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The problem of designing a sliding mode controller with uncertain sliding surface for a class of uncertain single-input-single-
output systems is studied. The design case is handled by using the invariant transformation first in order to separate the sliding
mode and the reaching mode of the sliding mode control system. It is shown that the sliding mode design needs not to consider
the uncertainties of the sliding surface, which can be handled in the reaching phase design.The results generalize the robust design
of the reaching phase such that one specific reaching phase design may agree with several sliding surfaces.

1. Introduction

Slidingmode control (SMC) is one of the well-known power-
ful design tools for the problem of the deterministic control
of uncertain systems, since it has a significant insensitive
feature to handle internal parameter variations and external
disturbances [1–4]. The typical SMC design consists of two
stages: sliding phase design and reaching phase design.
Usually, a hyperplane, namely, sliding surface, is first designed
to provide the desired behavior for the closed-loop system
during sliding mode.The sliding surface is also considered to
be the switching condition during the reaching phase design
that employs a discontinuous control law to force all the
trajectories to reach the sliding surface and remain on it.
As long as the sliding mode is realized, the system achieves
invariant properties with respect to parameter perturbations
and external matched disturbance. These design issues have
received the most attention in the literature, such as [3–7],
both in the fields of theory and practice.

The sliding phase design obtains extensively attention,
since it not only determines the desired performance but also
actually provides the design objective of the second stage [2,
3]. Many researches are concerned with the switching surface
design problem in the view of the system design objectives,
such as stability [8–10], performance index minimization [2],

chattering reduction [11], and robustness [5]. It is observed
that all the aforementioned works concentrate on the switch-
ing surfaces that are predetermined. In other words, the
user-chosen sliding surface defines an invariant manifold of
the closed-loop system so that the design performance can
be realized. However, during the realization of the sliding
surface, the uncertainties may occur, if the sliding surface
relates to the uncertain physical quantities. Suchuncertainties
may have an influence on the performance of the closed-loop
system and even cause failure of the reaching phase design.
This robust design situation of SMC is always ignored in the
published papers. Therefore, it is necessary to reconsider the
robustness of two design stages of SMC in the presence of the
uncertainties of the sliding surface.

In fact, recent results of nonsmooth control show that the
sliding surface can be designed more flexibly. The authors
in [12] developed a class of sliding surfaces generated by
combining several linear hypersurfaces. The paper shows
the fact that one reaching phase design may agree with
several linear sliding surfaces, as well as their combinations.
Moreover, the authors in [13] proposed a set of new SMC
design rules, called cone design conditions. Under the cone
conditions, the linear Lipschitz continuous hypersurface,
whose gradient varies along the sliding regions, can be used as
the sliding surface so that the dynamics of the sliding motion
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can be regulated according to the regions of the surface.
It also implies that the reaching phase can be designed
robust to the sliding surface variation. These results actually
indicate the robustness of the reaching phase. Therefore, the
design case of the SMC with an uncertain sliding surface
can be considered as the robust design case of the reaching
law.

Robust design problem is reconsidered in this paper to
handle the design case of SMC with an uncertain linear
sliding surface for a class of uncertain single-input-single-
output (SISO) systems. An invariant transformation is first
introduced to separate the sliding mode and the reaching
mode such that it is not necessary to consider the sliding
surface and its uncertainties when checking the stability of
the sliding mode. Thus, the sliding mode can be designed
without consideration of the uncertain sliding surface. The
robust design for the uncertainties of the sliding surface is
presented in the second design stage, since the uncertainties
of the sliding surface are transferred to the reaching phase.
The design procedure proposed in this paper is different from
the usual SMCdesign, since the slidingmodedesign is carried
out without an explicit sliding surface. It means that the
sliding mode controller obtained by this method also agrees
with several sliding surfaces.This advantagewill be illustrated
and verified by numerical simulations.

