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We study the local convergence properties of inexact Newton-Gauss method for singular systems of equations. Unified estimates of
radius of convergence balls for one kind of singular systems of equations with constant rank derivatives are obtained. Application
to the Smale point estimate theory is provided and some important known results are extended and/or improved.

1. Introduction

Consider the following system of nonlinear equations:

𝑓 (𝑥) = 0, (1)

where 𝑓 : 𝐷 ⊂ R𝑛 → R𝑚 is a nonlinear operator with its
Fréchet derivative denoted by 𝑓 and 𝐷 is open and convex.
In the case when𝑚 = 𝑛 and𝑓(𝑥) is invertible for each 𝑥 ∈ 𝐷,
Newton’s method is a classical numerical method to find an
approximation solution for such system. There are a lot of
results that improve, generalize, or extend the convergence
of Newton’s method for solving (1). We refer the reader to
the works of Deuflhard and Heindl [1], Smale [2], Wang [3],
Ferreira [4], Argyros et al. [5], and the references therein. If
𝑥
0
∈ 𝐷 is an approximation of a zero of this system, then

Newton’s method can be defined by the form as follows:

𝑥
𝑘+1

= 𝑥
𝑘
− 𝑓(𝑥

𝑘
)
−1

𝑓 (𝑥
𝑘
) , 𝑘 = 0, 1, 2, . . . . (2)

When 𝑓(𝑥) is not invertible, we choose its Moore-Penrose
inverse𝑓(𝑥)† instead of its classical inverse and call it Gauss-
Newton’s method given as follows:

𝑥
𝑘+1

= 𝑥
𝑘
− 𝑓(𝑥

𝑘
)
†

𝑓 (𝑥
𝑘
) , 𝑘 = 0, 1, 2, . . . . (3)

Let 𝐴 : R𝑛 → R𝑚 be a linear operator (or an
𝑚 × 𝑛 matrix). Recall that an operator (or 𝑛 × 𝑚 matrix)

𝐴† : R𝑚 → R𝑛 is the Moore-Penrose inverse of 𝐴, if it
satisfies the following four equations:

𝐴†𝐴𝐴† = 𝐴†, 𝐴𝐴†𝐴 = 𝐴;

(𝐴𝐴†)
∗

= 𝐴𝐴†, (𝐴†𝐴)
∗

= 𝐴†𝐴,
(4)

where𝐴∗ denotes the adjoint of𝐴. Let ker𝐴 and im 𝐴 denote
the kernel and image of 𝐴, respectively. For a subspace 𝐸 of
R𝑛, we useΠ

𝐸
to denote the projection onto𝐸.Then, it is clear

that

𝐴†𝐴 = Πker𝐴⊥ , 𝐴𝐴† = Πim𝐴. (5)

In particular, in the case when 𝐴 is full row rank (or,
equivalently, when 𝐴 is surjective), 𝐴𝐴† = 𝐼R𝑚 ; when 𝐴
is full column rank (or equivalently, when 𝐴 is injective),
𝐴†𝐴 = 𝐼R𝑛 .

One of the disadvantages for Newton’s method (2) is that
it requires solving exactly the following linear equation at
each step:

𝑓 (𝑥
𝑘
) (𝑥
𝑘+1

− 𝑥
𝑘
) = −𝑓 (𝑥

𝑘
) . (6)

To overcome this disadvantage, Dembo et al. presented in
[6] the following iterative processes called inexact Newton
method (𝑥

0
is an initial guess):

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝑠
𝑘
, 𝑓 (𝑥

𝑘
) 𝑠
𝑘
= −𝑓 (𝑥

𝑘
) + 𝑟
𝑘
,

𝑘 = 0, 1, 2, . . . ,
(7)
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where the residual control 𝑟
𝑘
satisfies

𝑟𝑘
 ≤ 𝜆
𝑘

𝑓 (𝑥
𝑘
)
 , 𝑘 = 0, 1, 2, . . . , (8)

and {𝜆
𝑘
} is a sequence of forcing terms such that 0 ≤ 𝜆

𝑘
< 1.

In [6], it was shown that if 𝜆
𝑘
≤ 𝜆 < 1, then there exists 𝑟 > 0

such that, for any initial guess 𝑥
0
∈ 𝐵(𝜁, 𝑟), the sequence {𝑥

𝑘
}

is well defined and converges to a solution 𝜁. Moreover, the
rate of convergence of {𝑥

𝑘
} to 𝜁 is characterized by the rate of

convergence of {𝜆
𝑘
} to 0.

Note that it is clear that the residual control (8) is not
affine invariant (see [1] for more details about the affine
invariant). To this end, Ypma used in [7] the affine invariant
condition of residual control in the form
𝑓
(𝑥
𝑘
)
−1

𝑟
𝑘

 ≤ 𝜆
𝑘

𝑓
(𝑥
𝑘
)
−1

𝑓 (𝑥
𝑘
)
 , 𝑘 = 0, 1, 2, . . . , (9)

to study the local convergence of inexact Newtonmethod (7).
And the radius of convergent result is also obtained.

To study the local convergence of inexactNewtonmethod
and inexact Newton-like method (called inexact methods for
short below), Morini presented in [8] the following variation
for the residual controls:

𝑃𝑘𝑟𝑘
 ≤ 𝜆
𝑘

𝑃𝑘𝑓 (𝑥
𝑘
)
 , 𝑘 = 0, 1, 2, . . . , (10)

where {𝑃
𝑘
} is a sequence of invertible operator from R𝑛 to

R𝑛 and {𝜆
𝑘
} is the forcing term. If 𝑃

𝑘
= 𝐼 and 𝑃

𝑘
= 𝑓(𝑥

𝑘
) for

each 𝑘, (10) reduces to (8) and (9), respectively. Both proposed
inexact methods are linearly convergent under Lipschitz
condition. It is worth noting that the residual controls (10)
are used in iterative methods if preconditioning is applied
and lead to a relaxation on the forcing terms. But we also
note that the results obtained in [8] cannot make us clearly
see how big the radius of the convergence ball is. To this end,
Chen and Li [9] obtained the local convergence properties
of inexact methods for (1) under weak Lipschitz condition,
which was first introduced by Wang in [10] to study the local
convergence behavior of Newton’s method (2). The results
in [9] easily provide an estimate of convergence ball for
the inexact methods. Furthermore, Ferreira and Gonçalves
presented in [11] a new local convergence analysis for inexact
Newton-like under so-called majorant condition, which is
equivalent to the preceding weak Lipschitz condition.

Under the assumption that the derivative of the operator
satisfies the Hölder condition, the radius of convergence
ball of the inexact Newton-like methods with a new type
of residual control is estimated by Li and Shen [12]. And a
superlinear convergence property is proved, which extends
the corresponding result in [8]. In addition, as an application
of the local convergence result, they presented a slight
modification of the inexact Newton-like method of [13] for
solving inverse eigenvalue problems and showed that it can
be regarded equivalently as one of the inexact methods
considered in [12].

Recent attentions are focused on the study of finding zeros
of singular nonlinear systems by Gauss-Newton’s method
(3). For example, Shub and Smale extended in [14] the
Smale point estimate theory (including 𝛼-theory and 𝛾-
theory) to Gauss-Newton’s methods for underdetermined

analytic systems with surjective derivatives. For overdeter-
mined systems, Dedieu and Shub studied in [15] the local
linear convergence properties of Gauss-Newton’s for analytic
systems with injective derivatives and provided estimates of
the radius of convergence balls for Gauss-Newton’s method.
Dedieu and Kim in [16] generalized both the results of
the underdetermined case and the overdetermined case to
such case where 𝑓(𝑥) is of constant rank (not necessarily
full rank), which has been improved by Xu and Li in [17,
18], Ferreira et al. in [19], Argyros and Hilout in [20], and
Gonçalves and Oliveira in [21].

