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An off-line robust constrained model predictive control (MPC) algorithm for linear time-varying (LTV) systems is developed. A
novel feature is the fact that both model uncertainty and bounded additive disturbance are explicitly taken into account in the off-
line formulation of MPC. In order to reduce the on-line computational burdens, a sequence of explicit control laws corresponding
to a sequence of positively invariant sets is computed off-line. At each sampling time, the smallest positively invariant set containing
the measured state is determined and the corresponding control law is implemented in the process. The proposed MPC algorithm
can guarantee robust stability while ensuring the satisfaction of input and output constraints. The effectiveness of the proposed
MPC algorithm is illustrated by two examples.

1. Introduction

Model predictive control (MPC), also known as moving
horizon control (MHC), is an advanced control algorithm
that solves on-line a dynamic optimization problem based
on an explicit model of the process. Although a sequence of
control inputs is computed at each sampling instant, only the
first computed input is implemented in the process. Since
model is only an approximation of the real process, it is
important for MPC to be robust to model uncertainty and
disturbance [1–4].

The first method to tackle the problem of robustness
is open-loop MPC [5]. At each sampling time, a sequence
of control inputs is obtained by solving an optimal control
problem in which model uncertainty is taken into account.
The main drawback of this method lies in the fact that the
use of open-loop predictions results in a significant spread of
the predicted trajectories. For this reason, its implementation
is only feasible for short prediction horizon. In order to
overcome this problem, feedback MPC has been widely

investigated. Kothare et al. [6] proposed a feedbackMPC syn-
thesis allowing explicit incorporation ofmodel uncertainty in
the problem formulation. The optimization problem at each
sampling time is formulated as convex optimization problem
subject to linear matrix inequality (LMI) constraints [7]. The
extensions of this MPC algorithm were presented by Mao [8]
and Wada et al. [9] where parameter-dependent Lyapunov
functions were used instead of a single Lyapunov function.
The conservativeness is reduced at the expense of a higher on-
line computational complexity. These MPC algorithms are
derived by assuming that there is no disturbance present so
they can deal with only model uncertainty.

Another way to tackle the problem of robustness is a
target set technique as proposed by Brooms et al. [10]. In
the presence of model uncertainty, all predicted future states
on the finite horizon are restricted to lie in a sequence of
ellipsoidal sets.The terminal ellipsoidal set is contained in an
ellipsoidal target set guaranteeing stability. This MPC algo-
rithm is based on the idea of Lee and Kouvaritakis [11] where
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the polyhedral invariant sets are used in the controller design.
For other methods that use polyhedral invariant sets in the
MPC formulation, the reader is referred to Rossiter et al. [12],
Pluymers et al. [13], and Bumroongsri and Kheawhom [14].
The main drawback of these MPC algorithms is that only
model uncertainty is considered in the MPC formulation
so they cannot deal with disturbance. The disturbance is
explicitly considered in the synthesis of the state feedback
control law in [15, 16]. The proposed algorithm gives the best
state feedback gain in terms of finding the maximal invariant
ellipsoid. The concept of pole placement in LMI regions is
introduced in order to improve the closed-loop performance.
However, the value of the state feedback gain is not updated
based on the information on new measurement at each
sampling time so the conservativeness may be obtained.

In the context of robust tube-based MPC [17–19], the
disturbance is directly taken into account in the problem for-
mulation. The main idea is to compute the regions around a
nominal predicted trajectory that contain all possible states of
an uncertain system. The on-line computational complexity
of these approaches increases with the prediction horizon.

In order to overcome the computational problems of
MPC, current researchers have focused on how to reduce
such a high computational burden while still ensuring the
same level of control performance. An efficient off-line for-
mulation of robust MPC was presented by Wan and Kothare
[20]. The main idea is to solve the optimization problem off-
line to find a sequence of controller gains and the associated
ellipsoidal invariant sets. The on-line computational effort
can be reduced to a simple bisection search that determines
the smallest ellipsoidal invariant set containing the measured
state. An extension of this method has been developed by
Ding et al. [21] where the nominal performance cost is
used in the problem formulation instead of the worst-case
performance cost.These off-lineMPC algorithms can handle
only model uncertainty and they cannot guarantee robust
stability in the presence of disturbance.