The rest of the paper is organized as follows. Section 2
formulates the robust design problem of SMC with an uncer-
tain sliding surface. Section 3 introduces the two stages of
the robust SMC design. In Section 4, numerical simulations
are carried out to show the advantages of our design. Finally,
some conclusions are made in Section 5.
Notations. The following notations are used in this paper. 𝐼

𝑛

is the 𝑛 by 𝑛 identity matrix. 𝐸
𝑛
denotes the 𝑛 × 1 vector

of 𝑛 ones, that is, 𝐸
𝑛

= [1 1 ⋅ ⋅ ⋅ 1]
𝑇, while 𝑂

𝑛×𝑚
denotes

the 𝑛 × 𝑚 matrix of zeros. Set sgn(𝑥) = 1 for 𝑥 ≥ 0 and
−1, otherwise. The Euclidean norm of a vector 𝑥 and the
corresponding induced normal of a matrix 𝐴 are denoted by
‖𝑥‖ and ‖𝐴‖, respectively. Moreover, the definition for the
solution of differential equations in this paper agrees with
Filippov’s definition [14].

2. Problem Formulation

Robust design problem is formulated in this section in order
to handle the uncertain sliding surface of SMC. Before the
design problem is proposed, a simple example of DC-DC
buck converter is presented to show that there actually exist
the uncertainties of the sliding surface.

2.1. Uncertain Sliding Surface: A Simple Example. DC-DC
buck converter is a wildly used power electronic device.
Figure 1 shows the typical circuit of the converter [7, 15],
where 𝑖

𝑙
and V

𝑐
are the inductor current and the capacitor

voltage, respectively; 𝑉in is the input voltage source; 𝑅
𝑐
, 𝑅
𝑙
,

and𝑅
𝑙𝑑
denote the resistance of the capacitor𝐶

𝑐
, the inductor

𝐿
𝑙
, and the uncertain load, respectively. The switch 𝑆 is

considered as the ideal switch.
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Figure 1: DC-DC buck converter.

The buck converter can be described by the following
dynamic equation:
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(1)

where 𝑋 = [𝑥
1

𝑥
2
]
𝑇

= [𝑖
𝑙
V
𝑐
]
𝑇. The output is the load

voltage that can be expressed by

𝑦 = 𝐶𝑋, (2)

where 𝐶 = [𝑐
1

𝑐
2
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In order to obtain the desired output of the converter, the
switching logic is applied to the switch. One of the simplest
switching logics is generated from the voltage error; that is,

𝑆 = 𝑦
𝑑
− 𝑦 = 𝑦

𝑑
− 𝐶𝑋. (3)

If the sliding mode occurs, that is, 𝑆 = 0, the system can
be simplified as
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(4)

Then, the sliding mode is asymptotically stable so that the
desired load voltage can be realized. However, due to the
uncertain switching surface whose parameters, 𝑐

1
and 𝑐
2
, are

related the physical quantities 𝑅
𝑐
, 𝑅
𝑙
, and 𝑅

𝑙𝑑
, the dynamics

of the sliding mode is also uncertain.
Moreover, the uncertain switching surface also causes the

region of the sliding mode to vary. Consider the existence
condition of the sliding mode proposed by Filippov [14]. The
projection of the vector field on the normal of the switching
surface satisfies

Ω : {
𝑥
1
< 𝑘𝑥
2
+ 𝑏, for 𝑆 > 0,

𝑥
1
> 𝑘𝑥
2
, for 𝑆 < 0,

(5)
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where 𝑘 = −𝑐
2
𝑎
21
/𝑐
1
𝑎
11
, 𝑏 = 𝑉in/𝑎11𝐿, and 𝑎

11
and 𝑎

21

are corresponding components of the system characteristic
matrix of (1). It follows that the region Ω boundaries are
uncertain.

This example shows that if there are uncertainties in the
switching surface of SMC, the following consequences may
happen:

(1) the dynamics of the sliding mode may be uncertain,

(2) the region of the sliding mode existence may be
uncertain.

For a realistic SMC system design, the first consequence may
cause an unstable sliding mode, and the second may cause
failure of the reaching phase design. In the following, we
consider the SMC design problem with a class of uncertain
switching surfaces.