In the last years, some authors have studied the con-
vergence behaviour of inexact versions of Gauss-Newton’s
method for singular nonlinear systems. For example, Chen
[22] employed the ideas of [9] to study the local convergence
properties of several inexact Gauss-Newton type methods
where a scaled relative residual control is performed at each
iteration under weak Lipschitz conditions. Ferreira et al.
presented in their recent paper [23] a local convergence
analysis of an inexact version of Gauss-Newton’s method for
solving nonlinear least squares problems. Moreover, the radii
of the convergence balls under the corresponding conditions
were estimated in these two papers.

In the present paper, we study the local convergence
of inexact Newton-Gauss method for the singular systems
with constant rank derivatives under the hypotheses that the
derivatives satisfy Lipschitz conditionswith𝐿 average and the
residual satisfies several control conditions. Unified estimates
for the radius of convergence balls of inexact Newton-Gauss
method are obtained. As an application to Smale approximate
zeros, we obtain a gamma-type theorem which gives an
estimate of the size of convergence ball of inexact Newton-
Gauss method about a zero.

The rest of this paper is organized as follows. In Section 2,
we introduce some preliminary notions and properties of
the majorizing function. The main results about the local
convergence are stated in Section 3. And finally, in Section 4,
we prove the local convergence results given in Section 3.

2. Preliminaries

For 𝑥 ∈ R𝑛 and a positive number 𝑟, throughout the whole
paper, we use 𝐵(𝑥, 𝑟) to stand for the open ball with radius 𝑟
and center 𝑥 and let 𝐵(𝑥, 𝑟) denote its closure.

Throughout this paper, we assume that 𝐿 is a positive
nondecreasing function on [0, 𝑅), where 𝑅 ∈ R+. Let 0 ≤
𝜆, 𝜃 < 1 with 0 ≤ 𝜆 + 𝜃 < 1. The majorizing function
ℎ
𝜆,𝜃

: [0, 𝑅] → R corresponding to (𝜆, 𝜃, 𝐿) is defined by

ℎ
𝜆,𝜃

(𝑡) = − (1 + 𝜆 + 𝜃) 𝑡 + ∫
𝑡

0

𝐿 (𝑢) (𝑡 − 𝑢) d𝑢, 𝑡 ∈ [0, 𝑅] .

(11)

Note that, in the case when 𝜆 = 𝜃 = 0, (11) reduces to

ℎ
0,0

(𝑡) = −𝑡 + ∫
𝑡

0

𝐿 (𝑢) (𝑡 − 𝑢) d𝑢, 𝑡 ∈ [0, 𝑅) . (12)
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Obviously,

ℎ
𝜆,𝜃

(𝑡) = − (1 + 𝜆 + 𝜃) + ∫
𝑡

0

𝐿 (𝑢) d𝑢, 𝑡 ∈ [0, 𝑅) ,

ℎ
𝜆,𝜃

(𝑡) = 𝐿 (𝑡) for a.e. 0 ≤ 𝑡 < 𝑅.

(13)

Moreover, we have ℎ
𝜆,𝜃
(0) = 0, ℎ

𝜆,𝜃
(0) = −(1 + 𝜆 + 𝜃) and

ℎ
𝜆,𝜃

is convex and strictly increasing. Set

𝜉 := sup {𝑡 ∈ [0, 𝑅) : ℎ


0,0
(𝑡) < 0} , (14)

𝜌 := sup{𝑡 ∈ [0, 𝜉) :
ℎ
𝜆,𝜃

(𝑡)

ℎ
0,0

(𝑡)
− 𝑡 < 𝑡} , (15)

𝜎 := sup {𝑡 ∈ [0, 𝑅) : 𝐵 (𝜁, 𝑡) ⊂ 𝐷} . (16)

For the convergence analysis, we need the following
useful lemma about elementary convex analysis.

Lemma 1 (see [4]). Let 𝑅 > 0. If 𝑔 : [0, 𝑅] → R is contin-
uously differentiable and convex, then

(i) (𝑔(𝑡) − 𝑔(𝜏𝑡))/𝑡 ≤ (1 − 𝜏)𝑔(𝑡), for all 𝑡 ∈ (0, 𝑅) and
𝜏 ∈ [0, 1],

(ii) (𝑔(𝑢) − 𝑔(𝜏𝑢))/𝑢 ≤ (𝑔(V) − 𝑔(𝜏V))/V, for all 𝑢, V ∈
[0, 𝑅), 𝑢 < V, and 0 ≤ 𝜏 ≤ 1.

The next two lemmas show that the constants 𝜉 and 𝜌
defined in (14) and (15), respectively, are positive.

Lemma 2. The constant 𝜉 defined in (14) is positive and 𝑡 −
(ℎ
𝜆,𝜃
(𝑡)/ℎ
0,0
(𝑡)) < 0, for all 𝑡 ∈ (0, 𝜉).

Proof. Since ℎ
0,0
(0) = −1, there exists 𝛿 > 0 such that ℎ

0,0
(𝑡) <

0 for all 𝑡 ∈ (0, 𝛿). Then, we get 𝜉 ≥ 𝛿(> 0). Because ℎ
𝜆,𝜃

is strictly increasing, ℎ
𝜆,𝜃

is strictly convex. It follows from
Lemma 1(i) that

ℎ
𝜆,𝜃

(𝑡) − ℎ
𝜆,𝜃

(0)

𝑡
≤ ℎ
𝜆,𝜃

(𝑡) ≤ ℎ
0,0

(𝑡) , 𝑡 ∈ (0, 𝑅) . (17)

Note that ℎ
𝜆,𝜃
(0) = 0 and ℎ

0,0
(𝑡) < 0, for all 𝑡 ∈ (0, 𝜉). Thus,

the inequality 𝑡 − (ℎ
𝜆,𝜃
(𝑡)/ℎ
0,0
(𝑡)) < 0 follows.

Lemma 3. The constant 𝜌 defined in (15) is positive. As a
consequence, |𝑡 − (ℎ

𝜆,𝜃
(𝑡)/ℎ
0,0
(𝑡))| < 𝑡, for all 𝑡 ∈ (0, 𝜌).

Proof. On one hand, by Lemma 2, it is clear that (ℎ
𝜆,𝜃
(𝑡)/

𝑡ℎ
0,0
(𝑡)) − 1 > 0, for 𝑡 ∈ (0, 𝜉). On the other hand, we can

obtain from Lemma 1(i) that

lim
𝑡→0

(
ℎ
𝜆,𝜃

(𝑡)

𝑡ℎ
0,0

(𝑡)
− 1) = 0. (18)

Then, we conclude that there exists 𝛿 > 0 such that

0 <
ℎ
𝜆,𝜃

(𝑡)

𝑡ℎ
0,0

(𝑡)
− 1 < 1, 𝑡 ∈ (0, 𝜉) . (19)

Therefore, 𝜌 is positive.