Since there will always be some disturbances acting
on the systems, they should be explicitly included in the
controller design. In this research, an off-line robust con-
strained MPC algorithm for linear time-varying systems is
presented. The main contribution is that both model uncer-
tainty and bounded additive disturbance are explicitly taken
into account in the off-line formulation of MPC. Most of the
optimization problems are solved off-line so the proposed
MPC algorithm is applicable to fast systems. This paper is
organized as follows. The problem statement is presented
in Section 2. Derivation of LMI constraints is presented in
Section 3. In Section 4, an off-line robust MPC algorithm
is proposed. In Section 5, the effectiveness of the proposed
MPC algorithm is illustrated by two examples. Finally, the
conclusions are drawn in Section 6.

Notation. For any vector 𝑥 and positive-definite matrix 𝑃,
‖𝑥‖
2

𝑃
= 𝑥
𝑇
𝑃𝑥. 𝑥(𝑘) is the state measured at real time 𝑘 and

𝑥(𝑘 + 𝑖 | 𝑘) is the state at prediction time 𝑘 + 𝑖 predicted
at real time 𝑘. The symbol ∗ denotes symmetric blocks

in matrices. An element belonging to a convex hull Co{⋅}
means that it is a convex combination of the elements in
{⋅}. The time dependence (𝑘) of the MPC decision variables
is often dropped for simplicity. 𝐼 is the identity matrix with
appropriate dimension.

2. Problem Statement

Consider the following linear time-varying system:

𝑥 (𝑘 + 1) = 𝐴 (𝑘) 𝑥 (𝑘) + 𝐵 (𝑘) 𝑢 (𝑘) + 𝐷 (𝑘) V (𝑘) (1)

𝑦 (𝑘) = 𝐶𝑥 (𝑘) , (2)

where 𝑥(𝑘) ∈ R𝑛𝑥 is the state, 𝑢(𝑘) ∈ R𝑛𝑢 is the control
input, V(𝑘) ∈ R𝑛V is the disturbance, and 𝑦(𝑘) ∈ R𝑛𝑦 is the
output. The superscripts 𝑛

𝑥
, 𝑛
𝑢
, 𝑛V, and 𝑛𝑦 are the number of

elements in 𝑥(𝑘), 𝑢(𝑘), V(𝑘), and 𝑦(𝑘), respectively. The input
and output constraints are

󵄨
󵄨
󵄨
󵄨
𝑢
ℎ
(𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑢
ℎ
, 𝑢
ℎ
> 0, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
} ,

󵄨
󵄨
󵄨
󵄨
𝑦
𝑟
(𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑦
𝑟
, 𝑦
𝑟
> 0, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} ,

(3)

where 𝑢
ℎ
are the bounds of the elements 𝑢

ℎ
(𝑘) in the control

input 𝑢(𝑘) and 𝑦
𝑟
are the bounds of the elements 𝑦

𝑟
(𝑘) in

the output 𝑦(𝑘). It is assumed that any 𝐴(𝑘), 𝐵(𝑘), and 𝐷(𝑘)
belong to a convex polytope Ω

𝐴𝐵𝐷
defined by

Ω
𝐴𝐵𝐷

= Co { [𝐴
1
, 𝐵
1
, 𝐷
1
] , [𝐴
2
, 𝐵
2
, 𝐷
2
] , . . . ,

[𝐴
𝑛
𝐴𝐵𝐷

, 𝐵
𝑛
𝐴𝐵𝐷

, 𝐷
𝑛
𝐴𝐵𝐷

]}

[𝐴 (𝑘) , 𝐵 (𝑘) , 𝐷 (𝑘)] =

𝑛
𝐴𝐵𝐷

∑

𝑗=1

𝛼
𝑗
(𝑘) [𝐴

𝑗
, 𝐵
𝑗
, 𝐷
𝑗
] ,

(4)

where [𝐴
𝑗
, 𝐵
𝑗
, 𝐷
𝑗
] are the vertices of Ω

𝐴𝐵𝐷
, 𝑛
𝐴𝐵𝐷

is the
number of the vertices of Ω

𝐴𝐵𝐷
, and 𝛼

𝑗
(𝑘) are the uncertain

time-varying parameters whose sum is equal to 1. The
disturbance V(𝑘) is persistent and bounded. It is assumed that
V(𝑘) belongs to an ellipsoid 𝜀V associated with a symmetric
positive-definite matrix 𝑃V. Consider

V (𝑘) ∈ 𝜀V = {V | ‖V‖2
𝑃V
≤ 1} . (5)

The objective is to find a state feedback control law 𝑢(𝑘 + 𝑖 |

𝑘) = 𝐹𝑥(𝑘+𝑖 | 𝑘) that is able to guarantee both robust stability
and constraint satisfaction within a positively invariant set.