2.2. SMCDesign Problemwith anUncertain Switching Surface.
Theplant considered in this paper is a class of uncertain SISO
systems, which can be represented as follows:

�̇� = 𝐹 (𝑋, 𝑡, 𝑢) = 𝐴
0
𝑋 + Δ𝐴 (𝑋, 𝑡)𝑋 + 𝐵

0
𝑢 + Δ𝐵 (𝑋, 𝑡) 𝑢,

(6)

where 𝑋 ∈ R𝑛 expresses the state, 𝑢 ∈ R is the control input,
and Δ𝐴(𝑋, 𝑡) and Δ𝐵(𝑋, 𝑡) represent the uncertainty of the
linear portion and the input matrix uncertainty, respectively.
𝐴 ∈ R𝑛×𝑛 is the system characteristic matrix, and 𝐵 ∈ R𝑛

is the input vector. The uncertain sliding surface is a linear
hypersurface and can be defined as follows:

𝑆 ≜ {𝑋 : 𝜎 (𝑋) = Ξ𝑋 = 0} , (7)

where Ξ is a 1 × 𝑛 time-invariant vector with uncertain
components.

We will assume the following to be valid:

(A1) the pair (𝐴
0
, 𝐵
0
) is stabilizable,

(A2) the state 𝑋 and the value of 𝜎(𝑋) are available,

(A3) for existence purposes, Δ𝐴(𝑋, 𝑡) and Δ𝐵(𝑋, 𝑡) are
continuous on 𝑋 and piecewise continuous on 𝑡,

(A4) Δ𝐴(𝑋, 𝑡) is of the form 𝑁𝐴(𝑋, 𝑡)𝑀 where 𝐴(𝑋, 𝑡)

is unknown but bounded as ‖𝐴(𝑋, 𝑡)‖ ≤ 1 for all
(𝑋, 𝑡) ∈ R𝑛 × R, and 𝑁 and 𝑀 are known matrices
of appropriate dimensions,

(A5) there exist, function 𝐵(⋅): R𝑛 ×R → R such that, for
all (𝑋, 𝑡) ∈ R𝑛 × R,

Δ𝐵 (𝑋, 𝑡) = 𝐵
0
𝐵 (𝑋, 𝑡) (8)

and |𝐵(𝑋, 𝑡)| ≤ 𝜖, where 𝜖 is a known constant,

(A6) the uncertain vector Ξ can be rewritten in the form of

Ξ = 𝐸
𝑇

𝑛
(𝐼
𝑛
+ Ξ̃) Ξ

0
, (9)

where Ξ
0
and Ξ̃ are two 𝑛 × 𝑛 matrices of the certain

and the uncertain parts of the switching surface,
respectively. There exists a positive number 𝜌 such
that ‖Ξ̃‖ < 𝜌. Moreover, 𝐸𝑇

𝑛
Ξ
0
𝐵
0

̸= 0, which implies
Ξ𝐵
0

̸= 0,
(A7) the boundaries of the uncertainties in the input and

the sliding surface satisfy

𝑞 = 𝜌 + 𝜖𝜌 + 𝜖 < 1. (10)

With the above structural assumption, the model uncer-
tainties can be lumped and the system can be rewritten as

�̇� = 𝐹 (𝑋, 𝑡, 𝑢) = 𝐴
0
𝑋 + 𝑁𝐴𝑀𝑋 + 𝐵

0
(1 + 𝐵) 𝑢. (11)

For the system (11), two design objectives as follows need to
be achieved for the slidingmode controllerwith the uncertain
sliding surface (7).

(P1) Find the stable sliding mode that is invariant to the
uncertain sliding surface (7).

(P2) Construct a discontinuous reaching law that ensures
the trajectories approaching to the sliding surface in
finite time.

Obviously, (P1) and (P2) relate to the two stages of the
typical SMC design such that a sliding mode controller can
be obtained if (P1) and (P2) are achieved. In the following
section, a new SMC design methodology is introduced to
develop the required controller.

3. SMC Design with Uncertain
Switching Surface

According to the previous analysis, one can find out that
the two design stages of the traditional SMC are coupled
with the predetermined sliding surface. This section presents
a method using invariant transformation to decouple the
connection between the two design stages so that the design
objectives can be achieved.