Let

𝑟 := min {𝜌, 𝜎} , (20)

where 𝜌 and 𝜎 are given in (15) and (16), respectively. For any
starting point 𝑥

0
∈ 𝐵(𝜁, 𝑟) \ {𝜁}, let {𝑡

𝑘
} denote the sequence

generated by

𝑡
0
=
𝑥0 − 𝜁

 , 𝑡
𝑘+1

=

𝑡
𝑘
−
ℎ
𝜆,𝜃

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)


, 𝑘 = 0, 1, 2, . . . .

(21)

Lemma 4. The sequence {𝑡
𝑘
} given by (21) is well defined, is

strictly decreasing, is contained in (0, 𝜌), and converges to 0.

Proof. Since 0 < 𝑡
0
= ‖𝑥
0
− 𝜁‖ < 𝑟 ≤ 𝜌, using Lemma 3, one

has that {𝑡
𝑘
} is well defined, strictly decreasing, and contained

in [0, 𝜌). Thus, there exists 𝑡∗ ∈ [0, 𝜌) such that lim
𝑘→∞

𝑡
𝑘
=

𝑡∗; that is, we have

0 ≤ 𝑡∗ =
ℎ
𝜆,𝜃

(𝑡∗)

ℎ
0,0

(𝑡∗)
− 𝑡∗ < 𝜌. (22)

If 𝑡∗ ̸= 0, it follows from Lemma 3 that

ℎ
𝜆,𝜃

(𝑡∗)

ℎ
0,0

(𝑡∗)
− 𝑡∗ < 𝑡∗. (23)

This is a contradiction. So 𝑡
𝑘
→ 0 as 𝑘 → ∞.This completes

the proof.

The notion of the 𝐿-average Lipschitz condition for
semilocal convergence analysis was introduced by Li and
Ng in [24], which is a modification of the one that was
first introduced by Wang in [3], where the terminology
of “the center Lipschitz condition in the inscribed sphere
with 𝐿 average” was used. This notion was used to study
the semilocal convergence of Newton’s method (2) to solve
singular systems of equation with constant rank derivatives
by Xu and Li in [18] and Li et al. in [25]. As for the
local convergence analysis, we can also introduce the similar
definition.

Definition 5. Let 𝑟 > 0 be such that 𝐵(𝜁, 𝑟) ⊂ 𝐷. Then, 𝑓 is
said to satisfy the 𝐿-average Lipschitz condition on 𝐵(𝜁, 𝑟) if

𝑓


(𝜁)
†

[𝑓 (𝑥) − 𝑓 (𝜁 + 𝜏 (𝑥 − 𝜁))]
 ≤ ∫
‖𝑥−𝜁‖

𝜏‖𝑥−𝜁‖

𝐿 (𝑢) d𝑢,

(24)

for any 𝑥 ∈ 𝐵(𝜁, 𝑟) and 𝜏 ∈ [0, 1].

This definition is a modification of the one in [10], where
the terminology of “the radius Lipschitz condition with the
𝐿 average” was used. In the case when 𝑓(𝜁) is not surjective
(see [15, 16]), the information on im𝑓(𝜁)⊥ may be lost. To
this end, we need to modify the above notion to suit the case
when 𝑓(𝜁) is not surjective.
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Definition 6. Let 𝑟 > 0 be such that 𝐵(𝜁, 𝑟) ⊂ 𝐷. Then, 𝑓 is
said to satisfy the modified 𝐿-average Lipschitz condition on
𝐵(𝜁, 𝑟) if

𝑓
(𝜁)
†
𝑓


(𝑥) − 𝑓 (𝜁 + 𝜏 (𝑥 − 𝜁))
 ≤ ∫
‖𝑥−𝜁‖

𝜏‖𝑥−𝜁‖

𝐿 (𝑢) d𝑢,

(25)

for any 𝑥 ∈ 𝐵(𝜁, 𝑟) and 𝜏 ∈ [0, 1].

The notion of the 𝛾-condition for operators in Banach
spaces was introduced in [26] by Wang and Han to study the
Smale point estimate theory. Definition 7 about 𝛾-condition
and the related Lemma 8 are taken from [25].

Definition 7 (see [25]). Suppose that 𝛾 > 0 and 𝑓 has
continuous second derivative. Let 0 < 𝑟 ≤ 1/𝛾 be such that
𝐵(𝜁, 𝑟) ⊂ 𝐷. 𝑓 is said to satisfy the 𝛾-condition (resp., the
modified 𝛾-condition) on 𝐵(𝜁, 𝑟) if (26) (resp., (27)) holds as
follows:

𝑓


(𝜁)
†

𝑓 (𝑥)
 ≤

2𝛾

(1 − 𝛾
𝑥 − 𝜁

)
3

for each 𝑥 ∈ 𝐵 (𝜁, 𝑟) ,

(26)

𝑓


(𝜁)
†
𝑓


(𝑥)
 ≤

2𝛾

(1 − 𝛾
𝑥 − 𝜁

)
3

for each 𝑥 ∈ 𝐵 (𝜁, 𝑟) .

(27)

Lemma 8 (see [25]). Suppose that 𝛾 > 0 and𝑓 has continuous
second derivative. Let 0 < 𝑟 ≤ 1/𝛾 be such that 𝐵(𝜁, 𝑟) ⊂
𝐷. Then, 𝑓 satisfies the 𝛾-condition (resp., the modified 𝛾-
condition) on 𝐵(𝜁, 𝑟) if and only if 𝑓 satisfies the L-average
Lipschitz condition (resp., the modified L-average Lipschitz
condition) on 𝐵(𝜁, 𝑟) with 𝐿(𝑢) = 2𝛾/(1 − 𝛾𝑢)3, 𝑢 ∈ [0, 1/𝛾).

3. Local Convergence for Inexact
Newton-Gauss Method

In this section, we state our main results of local conver-
gence for inexact Newton-Gauss method (7). Recall that the
system (1) is a surjective-underdetermined (resp., injective-
overdetermined) system if the number of equations is less
(resp., greater) than the number of unknowns and 𝑓(𝑥)
is of full rank for each 𝑥 ∈ 𝐷. Note that, for surjective-
underdetermined systems, the fixed points of the Newton
operator 𝑁

𝑓
(𝑥) := 𝑥 − 𝑓(𝑥)†𝑓(𝑥) are the zeros of 𝑓, while,

for injective-overdetermined systems, the fixed points of𝑁
𝑓

are the least square solutions of 𝑓(𝑥) = 0, which, in general,
are not necessarily the zeros of 𝑓.

Our first result concerned the local convergence prop-
erties of inexact Newton-Gauss method for general singular
systems with constant rank derivatives.