Definition 1. The set𝑍 is said to be positively invariant set if it
has the property that whenever the current state is contained
in this set 𝑥(𝑘) ∈ 𝑍, all possible predicted states must be
contained in this set 𝑥(𝑘 + 𝑖 | 𝑘) ∈ 𝑍 for all admissible
realizations of 𝛼

𝑗
(𝑘 + 𝑖) and V(𝑘 + 𝑖), 𝑖 ≥ 0.

Remark 2. From the notion of quadratic boundedness [22],
the system (1) is quadratically bounded with a common Lya-
punovmatrix𝑄−1 and the ellipsoid 𝜀

𝑄
−1 = {𝑥 ∈ R𝑛𝑥/‖𝑥‖

2

𝑄
−1 ≤



Mathematical Problems in Engineering 3

1} is a positively invariant set if ‖𝑥(𝑘 + 𝑖 | 𝑘)‖2
𝑄
−1 ≥ 1 implies

‖𝑥(𝑘 + 𝑖 + 1 | 𝑘)‖
2

𝑄
−1 ≤ ‖𝑥(𝑘 + 𝑖 | 𝑘)‖

2

𝑄
−1 .

Consider the linear time-varying systems (1) to (5) at
each sampling time 𝑘; a state feedback control law 𝑢(𝑘 + 𝑖 |

𝑘) = 𝐹𝑥(𝑘 + 𝑖 | 𝑘) that guarantees both robust stability and
constraint satisfaction within a positively invariant set 𝜀

𝑄
−1 is

obtained by solving the following optimization problem:

min
𝛾,𝐹,𝑄

𝛾 (6)

s.t.

𝑥 (𝑘 + 𝑖 + 1 | 𝑘) = [𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹] 𝑥 (𝑘 + 𝑖 | 𝑘)

+ 𝐷 (𝑘 + 𝑖) V (𝑘 + 𝑖) , 𝑥 (𝑘 | 𝑘) = 𝑥 (𝑘) ,

(7)

‖𝑥(𝑘)‖
2

𝑄
−1 ≤ 1, (8)

If ‖𝑥 (𝑘 + 𝑖 | 𝑘)‖2
𝑄
−1 ≥ 1,

then ‖𝑥 (𝑘 + 𝑖 + 1 | 𝑘)‖
2

𝑄
−1 − ‖𝑥 (𝑘 + 𝑖 | 𝑘)‖

2

𝑄
−1

≤ −

1

𝛾

[‖𝑥 (𝑘 + 𝑖 | 𝑘)‖
2

𝜓
+ ‖𝐹𝑥 (𝑘 + 𝑖 | 𝑘)‖

2

𝜎
] ,

(9)

󵄨
󵄨
󵄨
󵄨
𝑢
ℎ
(𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑢
ℎ
, 𝑢
ℎ
> 0, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
} , (10)

󵄨
󵄨
󵄨
󵄨
𝑦
𝑟
(𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨
≤ 𝑦
𝑟
, 𝑦
𝑟
> 0, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} , (11)

where 𝛾 is the upper bound on ∑
∞

𝑖=0
[‖𝑥(𝑘 + 𝑖 | 𝑘)‖

2

𝜓
+

‖𝐾𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝜎
] (the proof details can be found in [6]) and

𝜓 and 𝜎 are symmetric weighting matrices. A positively
invariant set containing the measured state at each sampling
time is computed by (8). All possible predicted states are
restricted to lying in a positively invariant set by (9). The
input and output constraints are guaranteed by (10) and (11),
respectively.

3. Derivation of LMI Constraints

Proposition 3 (robust stability). Equation (9) is satisfied if
there exist matrices 𝑌, 𝑄, a scalar 𝛾, and a scalar 0 < 𝜃 < 1

such that the following LMIs are satisfied:

[

[

[

[

[

[

[

(1 − 𝜃)𝑄 ∗ ∗ ∗ ∗

(𝐴
𝑗
𝑄 + 𝐵

𝑗
𝑌) 𝑄 ∗ ∗ ∗

𝜎
1/2
𝑌 0 𝛾𝐼 ∗ ∗

𝜓
1/2
𝑄 0 0 𝛾𝐼 ∗

(𝐴
𝑗
𝑄 + 𝐵

𝑗
𝑌) 0 0 0 𝑆 − 𝑄

]

