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In a real world application, we seldom get all images at one time. Considering this case, if a company hired an employee, all his
images information needs to be recorded into the system; if we rerun the face recognition algorithm, it will be time consuming. To
address this problem, In this paper, firstly, we proposed a novel subspace incremental method called incremental graph regularized
nonnegative matrix factorization (IGNMF) algorithm which imposes manifold into incremental nonnegative matrix factorization
algorithm (INMF); thus, our new algorithm is able to preserve the geometric structure in the data under incremental study
framework; secondly, considering we always get many face images belonging to one person or many different people as a batch,
we improved our IGNMF algorithms to Batch-IGNMF algorithms (B-IGNMF), which implements incremental study in batches.
Experiments show that (1) the recognition rate of our IGNMF and B-IGNMF algorithms is close to GNMF algorithm while it
runs faster than GNMF. (2) The running times of our IGNMF and B-IGNMF algorithms are close to INMF while the recognition
rate outperforms INMF. (3) Comparing with other popular NMF-based face recognition incremental algorithms, our IGNMF and
B-IGNMF also outperform then both the recognition rate and the running time.

1. Introduction

Nonnegative matrix factorization (NMF) is a widely used
method for low-rank approximation of a nonnegative matrix
(matrix with only nonnegative entries), where nonnegative
constraints are imposed on factor matrices in the decom-
position. There are large bodies of past work on NMF [1].
Lee and Seung [2, 3] proposed NMF for learning parts of
faces, and in their work the reconstruction error function
𝐹(𝑈,𝑉) is introduced: 𝐹(𝑈,𝑉) = ‖𝑋 − 𝑈𝑉‖2

𝐹
, where 𝑋

denotes the data matrix, 𝑈 can be considered as the basic
matrix, and 𝑉 can be considered as the coefficient matrix; all
elements of 𝑋, 𝑈, and 𝑉 are nonnegative. Sparse coding is
a famous parts-based representation method, by minimizing
a 𝐿
1
regularization-related objective function of NMF-based

algorithms, sparse constraints can be achieved. Hoyer [4]
proposed a method by keeping 𝐿

2
norm unchanged in each

iteration, but 𝐿
1
norm set to achieve desired sparseness. Li

et al. [5] proposed another sparse representation method
which focused on sparse NMF algorithm with Kullback-
Leibler based cost function. Discrimination method was also

introduced into NMF algorithm. Wang et al. [6] proposed
a Fisher nonnegative matrix factorization which introduces
Fisher constraint (discrimination) method into NMF algo-
rithm. later, Nikitidis et al. [7] introduced subclass discrim-
inant into NMF algorithm, by separating each class into
several subclasses; this method was able to ensure that the
underlying data distribution in each subclass is unimodal.
Because the convergence of canonical NMF algorithms is
slow, gradient descent based methods are introduced to
NMF to improve its speed of convergence. Guan et. al
[8] applied Nesterov’s optimal gradient method to alterna-
tively optimize one factor with another. By introducing fast
gradient descent method into search of the optimal step
size for gradient descent based NMF algorithm, Guan et
al. [9] introduced nonnegative patch alignment framework
(NPAF) and nonnegative discriminative locality alignment
(NDLA). Canonical NMF algorithm aims to minimize the
Euclidean distance or the Kullback-Leibler distance between
the data matrix 𝑋 and its reconstruction matrix 𝑈 × 𝑉.
By introducing Manhattan distance into NMF algorithm,
Guan et al. [10] introduced Manhattan nonnegative matrix
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factorization (MahNMF), then rank-one residual iteration
method and Nesterov’s smoothing method are both intro-
duced to optimizing MahNMF.The geometrical information
of the original data space is an important information for
face recognition. Zhang et al. [11] proposed a novel topology
preserving nonnegativematrix factorization (TPNMF)which
considers the gradient distance instead of the Euclidean
distance or the Kullback-Leibler distance. By constructing
the intrinsic and penalty graphs, Liu et al. [12] proposed
the projective nonnegative graph embedding (PNGE). Cai
et al. [13] proposed graph regularized nonnegative matrix
factorization (GNMF) algorithm for face recognition. GNMF
imposes manifold into NMF, which makes it able to preserve
geometric structure of data after it maps the original image
into low dimension space.