Theorem 9. Let 𝑓 : 𝐷 ⊂ R𝑛 → R𝑚 be continuously Fréchet
differentiable nonlinear operator, and 𝐷 is open and convex.
Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) ̸= 0 and that 𝑓 satisfies the
modified 𝐿-average Lipschitz condition (25) on 𝐵(𝜁, 𝑟), where

𝑟 is given in (20). In addition, one assumes that rank𝑓(𝑥) ≤
rank𝑓(𝜁), for any 𝑥 ∈ 𝐵(𝜁, 𝑟), and that
[𝐼R𝑛 − 𝑓(𝑥)

†𝑓 (𝑥)] (𝑥 − 𝜁)
 ≤ 𝜃

𝑥 − 𝜁
 , 𝑥 ∈ 𝐵 (𝜁, 𝑟) ,

(28)

where the constant 𝜃 satisfies 0 ≤ 𝜃 < 1. Let {𝑥
𝑘
} be sequence

generated by inexact Newton-Gauss method with any initial
point 𝑥

0
∈ 𝐵(𝜁, 𝑟) \ {𝜁} and the conditions for the residual 𝑟

𝑘

and the forcing term 𝜆
𝑘
:

𝑟𝑘
 ≤ 𝜆
𝑘

𝑓 (𝑥
𝑘
)
 , 0 ≤ 𝜆

𝑘
𝜅 (𝑓 (𝑥

𝑘
)) ≤ 𝜆,

𝑘 = 0, 1, 2, . . . ,
(29)

where 𝜅(𝐴) := ‖𝐴†‖‖𝐴‖ denotes the condition number of 𝐴 ∈

R𝑚×𝑛. Then, {𝑥
𝑘
} converges to a zero 𝜁 of 𝑓(⋅)†𝑓(⋅) in 𝐵(𝜁, 𝑟).

Moreover, one has the following estimate:

𝑥𝑘+1 − 𝜁
 ≤

𝑡
𝑘+1

𝑡
𝑘

𝑥𝑘 − 𝜁
 , 𝑘 = 0, 1, 2, . . . , (30)

where the sequence {𝑡
𝑘
} is defined by (21).

Remark 10. If taking 𝜆 = 0 (in this case, 𝜆
𝑘

= 0 and
𝑟
𝑘
= 0) in Theorem 9, we obtain the local convergence of

Newton’s method for solving the singular systems, which has
been studied by Dedieu and Kim in [16] for analytic singular
systems with constant rank derivatives and Li et al. in [25] for
some special singular systems with constant rank derivatives.
Now, we obtain that the convergence ball 𝑟 satisfies

∫
𝑟

0

𝐿 (𝑢) 𝑢 d𝑢

𝑟 ((1 − 𝜃) − ∫
𝑟

0

𝐿 (𝑢) d𝑢)
≤ 1, 𝜃 ∈ [0, 1) . (31)

If 𝑓(𝑥) is full column rank for every 𝑥 ∈ 𝐵(𝜁, 𝑟), then we
have 𝑓(𝑥)†𝑓(𝑥) = 𝐼R𝑛 . Thus,

[𝐼R𝑛 − 𝑓(𝑥)
†𝑓 (𝑥)] (𝑥 − 𝜁)

 = 0; (32)

that is, 𝜃 = 0. We immediately have the following corollary.

Corollary 11. Suppose that rank𝑓(𝑥) ≤ rank𝑓(𝜁) and that
[𝐼R𝑛 − 𝑓(𝑥)

†𝑓 (𝑥)] (𝑥 − 𝜁)
 = 0, (33)

for any 𝑥 ∈ 𝐵(𝜁, 𝑟). Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) ̸= 0 and that
𝑓 satisfies the modified L-average Lipschitz condition (25). Let
{𝑥
𝑘
} be sequence generated by inexact Newton-Gauss method

with any initial point 𝑥
0
∈ 𝐵(𝜁, 𝑟) \ {𝜁} and the condition

(29) for the residual 𝑟
𝑘
and the forcing term 𝜆

𝑘
. Then, {𝑥

𝑘
}

converges to a zero 𝜁 of 𝑓(⋅)†𝑓(⋅) in 𝐵(𝜁, 𝑟). Moreover, one has
the following estimate:

𝑥𝑘+1 − 𝜁
 ≤

𝑡
𝑘+1

𝑡
𝑘

𝑥𝑘 − 𝜁
 , 𝑘 = 0, 1, 2, . . . , (34)

where the sequence {𝑡
𝑘
} is defined by (21) for 𝜃 = 0.
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In the case when 𝑓(𝜁) is full row rank, the modified L-
average Lipschitz condition (25) can be replaced by the 𝐿-
average Lipschitz condition (24).

Theorem 12. Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) is full row rank,
and 𝑓 satisfies the 𝐿-average Lipschitz condition (24) on
𝐵(𝜁, 𝑟), where 𝑟 is given in (20). In addition, one assumes that
rank𝑓(𝑥) ≤ rank𝑓(𝜁) for any 𝑥 ∈ 𝐵(𝜁, 𝑟) and that condition
(28) holds. Let {𝑥

𝑘
} be sequence generated by inexact Newton-

Gauss method with any initial point 𝑥
0
∈ 𝐵(𝜁, 𝑟) \ {𝜁} and the

conditions for the residual 𝑟
𝑘
and the forcing term 𝜆

𝑘
:

𝑓


(𝜁)
†

𝑟
𝑘

 ≤ 𝜆
𝑘

𝑓


(𝜁)
†

𝑓 (𝑥
𝑘
)
 ,

0 ≤ 𝜆
𝑘
𝜅 (𝑓(𝜁)

†

𝑓 (𝑥
𝑘
)) ≤ 𝜆, 𝑘 = 0, 1, 2, . . . .

(35)

Then, {𝑥
𝑘
} converges to a zero 𝜁 of 𝑓(⋅) in 𝐵(𝜁, 𝑟). Moreover,

one has the following estimate:

𝑥𝑘+1 − 𝜁
 ≤

𝑡
𝑘+1

𝑡
𝑘

𝑥𝑘 − 𝜁
 , 𝑘 = 0, 1, 2, . . . , (36)

where the sequence {𝑡
𝑘
} is defined by (21).

Theorem 13. Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) is full row rank,
and 𝑓 satisfies the L-average Lipschitz condition (24) on
𝐵(𝜁, 𝑟), where 𝑟 is given in (20). In addition, one assumes that
rank𝑓(𝑥) ≤ rank𝑓(𝜁) for any 𝑥 ∈ 𝐵(𝜁, 𝑟) and that condition
(28) holds. Let {𝑥

𝑘
} be sequence generated by inexact Newton-

Gauss method with any initial point 𝑥
0
∈ 𝐵(𝜁, 𝑟) \ {𝜁} and the

conditions for the control residual 𝑟
𝑘
and the forcing term 𝜆

𝑘
:

𝑓
(𝑥
𝑘
)
†

𝑟
𝑘

 ≤ 𝜆
𝑘

𝑓
(𝑥
𝑘
)
†

𝑓 (𝑥
𝑘
)
 , 0 ≤ 𝜆

𝑘
𝜅 (𝑓 (𝑥

𝑘
)) ≤ 𝜆,

𝑘 = 0, 1, 2, . . . .

(37)

Then, {𝑥
𝑘
} converges to a zero 𝜁 of 𝑓(⋅) in 𝐵(𝜁, 𝑟). Moreover,

one has the following estimate:

𝑥𝑘+1 − 𝜁
 ≤

𝑡
𝑘+1

𝑡
𝑘

𝑥𝑘 − 𝜁
 , 𝑘 = 0, 1, 2, . . . , (38)

where the sequence {𝑡
𝑘
} is defined by (21).

Remark 14. In the case when 𝑓(𝜁) is invertible in
Theorem 13, we obtain the local convergence results of
inexact Newton-Gauss method for nonsingular systems, and
the convergence ball 𝑟 in this case satisfies

∫
𝑟

0

𝐿 (𝑢) 𝑢 d𝑢

𝑟 ((1 − 𝜆) − ∫
𝑟

0

𝐿 (𝑢) d𝑢)
≤ 1, 𝜆 ∈ [0, 1) . (39)

In particular, if taking 𝜆 = 0, the convergence ball 𝑟
determined in (39) reduces to the one given in [10] by Wang
and the value 𝑟 is the optimal radius of the convergence
ball when the equality holds. Then, we can conclude that
vanishing residuals, Theorem 13 merges into the theory of
Newton’s method.