]

]

]

]

]

]

, 𝑗 ∈ {1, 2, . . . , 𝑛
𝐴𝐵𝐷

} ,

[

𝑆 ∗

𝑄 𝐷
𝑗
(𝜃𝑃V)
−1

𝐷
𝑇

𝑙

] ≥ 0,

𝑗 ∈ {1, 2, . . . , 𝑛
𝐴𝐵𝐷

} , 𝑙 ∈ {1, 2, . . . , 𝑛
𝐴𝐵𝐷

} ,

(12)

where the state feedback gain is parameterized as 𝐹 =

𝑌𝑄
−1. Then, all possible predicted states are restricted to lying

in a positively invariant set by (9). A positively invariant
set containing the measured state at each sampling time is
computed by (8) which is equivalent to the following LMI:

[

1 ∗

𝑥 (𝑘) 𝑄
] ≥ 0. (13)

Proof. From ‖𝑥(𝑘 + 𝑖 | 𝑘)‖
2

𝑄
−1 ≥ 1 and ‖V(𝑘 + 𝑖)‖2

𝑃V
≤ 1, (9) is

equivalent to

‖V (𝑘 + 𝑖)‖2
𝑃V
≤ ‖𝑥 (𝑘 + 𝑖 | 𝑘)‖

2

𝑄
−1 󳨐⇒ ‖𝑥 (𝑘 + 𝑖 + 1 | 𝑘)‖

2

𝑄
−1

− ‖𝑥 (𝑘 + 𝑖 | 𝑘)‖
2

𝑄
−1

≤ −

1

𝛾

[‖𝑥 (𝑘 + 𝑖 | 𝑘)‖
2

𝜓
+ ‖𝐹𝑥 (𝑘 + 𝑖 | 𝑘)‖

2

𝜎
] .

(14)

By substituting (7), (14) can be written as

[

[

𝑥 (𝑘 + 𝑖 | 𝑘)

V (𝑘 + 𝑖)
]

]

𝑇

[
𝑄
−1

0

0 −𝑃V
]
[

[

𝑥 (𝑘 + 𝑖 | 𝑘)

V (𝑘 + 𝑖)
]

]

≥ 0

󳨐⇒
[

[

𝑥 (𝑘 + 𝑖 | 𝑘)

V(𝑘 + 𝑖)
]

]

𝑇

×

[

[

[

[

[

𝑄
−1
− (𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

𝑇
𝑄
−1
(𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

−

𝐹
𝑇
𝜎𝐹

𝛾

−

𝜓

𝛾

∗

−𝐷(𝑘 + 𝑖)
𝑇
𝑄
−1
(𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹) −𝐷(𝑘 + 𝑖)

𝑇
𝑄
−1
𝐷 (𝑘 + 𝑖)

]

]

]

]

]

[

𝑥 (𝑘 + 𝑖 | 𝑘)

V (𝑘 + 𝑖) ] ≥ 0.

(15)

According to the 𝑆-procedure, (15) is satisfied if there exists a
scalar 0 < 𝜃 < 1 such that
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[

[

[

[

[

[

[

[

𝑄
−1
− (𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

𝑇
𝑄
−1
(𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

−

𝐹
𝑇
𝜎𝐹

𝛾

−

𝜓

𝛾

∗

−𝐷(𝑘 + 𝑖)
𝑇
𝑄
−1
(𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹) −𝐷(𝑘 + 𝑖)

𝑇
𝑄
−1
𝐷 (𝑘 + 𝑖)

]

]

]

]

]

]

]

]

≥ 𝜃 [
𝑄
−1

0

0 −𝑃V
] . (16)

By applying the Schur complement, (16) is equivalent to

𝑄
−1
− (𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

𝑇
𝑄
−1
(𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

−

𝐹
𝑇
𝜎𝐹

𝛾

−

𝜓

𝛾

− 𝜃𝑄
−1
− (𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹)

𝑇

× [𝑄𝐷(𝑘 + 𝑖)
−𝑇
𝜃𝑃V𝐷(𝑘 + 𝑖)

−1
𝑄 − 𝑄]

−1

× (𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝐹) ≥ 0.

(17)

Premultiplying by𝑄𝑇, postmultiplying by𝑄, and applying the
Schur complement lead to (12).

