a cone 𝐶 ⊂ 𝑌, 𝜑 : 𝑋 → 𝑌

a vector-valued function.

(a) 𝜑 : 𝑋 → 𝑌 is 𝐶
Δ
-quasiconcave if, for any nonempty

two points subset𝐴 = {𝑥
1
, 𝑥
2
} ⊂ 𝑋 and𝑦 ∈ 𝑌,𝜑(𝐴) ⊂

𝑦 + 𝐶 ⇒ 𝜑(Δ𝐴) ⊂ 𝑦 + 𝐶.
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(b) 𝜑 : 𝑋 → 𝑌 is said to be 𝐶
Δ
-quasiconcave-like if,

for any 𝑥
1
, 𝑥
2
∈ 𝑋, 𝜑(Δ{𝑥

1
, 𝑥
2
}) ∈ 𝜑(𝑥

1
) + 𝐶 or

𝜑(Δ{𝑥
1
, 𝑥
2
}) ∈ 𝜑(𝑥

2
) + 𝐶.

Remark 3. In general cases, 𝐶
Δ
-quasiconcave, 𝐶

Δ
-quasi-

concave-like, and usual quasiconcave functions are indepen-
dent of each other. See examples in [18]. Let 𝜑 : R → R,
𝐶 = −R+. Then the partial order on R is “≤” (less than
or equal to);, hence, the 𝐶

Δ
-quasiconcave, 𝐶

Δ
-quasiconcave-

like, and usual quasiconcave property of𝜑 coincide (the usual
quasiconcave function 𝜑 means that for any 𝑥

1
, 𝑥
2
, 𝑦 ∈ R,

𝜑(𝑥
1
) ≤ 𝑦 and 𝜑(𝑥

2
) ≤ 𝑦 ⇒ 𝜑(𝜆𝑥

1
+ (1 − 𝜆)𝑥

2
) ≤ 𝑦,

for all 𝜆 ∈ [0, 1]).

Lemma4 (see [18]). Let𝑋 be a topological sup-semilattice,𝑌 a
Hausdorff locally convex topological vector space with a closed,
convex, and pointed cone 𝐶 ⊂ 𝑌. If the vector-valued function
𝜑 : 𝑋 → 𝑌 is 𝐶

Δ
-quasiconcave or 𝐶

Δ
-quasiconcave-like, then

the set 𝐴 = {𝑥 : 𝜑(𝑥) ∈ int𝐶} is Δ-convex.

Now we introduce the vector quasiequilibrium problem
(VQEP) that we will consider in this paper.

Let𝑋 be a topological sup-semilattice and𝑌 a topological
vector space.𝐶 ⊂ 𝑌 is a closed, convex, and pointed conewith
int𝐶 ̸= 0. 𝜑 : 𝑋 × 𝑋 → 𝑌 is a vector-valued function, and 𝐺
is a multivaluedmapping on𝑋.The vector quasi-equilibrium
problem 𝜙 with 𝜙 = (𝑋, 𝑌, 𝐶, 𝜑, 𝐺) is to find 𝑥 ∈ 𝑋, such that

𝑥 ∈ 𝐺 (𝑥) : 𝜑 (𝑥, 𝑦) ∉ int𝐶, ∀𝑦 ∈ 𝐺 (𝑥) . (1)

Let 𝐺(𝑥) = 𝑋, for all 𝑥 ∈ 𝑋; then the VQEP is just a
vector equilibrium problem (𝑋, 𝑌, 𝐶, 𝜑) (VEP).That is to find
𝑥 ∈ 𝑋, such that

𝜑 (𝑥, 𝑦) ∉ int𝐶, ∀𝑦 ∈ 𝑋. (2)

Definition 5 (see [21, 22]). A vector-valued function 𝜑 : 𝑋 →

𝑌 is said to be C-continuous on 𝑋 if, for each 𝑥 ∈ 𝑋 and
any open neighborhood 𝑉(𝜃) of 𝜃 in 𝑌, there exists an open
neighborhood 𝑂(𝑥) of 𝑥 in𝑋 such that

∀𝑥

∈ 𝑂 (𝑥) , 𝜑 (𝑥


) ∈ 𝜑 (𝑥) + 𝑉 (𝜃) + 𝐶. (3)

Remark 6. For a function 𝜑 : 𝑋 → R, 𝜑 is R
+
-𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠

on𝑋 if and only if 𝜑 is lower semicontinuous on𝑋.