NMF-based algorithms are notoriously slow to converge.
In practice, if new image comes, algorithm needs to rerun
which is time consuming. To address this problem, incre-
mental process used for online study has attracted a lot of
attention. During an incremental study process of NMF, once
a factorization, such as 𝑈 and 𝑉 which mentioned above, is
obtained for a group of face images, the representation of 𝑈
should be updated with a small computational cost, but the
canonical NMF andmany other algorithms are too expensive
to compute𝑈 and𝑉 every time when new face image comes.
Bucak and Gunsel [14] introduced an Incremental nonnega-
tive matrix factorization algorithm (INMF), which imposes
NMF into incremental study. This makes it possible to repre-
sent data content online and reduce dimension significantly.
Chen et al. [15] proposed another incremental nonnegative
matrix factorization (INMF) for face representation and
recognition. In order to distinguish Chen’s algorithms [15]
from Bucak and Gunsel’s [14], we called Chen’s algorithms
CINMF. There are two main differences between CINMF
and INMF: first, INMF is an unsupervised method while
CINMF is a supervised method; second, INMF can only
deal with one new image while CINMF can only deal with a
batch of images which belong to a new class. Wang and Lu
[16] introduced an incremental orthogonal projective non-
negative matrix factorization algorithm (IOPNMF) which
introduced orthogonal projective constraint into incremental
NMF. Lefèvre et al. [17] introduced incremental study into
Itakura-Saito NMF algorithm; the Istakura-Saito divergence
was defined as 𝑑IS(𝑦, 𝑥) = ∑𝑖(𝑦𝑖/𝑥𝑖 − log𝑦

𝑖
/𝑥
𝑖
− 1). The

proposed algorithm is used in the field of audio source
separation. Guan et al. [18] proposed an efficient online
RSA-NMF algorithm. RSA-NMF is a NMF algorithm based
which introduces Robust Stochastic approximation (RSA)
to optimize NMF algorithm. Benefiting from the smartly
chosen learnig rate and averaging technique, online RSA-
NMF algorithm converges at the rate of 𝑂(1/√𝑘) in each
update of the bases. laterGuan et al. also gave some extensions
on the proposed online RSA-NMF algorithm. Cao et al.
[19] introduced an online NMF algorithm. Once we get the
factorization of𝑋 as𝑈×𝑉, by separating the new datamatrix
𝑋, and the new coefficient matrix 𝑉 into two corresponding
parts, the inequation can be rewritten as [𝑋 x] ≈ 𝑈 ×
[𝑉
 k]; every iteration, [𝑉 k], can be recomputed with

a small computation cost while 𝑈 can be recomputed as
𝑈

= 𝑈 × (𝑉


)
−1; obviously there is an assumption that

𝑋 ≈ 𝑈×𝑉 are full-rank decompositions and 𝑉 is invertible.
Although the incremental algorithms we mentioned

above dramatically reduce the cost of incremental study,
they did not consider the geometrical information of the
original data space on the original manifold.The geometrical
information of the original data space is an important
information for face recognition [20, 21]. Data set often lay in
a high dimensionmanifold, so the intrinsic geodesic distance
in the manifold between two data points is more suitable
than Euclidean distance. Thus, in this paper, By introducing
manifold into Incremental nonnegative matrix factorization
algorithm (INMF), first, we propose a new incremental study
algorithm called incremental graph regulated nonnegative
matrix factorization (IGNMF). Second, as human face images
always come in batches, we improve our IGNMF algorithms
to Batch-IGNMF algorithms (B-IGNMF). The contributions
of the research presented in this paper are as follows.

(1) We propose a novel subspace incremental method
called incremental graph regularized nonnegative
matrix factorization algorithm (IGNMF), which is
able to preserve discrimination information under
incremental study framework.

(2) We further improve our IGNMF algorithms, thus
developing Batch-IGNMF (B-IGNMF), which is able
to perform incremental study with image batches no
mater whether the batch of images belongs to the
same class or different classes.