Proposition 4 (input constraint satisfaction). The input con-
straint (10) is satisfied if there exist matrices 𝑌 and𝑄 such that
the following LMIs are satisfied:

[

[

𝜒 ∗

𝑌
𝑇
𝑄

]

]

≥ 0, 𝜒
ℎℎ
≤ 𝑢
2

ℎ
, ℎ ∈ {1, 2, . . . , 𝑛

𝑢
} . (18)

Proof. By defining 𝜁
ℎ
as the ℎth row of the 𝑛

𝑢
-dimensional

identity matrix, we can see that

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝑢 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

= max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝐹𝑥 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤ max
𝑖≥0

󵄩
󵄩
󵄩
󵄩
𝜁
ℎ
𝐹𝑥 (𝑘 + 𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

.

(19)

Substituting 𝐹 = 𝑌𝑄
−1 leads to

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝑢 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤ max
𝑖≥0

󵄩
󵄩
󵄩
󵄩
󵄩
𝜁
ℎ
𝑌𝑄
−1
𝑥 (𝑘 + 𝑖 | 𝑘)

󵄩
󵄩
󵄩
󵄩
󵄩

2

. (20)

Since ‖𝑥(𝑘 + 𝑖 | 𝑘)‖2
𝑄
−1 ≤ 1, it is seen that

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
ℎ
𝑢 (𝑘 + 𝑖 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝜁
ℎ
𝑌𝑄
−1/2󵄩󵄩

󵄩
󵄩
󵄩

2

. (21)

The input constraint (10) is satisfied if

󵄩
󵄩
󵄩
󵄩
󵄩
𝜁
ℎ
𝑌𝑄
−1/2󵄩󵄩

󵄩
󵄩
󵄩

2

≤ 𝑢
2

ℎ
. (22)

By applying the Schur complement, (22) is equivalent to (18).

Proposition 5 (output constraint satisfaction). The output
constraint (11) is satisfied if there exist matrices 𝑌 and 𝑄 such
that the following LMIs are satisfied:

[

[

[

[

[

[

[

Γ

2

∗ ∗

(𝐴
𝑗
𝑄 + 𝐵

𝑗
𝑌)

𝑇

𝐶
𝑇
𝑄 ∗

𝐷
𝑇

𝑗
𝐶
𝑇

0 𝑃V

]

]

]

]

]

]

]

≥ 0,

Γ
𝑟𝑟
≤ 𝑦
2

𝑟
, 𝑟 ∈ {1, 2, . . . , 𝑛

𝑦
} , 𝑗 ∈ {1, 2, . . . , 𝑛

𝐴𝐵𝐷
} .

(23)

Proof. By defining 𝜁
𝑟
as the 𝑟th row of the 𝑛

𝑦
-dimensional

identity matrix, we can see that

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
𝑟
𝑦 (𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

= max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
𝑟
𝐶𝑥 (𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤ max
𝑖≥0

󵄩
󵄩
󵄩
󵄩
𝜁
𝑟
𝐶𝑥 (𝑘 + 𝑖 + 1 | 𝑘)

󵄩
󵄩
󵄩
󵄩

2

.

(24)

Substituting (7) and applying 𝐹 = 𝑌𝑄
−1 lead to

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
𝑟
𝑦 (𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤ max
𝑖≥0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜁
𝑟
𝐶 [(𝐴 (𝑘 + 𝑖) + 𝐵 (𝑘 + 𝑖) 𝑌𝑄

−1
) 𝐷 (𝑘 + 𝑖)]

×
[

[

𝑥 (𝑘 + 𝑖 | 𝑘)

V(𝑘 + 𝑖)
]

]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(25)

Since ‖𝑥(𝑘 + 𝑖 | 𝑘)‖2
𝑄
−1 ≤ 1 and ‖V(𝑘 + 𝑖 | 𝑘)‖2

𝑃V
≤ 1, it is seen

that

max
𝑖≥0

󵄨
󵄨
󵄨
󵄨
𝜁
𝑟
𝑦(𝑘 + 𝑖 + 1 | 𝑘)

󵄨
󵄨
󵄨
󵄨

2

≤ 2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜁
𝑟
𝐶 [(𝐴 (𝑘 + 𝑖) 𝑄 + 𝐵 (𝑘 + 𝑖) 𝑌) 𝐷 (𝑘 + 𝑖)]

× [

𝑄
−1/2

0

0 𝑃
−1/2

V
]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(26)
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The output constraint (11) is satisfied if

2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜁
𝑟
𝐶 [(𝐴 (𝑘 + 𝑖) 𝑄 + 𝐵 (𝑘 + 𝑖) 𝑌) 𝐷 (𝑘 + 𝑖)]

× [

𝑄
−1/2

0

0 𝑃
−1/2

V
]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝑦
2

𝑟
.