A maximal element version of the Browder fixed point
theorem in a topological sup-semilattice can be found in [18].
We limit it in a metric space as the following lemma.

Lemma 7 (see [18]). Let (𝑋, 𝑑) be a compact sup-semilattice
with path connected interval, where 𝑑 is the metric on 𝑋,
𝑆 : 𝑋 → 2

𝑋 a multivalued map on 𝑋 with the condi-
tions: (i) for all 𝑥 ∈ 𝑋, 𝑆(𝑥) is Δ-convex; (ii) for all 𝑦 ∈

𝑋, 𝑆−1(𝑦) = {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝑆(𝑥)} is open in 𝑋; (iii) for all 𝑥 ∈
𝑋, 𝑥 ∉ 𝑆(𝑥). Then there exists an 𝑥 ∈ 𝑋, such that 𝑆(𝑥) = 0.

Remark 8. The existence of a metric space with a sup-
semilattice can be guaranteed. For instance, let 𝑥𝑗 =

(𝑥
𝑗

1
, . . . , 𝑥

𝑗

𝑖
, . . . , 𝑥𝑗

𝑛
) ∈ R𝑛, 𝑗 = 1, 2, if 𝑥1 ≤ 𝑥2 means that 𝑥2 ∈

𝑥
1 + R𝑛
+
, then 𝑥1 ∨ 𝑥2 = 𝑥, where 𝑥

𝑖
= max{𝑥1

𝑖
, 𝑥2
𝑖
}. Clearly,

(R𝑛, ≤) with the usual Euclidean metric is a topological sup-
semilattice.

Let 𝑀 denote the collection of 𝑆 satisfying all the
conditions of Lemma 7. For any 𝑆

1
, 𝑆
2
∈ 𝑀, define the metric

between 𝑆
1
and 𝑆
2
as

𝜌 (𝑆
1
, 𝑆
2
) = sup

𝑦∈𝑋
ℎ (𝑋 \ 𝑆

−1

1
(𝑦) , 𝑋 \ 𝑆

−1

2
(𝑦)) ,

(4)

where ℎ is theHausdorffmetric induced by 𝑑. For each 𝑆 ∈ 𝑀
and each 𝑦 ∈ 𝑋, since 𝑦 ∉ 𝑆(𝑦), we have 𝑦 ∈ 𝑋 \ 𝑆−1(𝑦), that
is,𝑋 \ 𝑆−1(𝑦) ̸= 0. Noting that𝑋 \ 𝑆−1(𝑦) is closed, the metric
𝜌 on𝑀 is well defined. Then (𝑀, 𝜌) is a metric space.

For each 𝑆 ∈ 𝑀, denote by 𝐹(𝑆) the set of all maximal
elements of 𝑆. Then 𝐹 defines a multivalued mapping from
𝑀 to𝑋 and 𝐹(𝑆) = ∩

𝑦∈𝑋
(𝑋 \ 𝑆−1(𝑦)).

Definition 9. For each 𝑆 ∈ 𝑀, a set 𝑒(𝑆) is called an essential
set of 𝐹(𝑆) if it satisfies the following conditions:

(1) 𝑒(𝑆) is closed subset of 𝐹(𝑆).

(2) For any open set 𝑈 ⊃ 𝑒(𝑆), there exists an open
neighborhood 𝑂(𝑆) of 𝑆 ∈ 𝑀 such that 𝑈 ∩ 𝐹(𝑆) ̸= 0,
for any 𝑆 ∈ 𝑂(𝑆).

A set𝑚(𝑆) is called a minimal essential set of 𝐹(𝑆) if it is a
minimal element of all essential sets ordered by set inclusion
in 𝐹(𝑆). A connected component in 𝐹(𝑆) is called an essential
component, if it includes at least one minimal essential set of
𝐹(𝑆).

We recall some notions aboutmulti-valuedmappings. Let
𝐺 : 𝑌 → 2

𝑃 be a multi-valued mapping, where 𝑌, 𝑃 are
two topological vector spaces. Then (i) 𝐺 is said to be upper
semicontinuous at 𝑦 ∈ 𝑌, if for each open set 𝑈 ⊃ 𝐺(𝑦),
there exists an open neighborhood 𝑂(𝑦) of 𝑦 such that 𝑈 ⊃

𝐺(𝑦
) for any 𝑦 ∈ 𝑂(𝑦). (ii) 𝐺 is lower semi-continuous at

𝑦 ∈ 𝑌, if for each open set 𝑈 ∩ 𝐺(𝑦) ̸= 𝜙, there exists an open
neighborhood𝑂(𝑦) of 𝑦 such that𝑈∩𝐺(𝑦) ̸= 𝜙 for any 𝑦 ∈
𝑂(𝑦).