The remainder of this paper is organized as follows.
Section 2 introduces the GNMF algorithm and INMF algo-
rithm. Section 3 presents our IGNMF and B-IGNMF algo-
rithms. Experiments on face databases are reported in
Section 4. Section 5 concludes the paper.

2. A Brief Review of GNMF and INMF

In this section, we will give a brief review on graph reg-
ularized nonnegative matrix factorization (GNMF) which
was proposed by Cai et al. [13] and incremental nonnegative
matrix factorization algorithm (INMF) which was proposed
by Bucak and Gunsel [14]; both algorithms are closely related
to our new proposed algorithms.

2.1. GNMF. The geometrical information of the original data
space is an important information for face recognition [20,
21]; data set often lay in a high dimension manifold, so the
intrinsic geodesic distance in the manifold between two data
points is more suitable than Euclidean distance. Thus in this
section, we will give a brief review on graph regularized NMF
(GNMF) [13].

Given a datamatrix𝑋 = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
] ∈ R𝑛×𝑘, there are

total 𝑘 face image vectors and 𝑥
𝑖
(1 ⩽ 𝑖 ⩽ 𝑘) denotes a vector

of 𝑛-dimensional facial image, 𝑈 ∈ R𝑛×𝑟 and 𝑉 ∈ R𝑟×𝑘, so
the objective function 𝐹(𝑈,𝑉) for GNMF is defined as (1);
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by minimizing 𝐹(𝑈,𝑉) a factorization, 𝑈 and 𝑉 in GNMF, is
obtained:

𝐹 = ‖𝑋 − 𝑈𝑉‖
2

𝐹
+ 𝜆Tr (𝑉𝐿𝑉𝑇) . (1)

In the above equation 𝐹 = ‖ ⋅ ‖2
𝐹
denotes the matrix

Frobenius norm [2]; Tr(⋅) denotes the trace of a matrix; 𝜆 > 0
is the regularization parameter; 𝐿 is called graph Laplacian
[22]; 𝐿 = 𝐷 − 𝑊, where𝑊 is the weight matrix,𝑊

𝑖𝑗
= 1 if

𝑥
𝑖
∈ 𝑁
𝑝
(𝑥
𝑗
), and 𝐷 is a diagonal matrix and 𝐷

𝑖𝑖
= ∑
𝑗
𝑊
𝑖𝑗
.

There are two methods to define𝑊 [13, 22].

(1) Supervised method is achieved by defining 𝑥
𝑖
∈

𝑁
𝑝
(𝑥
𝑗
) if 𝑥
𝑖
and 𝑥

𝑗
belong to the same class.

(2) Unsupervised method is achieved by defining𝑁
𝑝
(𝑥
𝑖
)

as the set of 𝑝 nearest neighbors of 𝑥
𝑖
under the

Euclidean distance.

The iterative update algorithm proposed by Cai et al. [13]
is as follows (2):

𝑈
𝑡+1

𝑖𝑗
= 𝑈
𝑡

𝑖𝑗
⋅

(𝑋𝑉
𝑇
)
𝑖𝑗

(𝑈𝑉𝑉𝑇)
𝑖𝑗

𝑉
𝑡+1

𝑖𝑗
= 𝑉
𝑡

𝑖𝑗
⋅

(𝑈
𝑇
𝑋 + 𝜆𝑉𝑊)

𝑖𝑗

(𝑉𝑇𝑈𝑇𝑈 + 𝜆𝑉𝐷)
𝑖𝑗

,

(2)

where 𝑈
𝑖𝑗
and 𝑉

𝑖𝑗
are the elements of 𝑈 and 𝑉, respectively.