The result below is an extension of the Smale approximate
zeros. We first recall the notion of the approximate zero of an
analytic operator 𝑓 from the domain 𝐷 in a Banach space to
another. In [2], Smale proposed two kinds of the notion: the
first kind (in sense of ‖𝑥

𝑘
− 𝑥
𝑘−1

‖) and the second kind (in
sense of ‖𝑥

𝑘
− 𝜁‖) of an approximate zero. A more reasonable

definition for the second kind was presented in [27]; see
also [28]. The notion of the approximate zero in the sense
of ‖𝑓(𝑥

0
)−1𝑓(𝑥

𝑘
)‖ was defined in [29], which is equivalent

to the first kind (see [3]). The following unified definition is
taken from [3].

Definition 15 (see [3]). Let 𝑥
0
∈ 𝐷 be such that the sequence

{𝑥
𝑘
} generated by Newton’s method (2) is well defined and

satisfies

𝑒 (𝑥
𝑘
) ≤ (

1

2
)
2
𝑘−1

𝑒 (𝑥
𝑘−1

) , 𝑘 = 1, 2, . . . , (40)

where 𝑒(𝑥
𝑘
) denotes some measurement of the approxima-

tion degree between 𝑥
𝑘
and the zero point 𝜁.Then, 𝑥

0
is called

an approximate zero of 𝑓 in sense of 𝑒(𝑥
𝑘
).

The concepts of an approximate zero for Gauss-Newton
method (3) for solving singular systems of equations and
inexact Newton method (7) for solving nonsingular systems
of equations are proposed in [25, 30], respectively. We now
extend the notion of approximate zeros to inexact Newton-
Gauss method for solving singular systems of equations.

Definition 16. Let 𝑥
0
∈ 𝐷 be such that the sequence {𝑥

𝑘
}

generated by inexact Newton-Gauss method (7) converges to
a zero 𝜁 of 𝑓(⋅)†𝑓(⋅) (resp., 𝑓) and satisfies (40). Then, 𝑥

0

is called an INM-approximate solution (resp., approximate
zero) of 𝑓 in sense of 𝑒(𝑥

𝑘
).

For the remainder of this subsection, let 𝐿 be the function
defined by

𝐿 (𝑢) =
2𝛾

(1 − 𝛾𝑢)
3

for each 𝑢 with 0 ≤ 𝑢 <
1

𝛾
. (41)

Then,

ℎ
𝜆,𝜃

(𝑡) = − (1 + 𝜆 + 𝜃) 𝑡 +
𝛾𝑡2

1 − 𝛾𝑡
, 𝑡 ∈ [0,

1

𝛾
) , 𝜆, 𝜃 ∈ [0, 1)

with 0 ≤ 𝜆 + 𝜃 < 1,

(42)

and the constants 𝜉 and𝜌defined in (14) and (15), respectively,
have the following concrete forms:

𝜉 =
2 − √2

2𝛾
, (43)
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𝜌 = ( (5 + 2 (𝜆 + 𝜃))

−√(5 + 2 (𝜆 + 𝜃))2 − 4 (1 + 𝜆 + 𝜃) (2 + 𝜆 + 𝜃))

× (2 (2 + 𝜆 + 𝜃) 𝛾)
−1

.

(44)

To state our gamma-type theorem for inexact Newton-
Gauss method (7), we introduce some more notations. Let

𝜙 (𝑡) = 4𝛾2 (𝜆 + 𝜃) 𝑡
3 − 2𝛾 (3𝜆 + 4𝜃 + 𝛾) 𝑡2

+ 2 (𝜆 + 𝜃 + 3𝛾) 𝑡 − 1,

𝜆, 𝜃 ∈ [0, 1) , 𝛾 > 0.

(45)

Since 𝜙(0) = −1 and 𝜙(𝜉) = ((3 − 2√2)𝜆 + (2 − √2)𝛾)/𝛾 > 0,
there exists one zero at least in (0, (2 − √2)/2𝛾). The smallest
positive zero of 𝜙 in (0, (2 − √2)/2𝛾) is denoted by 𝑟. Recall
that 𝑟 = min{𝜌, 𝜎}; here 𝜌 and 𝜎 are given in (44) and (16),
respectively. Let

𝑟∗ = min {𝑟, 𝑟, 𝑟 } , (46)

where 𝑟 is given by

𝑟 =
(4 − 3𝜆) − √(4 − 3𝜆)2 − 8(1 − 𝜆)2

4𝛾 (1 − 𝜆)
. (47)

Theorem 17. Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) is full row rank,
and 𝑓 satisfies the 𝛾-condition (26) on 𝐵(𝜁, 𝑟). Assume that
rank𝑓(𝑥) ≤ rank𝑓(𝜁) and that

[𝐼R𝑛 − 𝑓(𝑥)
†𝑓 (𝑥)] (𝑥 − 𝜁)

 ≤ 𝜃
𝑥 − 𝜁


2

, (48)

for any 𝑥 ∈ 𝐵(𝜁, 𝑟). Let {𝑥
𝑘
} be sequence generated by inexact

Newton-Gauss method with any initial point 𝑥
0
∈ 𝐵(𝜁, 𝑟∗)\{𝜁}

and the conditions for the control residual 𝑟
𝑘
and the forcing

term 𝜆
𝑘
:

𝑓
(𝑥
𝑘
)
†

𝑟
𝑘

 ≤ (𝜆
𝑘

𝑓
(𝑥
𝑘
)
†

𝑓(𝑥
𝑘
)
)
2

,

0 ≤ 𝜆
𝑘
𝜅 (𝑓 (𝑥

𝑘
)) ≤ 𝜆, 𝑘 = 0, 1, 2, . . . .

(49)

Then, {𝑥
𝑘
} converges to a zero 𝜁 of 𝑓(⋅) in 𝐵(𝜁, 𝑟) and 𝑥

0
is an

approximate zero of 𝑓 in sense of ‖𝑥
𝑘
− 𝜁‖.

One typical and important class of examples satisfying
the 𝛾-conditions is the one of analytic functions. Following
Smale’s idea in [2], Shub and Smale introduced in [14] the
following invariant for analytic underdetermined systems
with surjective 𝑓(𝜁):

𝛾 (𝑓, 𝜁) := sup
𝑘>1


𝑓(𝜁)
†
𝑓(𝑘)(𝜁)

𝑘!



1/(𝑘−1)

. (50)

For the case when 𝑓(𝑥) is not surjective, due to loss of the
information on im𝑓(𝜁)⊥, Dedieu and Shub introduce in [15]
the following invariant for analytic overdetermined systems:

𝛾
1
(𝑓, 𝜁) := sup

𝑘>1

(
𝑓


(𝜁)
†

𝑓
(𝑘) (𝜁)


𝑘!

)

1/(𝑘−1)

. (51)

By [25, Proposition 5.2], one has that an analytic operator
satisfies the 𝛾-condition and themodified 𝛾-condition. So, the
conclusions of Theorem 17 still hold when 𝑓 is analytic.

4. Proofs

In this section, we prove ourmain results of local convergence
for inexact Newton-Gauss method (7) given in Section 3.

4.1. Proof of Theorem 9. The following lemma gives a pertur-
bation bound for Moore-Penrose inverse, which is stated in
[31, Corollary 7.1.1 and Corollary 7.1.2].