Remark 10. For each 𝑆 ∈ 𝑀, a set 𝑒(𝑆) ⊂ 𝐹(𝑆) is essential if 𝐹
is lower semi-continuous at 𝑆. If 𝐹 is upper semi-continuous
at 𝑆, then 𝐹(𝑆) itself is an essential set. For any two closed
sets 𝐴, 𝐵 ⊂ 𝐹(𝑆) with 𝐴 ⊂ 𝐵, if 𝐴 is essential, then 𝐵 is also
essential. For each 𝑆 ∈ 𝑀 and each 𝑦 ∈ 𝑋, if 𝑆−1(𝑦) is open,
then 𝑋 \ 𝑆−1(𝑦) is closed; hence, 𝐹(𝑆) is closed because we
have 𝐹(𝑆) = ∩

𝑦∈𝑋
𝑋 \ 𝑆−1(𝑦); consequently, 𝐹(𝑆) is compact.

Lemma 11 (see [23]). Let (𝑋, 𝑑) be a metric space, 𝐾
1
and 𝐾

2

two nonempty compact subsets of𝑋,𝑈
1
, and𝑈

2
two nonempty

disjoint open subsets of 𝑋. If ℎ(𝐾
1
, 𝐾
2
) < 𝑑(𝑈

1
, 𝑈
2
), then

ℎ(𝐾
1
, (𝐾
1
\ 𝑈
2
) ∪ (𝐾

2
\ 𝑈
1
)) ≤ ℎ(𝐾

1
, 𝐾
2
), where ℎ is the

Hausdorff metric defined on 𝑋.
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3. The Stability of Maximal Elements on
Topological Semilattices

Theorem 12. 𝐹 : 𝑀 → 2𝑋 is an upper semi-continuous map-
ping with compact values.

Proof. For each 𝑆 ∈ 𝑀, by Remark 10, 𝐹(𝑆) is compact.
Suppose that 𝐹 is not upper semi-continuous. Then there is
a 𝑆 ∈ 𝑀, an open set 𝑈 with 𝑈 ⊃ 𝐹(𝑆) and 𝑆

𝑛
, such that

𝑆
𝑛
→ 𝑆 and 𝐹(𝑆

𝑛
) ̸⊂ 𝑈, 𝑛 = 1, 2, . . .. That is, there exists a

point 𝑥
𝑛
∈ 𝐹(𝑆
𝑛
) such that 𝑥

𝑛
∉ 𝑈. Without loss of generality,

we may assume that 𝑥
𝑛
→ 𝑥∗. Since 𝑆

𝑛
→ 𝑆, it holds that

𝑋\𝑆−1
𝑛
(𝑦) → 𝑋\𝑆−1(𝑦), for all 𝑦 ∈ 𝑋. Since 𝑥

𝑛
∈ 𝐹(𝑆
𝑛
), we

have 𝑥
𝑛
∈ 𝑋\𝑆−1

𝑛
(𝑦), for all 𝑦 ∈ 𝑋. As 𝑛 gets close to infinity,

we can obtain that 𝑥∗ ∈ 𝑋 \ 𝑆−1(𝑦), for all 𝑦 ∈ 𝑋, that is,
𝑥∗ ∈ 𝐹(𝑆) ⊂ 𝑈. This results in the fact that 𝑥

𝑛
∈ 𝑈 while 𝑛

is large enough, a contradiction with 𝑥
𝑛
∉ 𝑈. Therefore, 𝐹 is

definitely upper semi-continuous.

Theorem 13. For each 𝑆 ∈ 𝑀, there exists at least a minimal
essential set of 𝐹(𝑆). If 𝑚(𝑆) is a minimal essential set of 𝐹(𝑆),
then𝑚(𝑆) is connected.

Proof. For the existence, by Remark 10, each decreasing
chain, consisting of essential subsets of 𝐹(𝑆), has a minimal
element, which is the intersection of the chain. By the Zorn’s
lemma, the minimal element is just a minimal essential set.
For the connectedness, by way of contradiction, suppose that
𝑚(𝑆) is not connected. There exist two disjoint closed sets
𝐶
1
(𝑆), 𝐶

2
(𝑆) such that𝑚(𝑆) = 𝐶

1
(𝑆) ∪ 𝐶

2
(𝑆).