(27)

By applying the Schur complement, (27) is equivalent to (23).

4. An Off-Line Formulation of Robust MPC

By considering Propositions 3, 4, and 5, a state feedback con-
trol law that guarantees both robust stability and constraint
satisfaction can be calculated.

Theorem6. Consider the linear time-varying systems (1) to (5)
at each sampling time 𝑘; a state feedback control law 𝑢(𝑘 +

𝑖 | 𝑘) = 𝐹𝑥(𝑘 + 𝑖 | 𝑘), 𝐹 = 𝑌𝑄
−1, that guarantees

both robust stability and constraint satisfaction within a
positively invariant set 𝜀

𝑄
−1 is obtained by solving the following

optimization problem:

min
𝛾,𝑌,𝑄,𝜃

𝛾 (28)

s.t. (12) , (13) , (18) , (23) (29)

Proof. The proof follows Propositions 3, 4, and 5.

The optimization problem (28) can be solved by LMI
techniques and line search of 𝜃 over the interval (0, 1). How-
ever, it is computationally demanding to solve the optimiza-
tion problem (28) at each sampling time. Inspired byWan and
Kothare [20], we propose an off-line robust MPC algorithm
that solves the optimization problem off-line.

Algorithm 7.

Off-Line. Choose a sequence of states 𝑥
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁}. For

each 𝑖, substitute 𝑥(𝑘) in (13) by 𝑥
𝑖
and solve the optimization

problem (28) to obtain a sequence of state feedback gains
𝐹
𝑖
and a sequence of positively invariant sets 𝜀

𝑄
−1

𝑖

= {𝑥 ∈

R𝑛𝑥/𝑥𝑇𝑄−1
𝑖
𝑥 ≤ 1}. Then, store 𝐹

𝑖
and 𝑄−1

𝑖
in a look-up table.

Remark 8. A sequence of states 𝑥
𝑖
, 𝑖 ∈ {1, 2, . . . , 𝑁} should be

chosen such that the positively invariant sets 𝜀
𝑄
−1

𝑖

obtained
from solving the optimization problem (28) are nested
(𝜀
𝑄
−1

𝑖+1

⊂ 𝜀
𝑄
−1

𝑖

, 𝑄
−1

𝑖+1
> 𝑄
−1

𝑖
, ∀𝑖 ̸=𝑁). This is to guarantee that

the state of the process is kept within 𝜀
𝑄
−1

𝑖

and driven towards
𝜀
𝑄
−1

𝑖+1

, and so on. For the ease of implementation, we can
choose an arbitrary one-dimensional subspace and discretize
it to construct a set of discrete points.

Remark 9. The number of the chosen states 𝑁 (or, equiva-
lently, the number of the positively invariant sets) affects the
control performance. Although the state feedback gain 𝐹

𝑖
can

guarantee robust stability, it is not necessary to keep this state

feedback gain constant. By increasing 𝑁, the control perfor-
mance is improved due to the fact that we havemore freedom
to adopt varying feedback gains based on the distance
between the state and the origin. A larger 𝑁 implies better
control performance at the price of a higher off-line compu-
tational load so a suitable tradeoff is required in practice.

On-Line. At each sampling time 𝑘, measure the state 𝑥(𝑘).
Then, perform a bisection search over 𝑄

−1

𝑖
in the look-

up table to find the largest 𝑖 such that 𝑥(𝑘)𝑇𝑄−1
𝑖
𝑥(𝑘) ≤

1 or, equivalently, the smallest positively invariant set 𝜀
𝑄
−1

𝑖

containing the measured state 𝑥(𝑘). Apply the corresponding
state feedback control law 𝑢(𝑘) = 𝐹

𝑖
𝑥(𝑘) to the process.

The satisfaction of (9) for each 𝐹
𝑖
ensures robust stability

within a positively invariant set 𝜀
𝑄
−1

𝑖

. Given an initial state
satisfying 𝑥(0)𝑇𝑄−1

1
𝑥(0) ≤ 1, robust stability is ensured by

applying Algorithm 7.

5. Examples

The numerical simulations have been performed in Intel
Core 2 Duo (2.53GHz), 2 GB RAM, using SeDuMi [23] and
YALMIP [24] within the Matlab R2008a environment.