3.1. Sliding PhaseDesign. In order to obtain an asymptotically
stable sliding mode, it is necessary to deduce the dynamics of
the system on the sliding surface. Actually, since the sliding
dynamics is not a new system but the special case of the
original system on the constraint, it can be detached from the
original system through the invariant transformation. Define
a transformation as follows:

𝑍 = [
𝑧
1

𝜎
] = Γ𝑋 = [

𝐻
𝑇

Ξ
]𝑋, (12)

where 𝑧
1

∈ R𝑛−1, Γ is an invertible transformation matrix,
and the matrix 𝐻

𝑇

∈ R(𝑛−1)×𝑛 is an orthogonal complement
of 𝐵
0
and will be determined in the following. With such an

invariant transformation, the system (11) can be transformed
into
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−1

[
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0
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] (1 + 𝐵) 𝑢. (13)



4 Mathematical Problems in Engineering

Let 𝐻 be an 𝑛 × (𝑛 − 1) matrix that satisfies 𝐻
𝑇

𝐻 = 𝐼
𝑛−1

and
Ξ
0
𝐻 = 𝑂

𝑛×(𝑛−1)
. Then Γ
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0
(Ξ𝐵
0
)
−1

].
Thus, the above equation can be rewritten as follows:
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𝜎
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] (1 + 𝐵) 𝑢.

(14)

From the system (14), which is actually the system (11) in
the new coordinates 𝑧

1
and 𝜎, it can be found that the system

will be governed by the dynamics of 𝑧
1
, if the sliding mode

occurs, that is, �̇� = 𝜎 = 0, that is,

�̇�
1
= 𝐻
𝑇

(𝐴
0
+ 𝑁𝐴𝑀)𝐻𝑧

1
. (15)

The differential equation (15) expresses an uncertain
autonomous system. It is apparent that the system (15) is
independent of the selection of the sliding surface. It can be
summarized as the following lemma.

Lemma 1. The sliding mode of the sliding mode control system
(11) can be expressed by (15) with the invariant transformation
(12), and the sliding mode is independent of the sliding surface
(7).

Therefore, the stability of the sliding mode is only related
to the matrices 𝐻 and 𝐻. According to the results of [16],
the system (15) is stable if and only if there exists a positive-
definite matrix 𝑃 such that

𝐻
𝑇

𝐴
0
𝐻𝑃 + 𝑃𝐻

𝑇

𝐴
𝑇

0
𝐻 + 𝐻

𝑇

𝑁𝑁
𝑇

𝐻 + 𝑃𝐻
𝑇

𝑀
𝑇

𝑀𝐻𝑃 < 0.

(16)

This condition can be translated into a linear matrix inequal-
ity (LMI). If 𝑃 is chosen in the form of 𝑃 = 𝐻

𝑇

𝐾𝐻, then
𝐻 can be calculated as 𝐻 = 𝐾𝐻𝑃

−1, where 𝐾 is a positive-
definite symmetric matrix and satisfies the inequality

𝐻
𝑇

(𝐴
0
𝐾 + 𝐾𝐴

𝑇

0
+ 𝑁𝑁

𝑇

+ 𝐾𝑀
𝑇

𝑀𝐾)𝐻 < 0. (17)

Thus, the matrices 𝐻 and 𝐻 can be obtained by solving the
above LMI. The result can be concluded by the following
theorem.

Theorem 2. The sliding mode of the sliding mode control
system (11) with the uncertain switching surface (7) is stable,
if there exist a matrix 𝐻 of the orthogonal complement of 𝐵

0

and a positive-define matrix 𝐾 such that the LMI (17) holds.

Remark 3. This result is similar to Theorem 1 proposed in
[9]. Unlike the previous result, Theorem 2 shows a fact that
the stability of the sliding mode is independent of the sliding
surface design. It alsomeans that its stability is invariant to the

uncertainties of the sliding surface. In this way, the dynamics
of the sliding mode can be designed separately for the SMC
system (13).

Remark 4. It seems that there is no explicit sliding surface
while deducing the slidingmode. Actually, the sliding surface
cannot be arbitrarily selected. Its parameter should satisfy the
constraint condition of𝐻, that is,Ξ

0
𝐻 = 𝑂

𝑛×(𝑛−1)
.Theorem 2

shows how to obtain𝐻 so that the normal sliding surface can
be obtained. It is certainly to design the sliding surface first,
since the solution of LMI (17) is not unique.