Since 𝐶
𝑖
(𝑆) is not essential, there is an open set𝑊

𝑖
with

𝑊
𝑖
⊃ 𝐶
𝑖
(𝑆) such that for any 𝜀 > 0, there exists a 𝑆

𝑖
∈ 𝑀

with 𝜌(𝑆, 𝑆
𝑖
) < 𝜀 and 𝐹(𝑆

𝑖
) ∩ 𝑊

𝑖
= 0, 𝑖 = 1, 2. Clearly, 𝐶

𝑖
(𝑆)

is compact, then there is an open set 𝑈
𝑖
with 𝐶

𝑖
(𝑆) ⊂ 𝑈

𝑖
⊂

𝑊
𝑖
, 𝑖 = 1, 2, such that 𝑈

1
∩ 𝑈
2
= 0. For 𝑈

1
∪ 𝑈
2
⊃ 𝑚(𝑆),

because 𝑚(𝑆) is essential, there is a number 𝛿 < 2𝑑(𝑈
1
, 𝑈
2
),

such that𝐹(𝑇)∩(𝑈
1
∪𝑈
2
) ̸= 0 for each𝑇 satisfying 𝜌(𝑇, 𝑆) < 𝛿.

Therefore, we can select a 𝑆
𝑖
∈ 𝑀 such that 𝜌(𝑆, 𝑆

𝑖
) < 𝛿/4 and

𝐹(𝑆
𝑖
) ∩ 𝑈
𝑖
= 0, 𝑖 = 1, 2. Then 𝜌(𝑆

1
, 𝑆
2
) < 𝜌(𝑆

1
, 𝑆) + 𝜌(𝑆, 𝑆

2
) <

𝛿/2 < 𝑑(𝑈
1
, 𝑈
2
).

Define a multi-valued mapping 𝑆 : 𝑀 → 2𝑋 as

𝑆

=

{{

{{

{

𝑆
1
(𝑥) , 𝑥 ∈ 𝑈

1
,

𝑆
2
(𝑥) , 𝑥 ∈ 𝑈

2
,

𝑆
1
(𝑥) ∩ 𝑆

2
(𝑥) , 𝑥 ∈ 𝑋 \ (𝑈

1
∪ 𝑈
2
) .

(5)

We show that 𝑆 ∈ 𝑀.

(a) For each 𝑥 ∈ 𝑋, since 𝑥 ∉ 𝑆
1
(𝑥) and 𝑥 ∉ 𝑆

2
(𝑥), we

have 𝑥 ∉ 𝑆(𝑥);
(b) for each 𝑥 ∈ 𝑋, because 𝑆

1
(𝑥) and 𝑆

2
(𝑥) are Δ-convex

sets, it follows that 𝑆(𝑥) is Δ-convex;
(c) for each 𝑦 ∈ 𝑋, we have

𝑆
−1

(𝑦)

= (𝑆
−1

1
(𝑦) ∩ 𝑆

−1

2
(𝑦)) ∪ (𝑆

−1

2
(𝑦) ∩ 𝑈

2
) ∪ (𝑆

−1

1
(𝑦) ∩ 𝑈

1
) .

(6)

Noting that 𝑆−1
1
(𝑦), 𝑆−1

2
(𝑦), 𝑈

1
, and 𝑈

2
are open sets, it

follows that 𝑆−1(𝑦) is open.
Through a direct calculation, 𝑋 \ 𝑆−1(𝑦) can be written

as

((𝑋 \ 𝑆
−1

1
(𝑦)) ∩ (𝑋 \ 𝑆

−1

2
(𝑦)))

∪ ((𝑋 \ 𝑆
−1

1
(𝑦)) ∩ (𝑋 \ 𝑈

2
))

∪ ((𝑋 \ 𝑆
−1

2
(𝑦)) ∩ (𝑋 \ 𝑈

1
)) .