Example 1. Thefirst example is an angular positioning system
adapted from Kothare et al. [6]. The system consists of an
electric motor driving a rotating antenna so that it always
points in the direction of a moving object. The motion of
the antenna can be described by the following linear time-
varying system:

[

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

] = [

1 0.1

0 1 − 0.1Δ (𝑘)
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

]

+ [

0

0.0787
] 𝑢 (𝑘) + [

0.15

0.15
] V (𝑘) ,

𝑦 (𝑘) = [

1 0

0 0
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

] ,

(30)

where 𝑥
1
(𝑘) is the angular position of the antenna, 𝑥

2
(𝑘) is

the angular velocity of the antenna, 𝑢(𝑘) is the input voltage
to the motor, Δ(𝑘) is the uncertain time-varying parameter
which is proportional to the coefficient of viscous friction in
the rotating parts, and V(𝑘) is the disturbance acting on the
system. Since 0.1 ≤ Δ(𝑘) ≤ 10, we can see that

𝐴 (𝑘) ∈ Co {𝐴
1
, 𝐴
2
} , (31)

where

𝐴
1
= [

1 0.1

0 0.99
] , 𝐴

2
= [

1 0.1

0 0
] . (32)

The objective is to robustly stabilize 𝑥
1
(𝑘) by manipulating

𝑢(𝑘). The input constraint is |𝑢(𝑘)| ≤ 2 volts. The symmetric
weighting matrices in (9) are

Ψ = [

1 0

0 0
] , 𝜎 = 0.00002. (33)

A sampling period is 0.1 s.
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Figure 1: The positively invariant sets computed off-line in Example 1.
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Figure 2: The closed-loop responses of the system in Example 1 (a) regulated output and (b) control input.
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Figure 1 shows the positively invariant sets 𝜀
𝑄
−1

𝑖

, 𝑖 =

{1, 2, . . . , 8}, computed off-line by Algorithm 7. In this
example, the values of state feedback gains 𝐹

𝑖
are almost

constant beyond 𝑖 = 8 so only eight positively invariant sets
are computed off-line.

Figure 2 shows the closed-loop responses of the system
when the uncertain time-varying parameter is varied as
Δ(𝑘) = 4.95 sin(0.1𝑘) + 5.05 and the disturbance is varied as
V(𝑘) = 0.3 sin(0.1𝑘), 0.2 sin(0.1𝑘), and 0.1 sin(0.1𝑘), respec-
tively. It can be observed that 𝑥

1
and 𝑥

2
are bounded for all

values of uncertain time-varying parameter and disturbance
so robust stability is ensured by applying Algorithm 7. The
off-line computational time is 2.938 sec. The on-line compu-
tational time is very small (<0.001 sec per sampling period)
since all of the optimization problems are solved off-line.

Example 2. Consider the following linear time-varying sys-
tem adapted fromMayne et al. [25]:

[

𝑥
1
(𝑘 + 1)

𝑥
2
(𝑘 + 1)

] = [

1 1

0 1
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

] + [

1

1
] 𝑢 (𝑘) + [

1

1
] V (𝑘)

𝑦 (𝑘) = [

1 0

0 1
] [

𝑥
1
(𝑘)

𝑥
2
(𝑘)

] ,

(34)

where V(𝑘) = 0.1 sin(0.1𝑘) is the disturbance acting on the
system. The objective is to robustly stabilize 𝑥

1
(𝑘) and 𝑥

2
(𝑘)

by manipulating 𝑢(𝑘). The input constraint is |𝑢(𝑘)| ≤ 3. The
symmetric weighting matrices in (9) are

Ψ = [

1 0

0 1
] , 𝜎 = 0.01. (35)

Figure 3 shows the positively invariant sets 𝜀
𝑄
−1

𝑖

, 𝑖 =

{1, 2, . . . , 9}, computed off-line by Algorithm 7. In this exam-
ple, the values of state feedback gains 𝐹

𝑖
are almost constant

beyond 𝑖 = 9, so only nine positively invariant sets are
computed off-line.

Figure 4 shows the state trajectories evolving from the
initial point (1.6, −1.6). It can be observed that Algorithm 7
gives nearly the same control performance asTheorem 6 (on-
line algorithm) while no optimization problems need to be
solved on-line. This is due to the fact that, for the proposed
off-line algorithm, the state feedback gain is updated at each
sampling time based on the distance between the measured
state and the origin.