Then, the robust design issue is concentrated on the
reaching phase design of the SMC system (14). In other
words, the design objective (P1) is obtained, and the following
design objective is to find a robust feedback control 𝑢 with
the consideration of the uncertainties of the system and the
sliding surface so that the new state variable 𝜎 can converge
to zero in finite time.

3.2. Reaching Phase Design. The dynamical motion of the
reaching phase can be described by the differential equation
of the state variable 𝜎; that is,

�̇� = Ξ (𝐴
0
+ 𝑁𝐴𝑀)𝐻𝑧

1
+ Ξ (𝐴 + 𝑁𝐴𝑀)𝐵

0
(Ξ𝐵
0
)
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𝜎

+ Ξ
0
𝐵
0
(1 + 𝐵) 𝑢.

(18)

With the definition of Ξ and Γ, the differential equation (18)
can be transformed into

�̇� = 𝐸
𝑇

𝑛
(𝐼
𝑛
+ Ξ̃) Ξ

0
(𝐴
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+ 𝑁𝐴𝑀)𝑋
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𝑇

𝑛
(𝐼
𝑛
+ Ξ̃) Ξ

0
𝐵
0
(1 + 𝐵) 𝑢.

(19)

To ensure every trajectory of the closed loop reaching
the sliding surface in finite time, the reaching law should
guarantee the reachability condition that can be checked by
the sign of the time derivative of one positive definite function
related to the sliding surface. The following positive definite
function is used to check the finite time convergence about
the sliding surface 𝑆:

𝑉 =
1

2
𝜎
2

. (20)

Its time derivative along 𝜎 can be calculated as
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Figure 2: Trajectories with the normal sliding surface of 𝜍 = 0.

Suppose the reaching law to be
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where 𝜅 is a positive number.Therefore, (21) can be rewritten
as
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𝐸
𝑇

𝑛
Ξ
0
𝐴
0
𝑋


⋅ |𝜎|

≤ − 𝜅 |𝜎| − (1 − 𝑞)

𝐸
𝑇

𝑛
Ξ
0
𝐴
0
𝑋


⋅ |𝜎| .

(23)

According to the Lyapunov method on finite-time con-
vergence [5], 𝜎will reach zero in finite time with the reaching
law (22). Itmeans that the state of the system (14) will arrive at
the sliding surface 𝑆 in finite time and remain on it. Thus, the
design target (P2) is achieved. The result can be summarized
inTheorem 5.

Theorem 5. For the uncertain system (14), any trajectory will
approach the uncertain sliding surface (7) in finite time under
the reaching law (22).

Theorem 5 shows that the sliding mode controller for the
system (14) is obtained. Due to the invertibility of the invari-
ant transformation (12), the slidingmode controller is also for
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Figure 3: Trajectories with the sliding surface of 𝜍 = 0.4.
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Figure 4: Trajectories with the sliding surface of 𝜍 = −0.4.

the original uncertain system (6).Therefore, the slidingmode
design with uncertain sliding surface is achieved.

4. Numerical Example

Consider the following uncertain SISO system:

�̇�
1
= (2 + cos 𝑡) 𝑥

2
,

�̇�
2
= − 𝑥

2
+ 𝑥
3
,

�̇�
3
= (1 + 𝜇) 𝑢,

(24)

where 𝜇 is the uncertain variable of the input vector with the
range [−0.2, 0.2]. The system (24) can be cast into the form of
(11) with

𝑁 = [1 0 0]
𝑇

, 𝑀 = [0 1 0] ,

𝐴 = cos 𝑡, 𝐵 = 𝜇.

(25)

Let the normal sliding surface be defined as

𝑆
0
≜ {𝑋 : 𝜎

0
(𝑋) = 𝑥

1
+ 2𝑥
2
+ 𝑥
3
= 0} . (26)

Assume that the uncertainties occur in three terms during
realization of the sliding surface. It can be rewritten as

𝑆 ≜ {𝑋 : 𝜎 (𝑋) = (1 + 𝜍) 𝑥
1
+ (2 + 𝜍) 𝑥

2
+ (1 + 𝜍) 𝑥

3
= 0} ,

(27)



6 Mathematical Problems in Engineering

0 1 2 3 4 5
−4

−3

−2

−1

0

1
𝜎

(t
)

t

(a) Time responses of 𝜎(𝑡) under the control (32)
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(b) Time responses of 𝜎(𝑡) under the control (31)

Figure 5: Comparison with the time responses of the switching function.

where the uncertain variable 𝜍 varies from −0.4 to 0.4.
According to the assumption (A5), the structure of the sliding
surface can be expressed as

Ξ = [1 + 𝜍 2 + 𝜍 1 + 𝜍] =
1

3
𝐸
𝑇

3
(𝐼
3
+ 𝜍𝐼
3
) [

[

1 2 1

1 2 1

1 2 1

]

]

.