(7)

Take any 𝑥 ∈ 𝑋 \ 𝑆
−1

(𝑦). Note that if 𝑥 ∈ 𝑈
1
, then 𝑥 ∈

𝑋 \ 𝑈
2
; if 𝑥 ∈ 𝑈

2
, then 𝑥 ∈ 𝑋 \ 𝑈

1
; if 𝑥 ∈ 𝑋 \ (𝑈

1
∪ 𝑈
2
), then

𝑥 ∈ (𝑋 \ 𝑈
1
) ∩ (𝑋 \ 𝑈

2
). Consequently, we can obtain that if

𝑥 ∈ (𝑋 \ 𝑆−1
1
(𝑦)) ∩ (𝑋 \ 𝑆−1

2
(𝑦)), then

𝑥 ∈ ((𝑋 \ 𝑆
−1

1
(𝑦)) ∩ (𝑋 \ 𝑈

2
))

∪ ((𝑋 \ 𝑆
−1

2
(𝑦)) ∩ (𝑋 \ 𝑈

1
)) .

(8)

Therefore, we have

𝑋 \ 𝑆
−1

(𝑦)

= ((𝑋 \ 𝑆
−1

1
(𝑦)) ∩ (𝑋 \ 𝑈

2
))

∪ ((𝑋 \ 𝑆
−1

2
(𝑦)) ∩ (𝑋 \ 𝑈

1
)) .

(9)

Since 𝜌(𝑆
1
, 𝑆
2
) < 𝑑(𝑈

1
, 𝑈
2
), by Lemma 11, we have

ℎ (𝑋 \ 𝑆
−1

(𝑦) , 𝑋 \ 𝑆
−1

1
(𝑦))

≤ ℎ (𝑋 \ 𝑆
−1

2
(𝑦) , 𝑋 \ 𝑆

−1

1
(𝑦))

≤ 𝜌 (𝑆
2
, 𝑆) + 𝜌 (𝑆, 𝑆

1
) <

𝛿

2
.

(10)

That is, 𝜌(𝑆, 𝑆
1
) < 𝛿/2. This results in the fact that

𝜌 (𝑆

, 𝑆) < 𝜌 (𝑆


, 𝑆
1
) + 𝜌 (𝑆

1
, 𝑆) < 𝛿. (11)

Consequently, we have 𝐹(𝑆)∩(𝑈
1
∪𝑈
2
) ̸= 0. If there is a point

𝑥 ∈ 𝑈
𝑖
∩𝐹(𝑆), then 𝑥 ∈ 𝑈

𝑖
and 𝑥 ∈ 𝑋 \ 𝑆−1

𝑖
(𝑦), for all 𝑦 ∈ 𝑋,

that is, 𝑥 ∈ 𝑈
𝑖
and 𝑥 ∈ 𝐹(𝑆

𝑖
) which contradicts with 𝐹(𝑆

𝑖
) ∩

𝑈
𝑖
= 0, 𝑖 = 1, 2. Therefore,𝑚(𝑆) is connected.

4. The Existence and Stability of
Solutions for VQEP

This section gives an existence result in relation to VQEP
in topological sup-semilattices and induces the existence of
minimal essentially stable sets for each VQEP in the set of its
solutions.

Theorem 14. Let 𝜙 = (𝑋, 𝑌, 𝐶, 𝜑, 𝐺) be a VQEP, where 𝑋
is a compact topological sup-semilattice with path connected
intervals, 𝑌 is a Hausdorff locally convex topological vector
space, and 𝐺 : 𝑋 → 2

𝑋 is a multi-valued mapping with
nonempty and Δ-convex values. If the VQEP satisfies that
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(i) for all 𝑥 ∈ 𝑋, 𝜑(𝑥, 𝑥) ∉ int𝐶;
(ii) for all 𝑦 ∈ 𝑋, 𝑥 → 𝜑(𝑥, 𝑦) is 𝐶-continuous;
(iii) for all 𝑥 ∈ 𝑋, 𝑦 → 𝜑(𝑥, 𝑦) is 𝐶

Δ
-quasiconcave-like

or 𝐶
Δ
-quasiconcave;

(iv) for all 𝑦 ∈ 𝑋, {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝐺(𝑥)} is open in𝑋,
(v) {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐺(𝑥)} is closed in𝑋,

then the VQEP has a solution.