6. Conclusions

In this research, we have presented an off-line robust con-
strained MPC algorithm for linear time-varying systems.
Both model uncertainty and bounded additive disturbance
are explicitly taken into account in the off-line formulation
of MPC. All of the optimization problems are solved off-line
so the proposed MPC algorithm is applicable to fast systems.
Robust stability and constraint satisfaction are guaranteed by
applying the proposed algorithm.
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Figure 3: The positively invariant sets computed off-line in
Example 2.
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Figure 4: The state trajectories in Example 2.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research project is supported by Mahidol University.

References

[1] J. H. Lee, “Model predictive control: review of the three decades
of development,” International Journal of Control, Automation
and Systems, vol. 9, no. 3, pp. 415–424, 2011.

[2] W.Al-Gherwi,H. Budman, andA. Elkamel, “Robust distributed
model predictive control: a review and recent developments,”
Canadian Journal of Chemical Engineering, vol. 89, no. 5, pp.
1176–1190, 2011.

[3] J. B. Rawlings andD.Q.Mayne,Model Predictive Control:Theory
and Design, Nob Hill, Madison, Wis, USA, 1st edition, 2009.

[4] S. J. Qin and T. A. Badgwell, “A survey of industrial model
predictive control technology,”Control Engineering Practice, vol.
11, no. 7, pp. 733–764, 2003.



8 Mathematical Problems in Engineering

[5] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert,
“Constrained model predictive control: stability and optimal-
ity,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[6] M. V. Kothare, V. Balakrishnan, and M. Morari, “Robust con-
strained model predictive control using linear matrix inequali-
ties,” Automatica, vol. 32, no. 10, pp. 1361–1379, 1996.

[7] S. Boyd andL.Vandenberghe,ConvexOptimization, Cambridge
University Press, Cambridge, Cambridge, Mass, USA, 1st edi-
tion, 2004.

[8] W.-J. Mao, “Robust stabilization of uncertain time-varying
discrete systems and comments on an improved approach for
constrained robust model predictive control,” Automatica, vol.
39, no. 6, pp. 1109–1112, 2003.

[9] N. Wada, K. Saito, and M. Saeki, “Model predictive control for
linear parameter varying systems using parameter dependent
Lyapunov function,” IEEE Transactions on Circuits and Systems,
vol. 53, no. 12, pp. 1446–1450, 2006.

[10] A. C. Brooms, B. Kouvaritakis, and Y. I. Lee, “ConstrainedMPC
for uncertain linear systems with ellipsoidal target sets,” Systems
& Control Letters, vol. 44, no. 3, pp. 157–166, 2001.

[11] Y. I. Lee and B. Kouvaritakis, “Robust receding horizon pre-
dictive control for systems with uncertain dynamics and input
saturation,” Automatica, vol. 36, no. 10, pp. 1497–1504, 2000.

[12] J. A. Rossiter, B. Kouvaritakis, and M. Bacic, “Interpolation
based computationally efficient predictive control,” Interna-
tional Journal of Control, vol. 77, no. 3, pp. 290–301, 2004.

[13] B. Pluymers, J. A. Rossiter, J. A. K. Suykens, and B. De Moor,
“The efficient computation of polyhedral invariant sets for
linear systems with polytopic uncertainty,” in Proceedings of the
American Control Conference (ACC ’05), pp. 804–809, Portland,
Ore, USA, June 2005.

[14] P. Bumroongsri and S. Kheawhom, “An off-line robust MPC
algorithm for uncertain polytopic discrete-time systems using
polyhedral invariant sets,” Journal of Process Control, vol. 22, no.
6, pp. 975–983, 2012.

[15] A. Luca, P. Rodriguez-Ayerbe, D. Dumur, and P. Lefranc,
“Invariant sets techniques for Buck DC-DC converter control,”
in Proceedings of the 11th International Conference on Control,
Automation, Robotics and Vision (ICARCV ’10), pp. 1917–1922,
December 2010.

[16] A. Luca, P. Rodriguez-Ayerbe, D. Dumur, and P. Lefranc, “Buck
DC-DC converter control using invariant sets techniques,” in
Proceedings of the 15th IEEE Mediterranean Electrotechnical
Conference (MELECON ’10), pp. 184–189, April 2010.

[17] W. Langson, I. Chryssochoos, S. V. Raković, and D. Q. Mayne,
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