2.2. INMF. Incremental nonnegative factorization (INMF)
[14] is a popular incremental study algorithm which is NMF-
based. Considering the canonical reconstruction inequation
of NMF algorithm as 𝑋 ≈ 𝑈 × 𝑉, and each column of
both sides is 𝑋

𝑖
≈ 𝑈 × 𝑉

𝑖
; from this inequation we can

find that if we consider each column of the matrix 𝑈 as the
building block of the database and𝑉

𝑖
can be considered as the

reconstruction coefficient matrix, by summing each building
block of 𝑈 under the coefficient matrix 𝑉

𝑖
, original image 𝑋

𝑖

will be approximately reconstructed [2, 3].
Every time when new image x comes, the inequation of

the reconstruction function will become [𝑋 x] ≈ 𝑈×[𝑉 k];
by assuming that the previous coefficient matrix𝑉would not
change during the incremental process, the computation cost
will be reduced significantly.

If we defined the 𝐹
𝑘
as the cost function corresponding to

the NMF as (3) where 𝑘 denotes the total number of samples
before incremental study, then

𝐹
𝑘
= ‖𝑋 − 𝑈𝑉‖

2
=

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[(𝑋
𝑘
)
𝑖𝑗
− (𝑈
𝑘
𝑉
𝑘
)
𝑖𝑗
]
2

. (3)

Everytime, when the (𝑘 + 1)th sample x arrives, the
corresponding cost function 𝐹

𝑘+1
can be defined as (4)

𝐹
𝑘+1
=

𝑛

∑

𝑖=1

𝑘+1

∑

𝑗=1

[(𝑋
𝑘+1
)
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

. (4)

Note 𝐹
𝑘+1

can be separated into two parts as follows:

𝐹
𝑘+1
=

𝑛

∑

𝑖=1

𝑘+1

∑

𝑗=1

[(𝑋
𝑘+1
)
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

=

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[(𝑋
𝑘+1
)
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

+

𝑛

∑

𝑖=1

[x − (𝑈
𝑘+1

k)
𝑖,𝑘+1
]
2

,

(5)

where x and k can be considered as the new coming image
and its corresponding coefficient vector. By assuming that the
first 𝑘 columns of𝑉

𝑘+1
would not change after the incremental

study, the first part of (5) can be rewritten as
𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[(𝑋
𝑘+1
)
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

≈ 𝐹
𝑘
=

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[(𝑋
𝑘
)
𝑖𝑗
− (𝑈
𝑘
𝑉
𝑘
)
𝑖𝑗
]
2

.

(6)

So 𝐹
𝑘+1

can be rewritten as

𝐹
𝑘+1
= 𝐹
𝑘
+

𝑛

∑

𝑖=1

[x − (𝑈
𝑘+1

k)
𝑖,𝑘+1
]
2

= 𝐹
𝑘
+ 𝑓. (7)

Considering that 𝐹
𝑘
is the function which is independent

of V
𝑖
, the partial derivative of 𝜕𝐹

𝑘
/k
𝑖
= 0. Thus the

partial derivative of 𝜕𝐹
𝑘+1
/k
𝑖
(= 𝜕𝑓/k

𝑖
) and 𝜕𝐹

𝑘+1
/𝑈
𝑖𝑗
can be

deduced.Then the update rule of k
𝑖
and𝑈

𝑖𝑗
can be formulated

within the framework of gradient descent algorithm.
In order to save space, here we just list the iterative update

algorithms of INMF in (8):

k
𝑖
← k
𝑖
⋅

(𝑈
𝑇

𝑘+1
x)
𝑖

(𝑈
𝑇

𝑘+1
𝑈
𝑘+1

k)
𝑖

,

(𝑈


𝑘+1
)
𝑖𝑎
← (𝑈

𝑘+1
)
𝑖𝑎
⋅

(𝑋
𝑘
𝑉
𝑇

𝑘
+ 𝑋
𝑘+1

k𝑇)
𝑖𝑎

(𝑈
𝑘+1
𝑈
𝑘
𝑉
𝑇

𝑘
+ 𝑈
𝑘+1

kk𝑇)
𝑖𝑎

.

(8)

3. IGNMF and B-IGNMF

Bucak and Gunsel [14] introduced an incremental nonnega-
tive matrix factorization algorithm (INMF) which imposed
the NMF algorithm into incremental study, so INMF inherits
the disadvantage of the NMF algorithm; that is, it does not
consider the geometric structure in the data. In this section,
we introduced an incremental graph regularized nonnegative
matrix factorization algorithm (IGNMF), in which manifold
is introduced to overcome this limitation.