Proof. Denote {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐺(𝑥)} by 𝐾. Let 𝐵 : 𝑋 → 2𝑋

such that 𝐵(𝑥) = {𝑦 ∈ 𝑋 : 𝜑(𝑥, 𝑦) ∈ int𝐶}, for all 𝑥 ∈ 𝑋.
Define

𝑆 (𝑥) = {
𝐵 (𝑥) ∩ 𝐺 (𝑥) , 𝑥 ∈ 𝐾,

𝐺 (𝑥) , 𝑥 ∈ 𝑋 \ 𝐾.
(12)

Then for each 𝑥 ∈ 𝑋, if 𝑥 ∈ 𝐾, we have 𝑆(𝑥) = 𝐵(𝑥) ∩ 𝐺(𝑥),
by the condition (i), 𝑥 ∉ 𝐵(𝑥), hence, 𝑥 ∉ 𝑆(𝑥); if 𝑥 ∈ 𝑋 \ 𝐾,
from the definition of𝐾, we have 𝑥 ∉ 𝐺(𝑥) = 𝑆(𝑥).

Since 𝑦 → 𝜑(𝑥, 𝑦) is 𝐶
Δ
-quasiconcave-like or 𝐶

Δ
-

quasiconcave, by Lemma 4, we have that 𝐵(𝑥) is Δ-convex.
Then 𝐵(𝑥) ∩ 𝐺(𝑥) is a Δ-convex set, noting that 𝐺 has Δ-
convex values, we have that 𝑆(𝑥) is also Δ-convex.

For each 𝑦 ∈ 𝑋, we can check that

𝑆
−1
(𝑦) = (𝐵

−1
(𝑦) ∩ 𝐺

−1
(𝑦)) ∪ (𝐺

−1
(𝑦) ∩ (𝑋 \ 𝐾)) . (13)

Take a point 𝑥 ∈ 𝐵−1(𝑦) = {𝑥 ∈ 𝑋 : 𝜑(𝑥, 𝑦) ∈ int𝐶},
since int𝐶 is open, there is an open set𝑉(𝜃) such that𝑉(𝜃) +
𝜑(𝑥, 𝑦) ⊂ int𝐶, then, by the condition (ii), there exists an
open neighborhood 𝑂(𝑥) in𝑋 such that for all 𝑥 ∈ 𝑂(𝑥),

𝜑 (𝑥

, 𝑦) ∈ 𝜑 (𝑥, 𝑦) + 𝑉 (𝜃) + 𝐶 ⊂ int𝐶 + 𝐶 ⊂ int𝐶. (14)

That is, 𝑂(𝑥) ⊂ 𝐵
−1
(𝑦); hence, 𝐵−1(𝑦) is open. Noting that

𝑋\𝐾 and𝐺−1(𝑦) are open sets in𝑋.We can obtain that 𝑆−1(𝑦)
is also open in𝑋.

Thus, there is an 𝑥 ∈ 𝑋 such that 𝑆(𝑥) = 0 by Lemma 7. If
𝑥 ∈ 𝑋 \ 𝐾, then 𝐺(𝑥) = 0, a contradiction to the fact that 𝐺
has nonempty values. Therefore, 𝑥 ∈ 𝐾 and 𝐵(𝑥) ∩ 𝐺(𝑥) = 0,
that is, 𝑥 ∈ 𝐺(𝑥), 𝜑(𝑥, 𝑦) ∉ int𝐶, for all 𝑦 ∈ 𝑋.

By Theorem 14 and its proof, we can also obtain the
existence result for VQEP as the following.

Corollary 15. Let 𝜙 = (𝑋, 𝑌, 𝐶, 𝜑, 𝐺) be a VQEP, where 𝑋
is a compact topological sup-semilattice with path connected
intervals, 𝑌 is a Hausdorff topological vector space, and 𝐺 :

𝑋 → 2
𝑋 is a multi-valued mapping with nonempty and Δ-

convex values. If the VQEP satisfies that

(i) for all 𝑥 ∈ 𝑋, 𝜑(𝑥, 𝑥) ∉ int𝐶;
(ii) for all 𝑦 ∈ 𝑋, {𝑥 ∈ 𝑋 : 𝜑(𝑥, 𝑦) ∈ int𝐶} is open in𝑋;
(iii) for all 𝑥 ∈ 𝑋, {𝑦 ∈ 𝑋 : 𝜑(𝑥, 𝑦) ∈ int𝐶} is Δ-convex;
(iv) for all 𝑦 ∈ 𝑋, {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝐺(𝑥)} is open in𝑋,
(v) {𝑥 ∈ 𝑋 : 𝑥 ∈ 𝐺(𝑥)} is closed in𝑋,

then the VQEP has a solution.