Lemma 18 (see [31]). Let 𝐴 and 𝐵 be 𝑚 × 𝑛 matrices and let
𝑟 ≤ min{𝑚, 𝑛}. Suppose that rank𝐴 = 𝑟, 1 ≤ rank 𝐵 ≤ rank𝐴,
and ‖𝐴†‖‖𝐵 − 𝐴‖ < 1. Then, rank 𝐵 = 𝑟 and

𝐵
†
 ≤

𝐴
†


1 −
𝐴
†
 ‖𝐵 − 𝐴‖

. (52)

Lemma 19. Suppose that 𝑓 satisfies the modified L-average
Lipschitz condition on 𝐵(𝜁, 𝑟) and that ‖𝜁 − 𝑥‖ < min{𝜌, 𝜉},
where 𝑟, 𝜌, and 𝜉 are defined in (20), (15), and (14), respectively.
Then, rank𝑓(𝑥) = rank𝑓(𝜁) and

𝑓


(𝑥)
†
 ≤ −

𝑓
(𝜁)
†

ℎ
0,0

(
𝑥 − 𝜁

)
. (53)

Proof. Since ℎ
0,0
(0) = −1, we have

𝑓


(𝜁)
†
𝑓


(𝑥) − 𝑓 (𝜁)


≤ ∫
‖𝑥−𝜁‖

0

𝐿 (𝑢) d𝑢 = ℎ
0,0

(
𝑥 − 𝜁

) − ℎ
0,0

(0)

< −ℎ
0,0

(0) = 1.

(54)

It follows from Lemma 18 that rank𝑓(𝑥) = rank𝑓(𝜁) and

𝑓


(𝑥)
†
 ≤

𝑓
(𝜁)
†

1 − (ℎ
0,0

(
𝑥 − 𝜁

) − ℎ
0,0

(0))

= −

𝑓
(𝜁)
†

ℎ
0,0

(
𝑥 − 𝜁

)
.

(55)

Proof of Theorem 9. Wewill prove by induction that {𝑡
𝑘
} is the

majorizing sequence for {𝑥
𝑘
}; that is,

𝜁 − 𝑥
𝑗

 ≤ 𝑡
𝑗

∀𝑗 = 0, 1, 2, . . . . (56)
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Because 𝑡
0
= ‖𝑥
0
− 𝜁‖, thus (56) holds, for 𝑗 = 0. Now, we

assume that ‖𝜁 − 𝑥
𝑗
‖ ≤ 𝑡
𝑗
, for some 𝑗 = 𝑘 ∈ N. For the case

𝑗 = 𝑘 + 1, we first notice that

𝑥
𝑘+1

− 𝜁

= 𝑥
𝑘
− 𝜁 − 𝑓(𝑥

𝑘
)
†

[𝑓 (𝑥
𝑘
) − 𝑓 (𝜁)] + 𝑓(𝑥

𝑘
)
†

𝑟
𝑘

= 𝑓(𝑥
𝑘
)
†

[𝑓 (𝜁) − 𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

𝑘
) (𝜁 − 𝑥

𝑘
)]

+ 𝑓(𝑥
𝑘
)
†

𝑟
𝑘

+ [𝐼R𝑛 − 𝑓(𝑥
𝑘
)
†

𝑓 (𝑥
𝑘
)] (𝑥
𝑘
− 𝜁)

= 𝑓(𝑥
𝑘
)
†

∫
1

0

[𝑓 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))] (𝑥

𝑘
− 𝜁) d𝜏

+ 𝑓(𝑥
𝑘
)
†

𝑟
𝑘

+ [𝐼R𝑛 − 𝑓(𝑥
𝑘
)
†

𝑓 (𝑥
𝑘
)] (𝑥
𝑘
− 𝜁) .

(57)

By using the modified 𝐿-average Lipschitz condition (25),
Lemma 19, the inductive hypothesis (56), and Lemma 1, one
has that


𝑓(𝑥
𝑘
)
†

∫
1

0

[𝑓 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))] (𝑥

𝑘
− 𝜁) d𝜏



≤ −
1

ℎ
0,0

(
𝑥𝑘 − 𝜁

)

× ∫
1

0

𝑓


(𝜁)
†
𝑓
 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))



×
𝑥𝑘 − 𝜁

 d𝜏

≤ −
1

ℎ
0,0

(
𝑥𝑘 − 𝜁

)
∫
1

0

∫
‖𝑥
𝑘
−𝜁‖

𝜏‖𝑥𝑘−𝜁‖
𝐿 (𝑢)

𝑥𝑘 − 𝜁
 d𝑢 d𝜏

= −
1

ℎ
0,0

(
𝑥𝑘 − 𝜁

)

× ∫
1

0

ℎ
𝜆,0

(
𝑥𝑘 − 𝜁

) − ℎ
𝜆,0

(𝜏
𝑥𝑘 − 𝜁

)
𝑥𝑘 − 𝜁


d𝜏 ⋅ 𝑥𝑘 − 𝜁


2

≤ −
1

ℎ
0,0

(𝑡
𝑘
)
∫
1

0

ℎ
𝜆,0

(𝑡
𝑘
) − ℎ
𝜆,0

(𝜏𝑡
𝑘
)

𝑡
𝑘

d𝜏 ⋅ 𝑥𝑘 − 𝜁

2

= −
1

ℎ
0,0

(𝑡
𝑘
)
(𝑡
𝑘
ℎ
𝜆,0

(𝑡
𝑘
) − ℎ
𝜆,0

(𝑡
𝑘
))

𝑥𝑘 − 𝜁

2

𝑡2
𝑘

.

(58)

Thanks to (29),

𝑓
(𝑥
𝑘
)
†

𝑟
𝑘

 ≤
𝑓
(𝑥
𝑘
)
†
𝑟𝑘

 ≤ 𝜆
𝑘

𝑓
(𝑥
𝑘
)
†
𝑓 (𝑥
𝑘
)
 .

(59)

Since

−𝑓 (𝑥
𝑘
) = 𝑓 (𝜁) − 𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

𝑘
) (𝜁 − 𝑥

𝑘
)

+ 𝑓 (𝑥
𝑘
) (𝜁 − 𝑥

𝑘
)

= ∫
1

0

[𝑓 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))] (𝑥

𝑘
− 𝜁) d𝜏

+ 𝑓 (𝑥
𝑘
) (𝜁 − 𝑥

𝑘
) ,

(60)

combining Lemmas 1 and 19, the modified 𝐿-average Lips-
chitz condition (25), the inductive hypothesis (56), and the
condition (29), we have

𝜆
𝑘

𝑓
(𝑥
𝑘
)
†
𝑓 (𝑥
𝑘
)


≤ 𝜆
𝑘

𝑓
(𝑥
𝑘
)
† ∫
1

0

𝑓
 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))



×
𝑥𝑘 − 𝜁

 d𝜏

+ 𝜆
𝑘

𝑓
(𝑥
𝑘
)
†
𝑓
 (𝑥
𝑘
)

𝑥𝑘 − 𝜁



≤ −
𝜆

(ℎ
0,0

(𝑡
𝑘
))

(𝑡
𝑘
ℎ
𝜆,0

(𝑡
𝑘
) − ℎ
𝜆,0

(𝑡
𝑘
))

𝑥𝑘 − 𝜁

2

𝑡2
𝑘

+ 𝜆𝑡
𝑘
⋅

𝑥𝑘 − 𝜁


𝑡
𝑘

(61)

≤ 𝜆
𝜆𝑡
𝑘
+ ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)

⋅

𝑥𝑘 − 𝜁


𝑡
𝑘

. (62)

Combining (28), (58), (59), and (62), we can obtain that

𝑥𝑘+1 − 𝜁


≤ [−
𝑡
𝑘
ℎ
𝜆,0

(𝑡
𝑘
) − ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)

+ 𝜆 ⋅
𝜆𝑡
𝑘
+ ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)

+ 𝜃𝑡
𝑘
]

×

𝑥𝑘 − 𝜁


𝑡
𝑘

= [−𝑡
𝑘
+ (1 + 𝜆)(

𝜆𝑡
𝑘

ℎ
0,0

(𝑡
𝑘
)
+
ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)
) + 𝜃𝑡

𝑘
]

×

𝑥𝑘 − 𝜁


𝑡
𝑘

.