(28)

Thus, 𝜖 = 0.2, 𝜌 = 0.4, and 𝑞 = 0.68.
Since the vectors [1 0 0]

𝑇 and [0 1 0]
𝑇 are all the basis

of the null space of the vector 𝐵
0

= [0 0 1]
𝑇, 𝐻 can be

selected as

𝐻
𝑇

= [
1 0 0

0 1 0
] . (29)

It can be checked that the sliding mode is stable with the
following 𝐻:

𝐻 = [
1 0 −1

0 1 −2
]

𝑇

. (30)

Let 𝜅 = 0.1. Then the sliding mode controller is

𝑢 = −2𝑥
3
−

1

0.32
(0.1 + 1.4

𝑥2
 + 2.8

𝑥3
) sgn (𝜎) . (31)

The simulations are carried out from two start points:
𝑋
0
1

= (−20, 20, 40) and 𝑋
0
2

= (20, −20, −40). The results are
shown in the following figures. The solid lines in all figures
are of the case 𝜇 = 1.2. The dashed lines in all figures show
the trajectories as 𝜇 = 0.8. Figure 2 shows the trajectories
under the slidingmode controller (31)with the normal sliding
surface. Figures 3 and 4 show the situations of 𝜍 = 0.4 and
𝜍 = −0.4, respectively. All the trajectories reach the sliding
surface under the reaching law, though the sliding surface
varies. Moreover, the sliding modes in the simulations are

all stable. Therefore, the sliding mode controller (31) can
handle not only the uncertainties of the plant (24) but also
the uncertainties of the sliding surface (27).

In order to show the advantage of the new robust
design, the comparison in Figure 5 is carried out. Figure 5(a)
shows the time responses of the switching function under
the following sliding mode control designed without the
consideration of the uncertainties of the sliding surface [2]:

𝑢
0
= −

1

0.8
(0.1 +

𝑥2
 + 2

𝑥3
) sgn (𝜎) . (32)

The solid line is the result of the sliding mode controller
𝑢
0
with the normal sliding surface, while the dashed line

illustrates the case in which the uncertainties of 𝜍 = −0.4

occur for the switching function 𝜎(𝑋). All trajectories start
from the point (−1, −1, −1) in the state space. The solid
line approaches zero and remains on it. It means that the
trajectories will remain on the sliding surface, once they
reach it. However, it may not be true for the case that the
uncertainties occur for the sliding surface, in which the tra-
jectories cross the sliding surface. It implies the failure of the
reaching phase design due to the uncertainties of the sliding
surface. Under the same simulation conditions, Figure 5(b)
shows the results of the robust sliding mode design (31). The
dashed line and the solid line illustrate the normal case and
the uncertain case with 𝜍 = −0.4, respectively. It can be
observed that the new reaching phase design is robust to
the uncertainties of the sliding surface, since the trajectories
remain on the sliding surface in the two simulation cases.

The simulation results verify the results of this paper.
Moreover, they prove the fact again that one reaching law
of sliding mode controller may correspond to several sliding
surfaces and that the robustness of the reaching law can be
used to overcome the uncertainties of the sliding surface.
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5. Conclusions

A new design methodology of SMC is proposed to handle
the important design situation that there exist uncertainties
in the sliding surface. The invariant transformation is used
to separate the sliding mode and the reaching mode of
the SMC design such that it is not necessary to consider
the uncertainties of the sliding surface during the sliding
phase design. The new controller explores the robustness of
the reaching law design so that the proposed sliding mode
controller can handle not only the uncertainties of the plant
but also the uncertainties of the sliding surface. Obviously,
the results of this paper can be extended for more general
systems and to design the slidingmode controllerwith several
uncertain sliding surfaces.
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