By Theorem 14, for the special case of VQEP without
the feasible mapping 𝐺, we can obtain the existence result
concerning VEP as the following.

Corollary 16. Let (𝑋, 𝑌, 𝐶, 𝜑) be a vector equilibriumproblem,
where 𝑋 is a compact topological sup-semilattice with path
connected intervals, 𝑌 is a Hausdorff locally convex topological
vector space. If the VEP satisfies the following conditions:

(i) for all 𝑥 ∈ 𝑋, 𝑦 → 𝜑(𝑥, 𝑦) is𝐶
Δ
-quasiconcave or𝐶

Δ
-

quasiconcave-like;
(ii) for all 𝑦 ∈ 𝑋, 𝑥 → 𝜑(𝑥, 𝑦) is 𝐶-continuous;
(iii) for all 𝑥 ∈ 𝑋, 𝜑(𝑥, 𝑥) ∉ int𝐶,

then this VEP has a solution.

Example 17. Let 𝑋 = [0, 1] × [0, 1] ⊂ R2, 𝐶 = −R
+
. The

(𝑋, ≤) is a sup-semilattice, in which 𝑥1 ≤ 𝑥2 means that 𝑥2 ∈
𝑥1 + R2

+
, for all 𝑥1, 𝑥2 ∈ 𝑋.

(a) For any 𝑥 = (𝑥
1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
) ∈ 𝑋, the function 𝜑 is

defined as

𝜑 (𝑥, 𝑦) = (1 − 𝑦
1
) (1 − 𝑦

2
) − (1 − 𝑥

1
) (1 − 𝑥

2
) . (15)

It can be easily checked that for each 𝑥 ∈ 𝑋, 𝜑(𝑥, ⋅) is
𝐶
Δ
quasiconcave and 𝐶

Δ
quasiconcave-like but not a usual

quasiconcave function.
Denote by D the set (1 × [0, 1]) ∪ ([0, 1] × 1). For each

𝑥 = (𝑥
1
, 𝑥
2
) ∈ 𝑋, the multi-valued mapping 𝐺 satisfies that

𝐺 (𝑥) = {
(𝑥
1
, 1] × [0, 1] ∪ [0, 1] × (𝑥

2
, 1] , 𝑥 ∈ 𝑋 \ 𝐷,

(1, 1) , 𝑥 ∈ 𝐷.

(16)

Note that𝐺 is not a usual convex but aΔ-convexmulti-valued
mapping. For each 𝑦 = (𝑦

1
, 𝑦
2
) ∈ 𝑋, if 𝑦 ∈ 𝑋 \ (1, 1), then

𝐺−1(𝑦) = [0, 𝑦
1
)×[0, 𝑦

2
); if𝑦 = (1, 1), then𝐺−1(𝑦) = 𝑋.Thus,

𝐺−1(𝑦) is open in 𝑋 for each 𝑦 ∈ 𝑋. Then 𝜑 and 𝐺 satisfy all
the conditions in Theorem 14. We can find that 𝑥 = (1, 1) is
the unique solution for the VQEP, (𝑋,R, 𝐶, 𝜑, 𝐺).
(b) For any 𝑥 = (𝑥

1
, 𝑥
2
), 𝑦 = (𝑦

1
, 𝑦
2
) ∈ 𝑋, let 𝑇(𝑥) = 𝐵

𝜀
(𝑥),

where 𝐵
𝜀
(𝑥) is the 𝜀-neighborhood of 𝑥 in𝑋,

𝜑 (𝑥, 𝑦) = (1 + 𝑥
1
− 𝑦
1
) (1 + 𝑥

2
− 𝑦
2
) , (17)

and𝐺 is the same as the setting in (a).Then the function𝜑 and
the mappings𝐺 and 𝑇meet all the conditions inTheorem 14.
The set of solutions for the VEP (𝑋,R, 𝐶, 𝜑) is the overall
𝑋 which is also the set of solutions for (𝑋,R, 𝐶, 𝜑, 𝑇). The
solution of (𝑋,R, 𝐶, 𝜑, 𝐺) is just one point 𝑥 = (1, 1).