(63)

By the definition of ℎ
𝜆,0
(𝑡), we have ℎ

𝜆,0
(𝑡) ≥ −(1 + 𝜆)𝑡. Then,

we can obtain that

(1 + 𝜆) (
𝜆𝑡
𝑘

ℎ
0,0

(𝑡
𝑘
)
+
ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)
) ≤

ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)
. (64)
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Note that −1 < ℎ
0,0
(𝑡) < 0, for any 𝑡 ∈ (0, 𝜌), and

(1 + 𝜆) (
𝜆𝑡
𝑘

ℎ
0,0

(𝑡
𝑘
)
+
ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)
) + 𝜃𝑡

𝑘

≤
ℎ
𝜆,0

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)
+ 𝜃𝑡
𝑘
≤
ℎ
𝜆,0

(𝑡
𝑘
) − 𝜃𝑡

𝑘

ℎ
0,0

(𝑡
𝑘
)

=
ℎ
𝜆,𝜃

(𝑡
𝑘
)

ℎ
0,0

(𝑡
𝑘
)
.

(65)

Thus, in view of the definition of {𝑡
𝑘
} given in (21), one has

that

𝑥𝑘+1 − 𝜁
 ≤

𝑡
𝑘+1

𝑡
𝑘

𝑥𝑘 − 𝜁
 , (66)

which implies ‖𝑥
𝑘+1

− 𝜁‖ ≤ 𝑡
𝑘+1

. Therefore, the proof
by induction is complete. Since {𝑡

𝑘
} converges to 0 (by

Lemma 4), it follows from (56) that {𝑥
𝑘
} converges to 𝜁 and

the estimate (30) holds for all 𝑘 ≥ 0. This completes the
proof.

4.2. Proof of Theorem 12

Lemma 20. Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) is full row rank, and
𝑓 satisfies the L-average Lipschitz condition (24) on 𝐵(𝜁, 𝑟).
Then, for any 𝑥 ∈ 𝐵(𝜁, 𝑟), one has rank𝑓(𝑥) = rank𝑓(𝜁)
and


[𝐼R𝑛 − 𝑓(𝜁)

†

(𝑓 (𝜁) − 𝑓 (𝑥))]
−1

≤ −
1

ℎ
0,0

(
𝑥 − 𝜁

)
.

(67)

Proof. Since ℎ
0,0
(0) = −1, we have

𝑓


(𝜁)
†

[𝑓 (𝑥) − 𝑓 (𝜁)]


≤ ∫
‖𝑥−𝜁‖

0

𝐿 (𝑢) d𝑢 = ℎ
0,0

(
𝑥 − 𝜁

) − ℎ
0,0

(0)

< −ℎ
0,0

(0) = 1.

(68)

It follows from Banach lemma that [𝐼R𝑛 − 𝑓(𝜁)†(𝑓(𝜁) −

𝑓(𝑥))]−1 exists and


[𝐼R𝑛 − 𝑓(𝜁)

†

(𝑓 (𝜁) − 𝑓 (𝑥))]
−1

≤ −
1

ℎ
0,0

(
𝑥 − 𝜁

)
.

(69)

Since 𝑓(𝜁) is full row rank, we have 𝑓(𝜁)𝑓(𝜁)† = 𝐼R𝑚 and

𝑓 (𝑥) = 𝑓 (𝜁) [𝐼R𝑛 − 𝑓(𝜁)
†

(𝑓 (𝜁) − 𝑓 (𝑥))] , (70)

which implies that𝑓(𝑥) is full row rank; that is, rank𝑓(𝑥) =
rank𝑓(𝜁).

Proof of Theorem 12. Let 𝑓 : 𝐵(𝜁, 𝑟) → R𝑚 be defined by

𝑓 (𝑥) = 𝑓(𝜁)
†

𝑓 (𝑥) , 𝑥 ∈ 𝐵 (𝜁, 𝑟) , (71)

with residual 𝑟
𝑘
= 𝑓(𝜁)†𝑟

𝑘
. Since

𝑓(𝑥)
† = [𝑓(𝜁)

†

𝑓 (𝑥)]
†

= 𝑓(𝑥)
†𝑓 (𝜁) , 𝑥 ∈ 𝐵 (𝜁, 𝑟) ,

(72)
one has that {𝑥

𝑘
} coincides with the sequence generated by

inexact Newton-Gaussmethod (7) for𝑓. In addition, we have

𝑓(𝜁)
†

= (𝑓(𝜁)
†

𝑓 (𝜁))
†

= 𝑓(𝜁)
†

𝑓 (𝜁) , (73)

and so
𝑓


(𝜁)
†

𝑓 (𝜁)
 =

𝑓


(𝜁)
†

𝑓 (𝜁) 𝑓


(𝜁)
†

𝑓 (𝜁)
 =

𝑓


(𝜁)
†

𝑓 (𝜁)
 .

(74)

Because ‖𝑓(𝜁)
†

𝑓(𝜁)‖ = ‖Πker𝑓(𝜁)⊥‖ = 1, thus, we have
‖𝑓(𝜁)

†

‖ = ‖𝑓(𝜁)
†

𝑓(𝜁)‖ = 1. Therefore, by (24), we can
obtain that

𝑓


(𝜁)
†
𝑓


(𝑥) − 𝑓 (𝜁 + 𝜏 (𝑥 − 𝜁))


=
𝑓


(𝜁)
†

(𝑓 (𝑥) − 𝑓 (𝜁 + 𝜏 (𝑥 − 𝜁)))


≤ ∫
‖𝑥−𝜁‖

𝜏‖𝑥−𝜁‖

𝐿 (𝑢) d𝑢.

(75)

That is,𝑓 satisfies themodified L-average Lipschitz condition
(25) on𝐵(𝜁, 𝑟). So,Theorem 9 is applicable and {𝑥

𝑘
} converges

to 𝜁 as follows. Note that 𝑓(⋅)†𝑓(⋅) = 𝑓(⋅)†𝑓(⋅) and 𝑓(⋅) =

𝑓(⋅)𝑓(⋅)†𝑓(⋅); it follows that 𝜁 is a zero of 𝑓.