To study the stability of vector quasi-equilibrium prob-
lems, let (𝑋, 𝑑) be a metric space and define the set𝑀 as

𝑀

= {𝜙 = (𝑋, 𝑌, 𝐶, 𝜑, 𝐺) :

𝜙 satisfies all the conditions in Theorem 14}
(18)

For each 𝜙 ∈ 𝑀
, by the proof of Theorem 14, we can

find that a point 𝑥 ∈ 𝑋 is a solution of 𝜙 if and only if 𝑥 is a
maximal element of 𝑆 defined in the proof. Let 𝐹(𝜙) denote
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all the solutions of 𝜙.Then𝐹 is a multi-valuedmapping from
𝑀 to 𝑋. For any two 𝜙

1
, 𝜙
2
, define the metric 𝜌(𝜙

1
, 𝜙
2
)

between 𝜙
1
and 𝜙

2
as

𝜌

(𝜙
1
, 𝜙
2
) = 𝜌 (𝑆

1
, 𝑆
2
) , (19)

where 𝑆
1
and 𝑆

2
are multi-valued mappings corresponding

to 𝜙
1
and 𝜙

2
in the proof of Theorem 14. Then (𝑀, 𝜌) is a

metric space. Instead of𝑀, 𝑆 and 𝐹(𝑆) by𝑀, 𝜙 and 𝐹(𝜙) in
Definition 9, we can also define essential sets 𝑒(𝜙), minimal
essential sets 𝑚(𝜙) of 𝐹(𝜙), and essential component in
𝐹(𝜙). If an essential set 𝑒(𝜙) is singleton set {𝑥∗}, 𝑥∗ is called
an essential solution of 𝜙.

FromTheorems 12 and 13, we have the following results.

Theorem 18. 𝐹 : 𝑀 → 2𝑋 is an upper semi-continuous
mapping with compact values. For each VQEP 𝜙 ∈ 𝑀, there
exists at least a connected minimal essential set𝑚(𝜙) of 𝐹(𝜙).

Remark 19. For each 𝜙 ∈ 𝑀, 𝑦 ∈ 𝑋, let

𝐴
𝜙
(𝑦) = {𝑥 : 𝑦 ∉ 𝐺 (𝑥) , or 𝜑 (𝑥, 𝑦) ∉ int𝐶 and 𝑥 ∈ 𝐺 (𝑥)} .

(20)

For any 𝜙
1
, 𝜙
2
∈ 𝑀, from the definition of the metric

between 𝑆
1
and 𝑆
2
, then

𝜌

(𝜙
1
, 𝜙
2
) = sup

𝑦∈𝑋
ℎ (𝐴
𝜙
1

(𝑦) , 𝐴
𝜙
2

(𝑦)) ,
(21)

which gives an overall consideration of 𝜑 and 𝐺. If 𝜙
1
and 𝜙

2

are two VEP, then

𝜌

(𝜙
1
, 𝜙
2
)

= sup
𝑦∈𝑋
ℎ ({𝑥 : 𝜑

1
(𝑥, 𝑦) ∉ int𝐶} ,

𝑥 {𝑥 : 𝜑
2
(𝑥, 𝑦) ∉ int𝐶}) .

(22)

For the essential stability of solutions for VQEP, clearly,
the class of perturbations induced by themetric 𝜌 is different
from the perturbation of uniform topology in [3, 14] and also
different from the perturbation of best response defined in
[16]. For example, the existence of essential sets of solutions
for VQEP in topological vector spaces is proved in [3], and
the uniform metric for two VQEP 𝜙

1
= (𝑋,𝑋, 𝐶, 𝜑

1
, 𝐺
1
) and

𝜙
2
= (𝑋,𝑋, 𝐶, 𝜑

2
, 𝐺
2
) is defined as

𝜌

(𝜙
1
, 𝜙
2
) = sup

(𝑥,𝑦)∈𝑋×𝑋

𝜑1 (𝑥, 𝑦) − 𝜑2 (𝑥, 𝑦)


+ sup
𝑥∈𝑋
ℎ (𝐺
1
(𝑥) , 𝐺

2
(𝑥)) ,

(23)

where 𝑋 is a compact convex subset of a Banach space.
Naturally, the feasible mapping 𝐺 requires closed values,
which is not a requirement in Theorem 14, however, where
each inverse image being open is necessary.

By Theorem 18, each connected component including a
connected minimal essential set of solutions is essential; that
is, the existence of essential components can be induced.

Corollary 20. Let 𝜙 ∈ 𝑀. There is an essential component
in 𝐹(𝜙). If 𝐹(𝜙) = {𝑥∗} is a singleton, then 𝑥∗ is an essential
solution of 𝜙.
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