4.3. Proof of Theorem 13

Lemma 21. Suppose that 𝑓(𝜁) = 0, 𝑓(𝜁) is full row rank, and
𝑓 satisfies the L-average Lipschitz condition (24) on 𝐵(𝜁, 𝑟).
Then, one has

𝑓


(𝑥)
†𝑓 (𝜁)

 ≤ −
1

ℎ
0,0

(
𝑥 − 𝜁

)
, 𝑥 ∈ 𝐵 (𝜁, 𝑟) . (76)

Proof. Since𝑓(𝜁) is full row rank, we have𝑓(𝜁)𝑓(𝜁)† = 𝐼R𝑚 .
It follows that

𝑓(𝑥)
†𝑓 (𝜁) (𝐼R𝑛 − 𝑓(𝜁)

†

(𝑓 (𝜁) − 𝑓 (𝑥)))

= 𝑓(𝑥)
†𝑓 (𝑥) , 𝑥 ∈ 𝐵 (𝜁, 𝑟) .

(77)

By Lemma 20, 𝐼R𝑛 −𝑓
(𝜁)†(𝑓(𝜁)−𝑓(𝑥)) is invertible for any

𝑥 ∈ 𝐵(𝜁, 𝑟). Thus, in view of the equality 𝐴†𝐴 = Πker𝐴⊥ , for
any𝑚 × 𝑛matrix 𝐴, one has that

𝑓(𝑥)
†𝑓 (𝜁)

= Πker𝑓(𝑥)⊥[𝐼R𝑛 − 𝑓(𝜁)
†

(𝑓 (𝜁) − 𝑓 (𝑥))]
−1

.
(78)

Therefore, Lemma 20 is applicable to conclude that
𝑓


(𝑥)
†𝑓 (𝜁)



≤
Πker𝑓(𝑥)⊥




[𝐼R𝑛 − 𝑓(𝜁)

†

(𝑓 (𝜁) − 𝑓 (𝑥))]
−1

≤ −
1

ℎ
0,0

(
𝑥 − 𝜁

)
.

(79)
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Proof of Theorem 13. Using Lemma 21, L-average condition
(24), and the residual condition (35), respectively, instead of
Lemma 19, modified L-average condition (25), and condition
(29), one can complete the proof of Theorem 13 as the same
line of proof in Theorem 9.

4.4. Proof of Theorem 17

Proof. Recall that the majorizing sequence {𝑡
𝑘
} is defined by

(21) and the majorizing function ℎ
𝜆,𝜃
(𝑡) is defined by (42). By

Lemma 4, {𝑡
𝑘
} is strictly decreasing and converges to 0. We

first note that (57) gives

𝑥
𝑘
− 𝜁 = 𝑓(𝑥

𝑘
)
†

∫
1

0

[𝑓 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))]

× (𝑥
𝑘
− 𝜁) d𝜏 + 𝑓(𝑥

𝑘
)
†

𝑟
𝑘

+ [𝐼R𝑛 − 𝑓(𝑥
𝑘
)
†

𝑓 (𝑥
𝑘
)] (𝑥
𝑘
− 𝜁) .

(80)

Using Lemma 8, the 𝛾-condition (26), and Lemma 21, one has
that


𝑓(𝑥
𝑘
)
†

∫
1

0

[𝑓 (𝑥
𝑘
) − 𝑓 (𝜁 + 𝜏 (𝑥

𝑘
− 𝜁))] (𝑥

𝑘
− 𝜁) d𝜏



≤
𝛾𝑡2
𝑘

1 − 4𝛾𝑡
𝑘
+ 2𝛾2𝑡2

𝑘

⋅

𝑥𝑘 − 𝜁


𝑡2
𝑘

.

(81)

Thanks to (60), we use the 𝛾-condition (26), Lemma 21, and
the condition (49) to obtain that

𝜆
𝑘

𝑓
(𝑥
𝑘
)
†

𝑓 (𝑥
𝑘
)


≤ 𝜆
(2𝛾2𝑡2
𝑘
− 3𝛾𝑡
𝑘
+ 1) 𝑡
𝑘

2𝛾2𝑡2
𝑘
− 4𝛾𝑡
𝑘
+ 1

⋅

𝑥𝑘 − 𝜁


𝑡
𝑘

.

(82)

Note that

𝜆 (1 − 3𝛾𝑡 + 2𝛾2𝑡2)

1 − 4𝛾𝑡 + 2𝛾2𝑡2
< 1

for any 0 ≤ 𝑡 <
(4 − 3𝜆) − √(4 − 3𝜆)2 − 8(1 − 𝜆)2

4𝛾 (1 − 𝜆)
.

(83)

Then, it follows from (49) and (82) that

𝑓
(𝑥
𝑘
)
†

𝑟
𝑘

 ≤ (𝜆
𝑘

𝑓
(𝑥
𝑘
)
†

𝑓(𝑥
𝑘
)
)
2

≤ 𝜆
(2𝛾2𝑡2
𝑘
− 3𝛾𝑡
𝑘
+ 1) 𝑡2
𝑘

2𝛾2𝑡2
𝑘
− 4𝛾𝑡
𝑘
+ 1

⋅

𝑥𝑘 − 𝜁

2

𝑡2
𝑘

.

(84)

Thus, we can obtain by combining (81), (84), and (48) that
𝑥𝑘+1 − 𝜁



≤ (
𝛾𝑡2
𝑘

1 − 4𝛾𝑡
𝑘
+ 2𝛾2𝑡2

𝑘

+ 𝜆
(2𝛾2𝑡2
𝑘
− 3𝛾𝑡
𝑘
+ 1) 𝑡2
𝑘

1 − 4𝛾𝑡
𝑘
+ 2𝛾2𝑡2

𝑘

+ 𝜃𝑡2
𝑘
)

×

𝑥𝑘 − 𝜁

2

𝑡2
𝑘

.

(85)

It is clear that the function

𝜓 (𝑡) :=
𝜆 (1 − 3𝛾𝑡 + 2𝛾2𝑡2)

1 − 4𝛾𝑡 + 2𝛾2𝑡2
+

𝛾

1 − 4𝛾𝑡 + 2𝛾2𝑡2
+ 𝜃 (86)

is increasing monotonically with respect to 𝑡 in [0, (2 −
√2)/2𝛾). Hence, we have

𝑥𝑘 − 𝜁


≤ (
𝛾𝑡2
0

1 − 4𝛾𝑡
0
+ 2𝛾2𝑡2

0

+ 𝜆
(2𝛾2𝑡2
0
− 3𝛾𝑡
0
+ 1) 𝑡2
0

1 − 4𝛾𝑡
0
+ 2𝛾2𝑡2

0

+ 𝜃𝑡2
0
)

×

𝑥𝑘−1 − 𝜁

2

𝑡2
0

≤ (𝜓 (𝑡
0
) 𝑡
0
)
2
𝑘
−1 𝑥0 − 𝜁

 .

(87)

Consequently, to show that 𝑥
0
is an approximate zero of 𝑓,

it suffices to prove 𝜓(𝑡
0
)𝑡
0

≤ 1/2. In fact, in view of the
definition of 𝑟∗ given in (46), for any 𝑡 ∈ [0, �̂� ], we have
−1 ≤ 𝜙(𝑡) ≤ 0. Consequently, we get that

4𝛾2 (𝜆 + 𝜃) 𝑡3 − 2𝛾 (3𝜆 + 4𝜃) 𝑡2 + 2 (𝜆 + 𝜃 + 𝛾) 𝑡

1 − 4𝛾𝑡 + 2𝛾2𝑡2
≤ 1, (88)

which is equivalent to 𝑡𝜓(𝑡) ≤ 1/2, 𝑡 ∈ [0, �̂� ]. The proof is
complete.
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