3.1. IGNMF. Let 𝑋
𝑘
, 𝑈
𝑘
, 𝑉
𝑘
, 𝐿
𝑘
, and 𝐹

𝑘
denote the corre-

sponding 𝑋, 𝑈, 𝑉, 𝐿, and 𝐹(𝑈,𝑉) in (1) under the initial 𝑘
samples, so the objective function 𝐹

𝑘
can be rewriten as

𝐹
𝑘
=

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[(𝑋
𝑘
)
𝑖𝑗
− (𝑈
𝑘
𝑉
𝑘
)
𝑖𝑗
]
2

+ 𝜆Tr (𝑉
𝑘
𝐿
𝑘
𝑉
𝑇

𝑘
) . (9)



4 Journal of Applied Mathematics

Let 𝑋
𝑘+1

, 𝑈
𝑘+1

, 𝑉
𝑘+1

, 𝐿
𝑘+1

, and 𝐹
𝑘+1

denote the corre-
sponding 𝑋, 𝑈, 𝑉, 𝐿, and 𝐹(𝑈,𝑉) in (1) when the (𝑘 + 1)th
sample arrives. So objective function 𝐹

𝑘+1
can be rewriten as

𝐹
𝑘+1

=

𝑛

∑

𝑖=1

𝑘+1

∑

𝑗=1

[(𝑋
𝑘+1
)
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

+ 𝜆Tr (𝑉
𝑘+1
𝐿
𝑘+1
𝑉
𝑇

𝑘+1
) .

(10)

𝑈 can be considered as the basic matrix and 𝑉 can be
considered as the coefficient matrix, so the reconstruction
process can be thought as adding columns of matrix𝑈 under
the coefficient matrix 𝑉

𝑖
, just as 𝑋

𝑖
≈ 𝑈 × 𝑉

𝑖
[3]. Thus we

make the assumption that during the incremental process,
when the (𝑘 + 1)th sample arrives, the first 𝑘 columns of 𝑉

𝑘+1

does not change, which means the fist 𝑘 columns of 𝑉
𝑘+1

is
approximately equal to 𝑉

𝑘
. This assumption would reduce

the computation cost significantly. Experiments show that
IGNMFwould iterate less than 5 times and then the objective
function converges to its minimal value, because we just need
to update the last column of𝑉

𝑘+1
meanwhile𝑈

𝑘+1
needs to be

updated completely which will dramatically reduce the cost
of incremental study. For more details about this assumption,
please refer to [14].

Assuming 𝐹𝑘
𝑘+1

refers to the objective function corre-
sponding to GNMF representation of the first 𝑘 sample
when the (𝑘 + 1)th sample arrives, 𝐿𝑘

𝑘+1
refers to the 𝑘 × 𝑘

dimensional matrix which equals the first 𝑘 rows and first
𝑘 columns of 𝐿

𝑘+1
, and 𝑟 is a predefined parameter which

indicates that the 𝑛-dimensional facial image vector maps in
to an 𝑟-dimensional vector. So 𝐹𝑘

𝑘+1
can be rewritten as

𝐹
𝑘

𝑘+1
=

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

+ 𝜆

𝑟

∑

𝑙=1

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

(𝑉
𝑘+1
)
𝑙𝑖
(𝐿
𝑘

𝑘+1
)
𝑖𝑗
(𝑉
𝑇

𝑘+1
)
𝑗𝑙

≈

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘
)
𝑖𝑗
]
2

+ 𝜆

𝑟

∑

𝑙=1

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

(𝑉
𝑘
)
𝑙𝑖
(𝐿
𝑘

𝑘+1
)
𝑖𝑗
(𝑉
𝑇

𝑘
)
𝑗𝑙
.

(11)

Consequently, objective function 𝐹
𝑘+1

can be rewriten as
follows:

𝐹
𝑘+1
=

𝑛

∑

𝑖=1

𝑘+1

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

+ 𝜆

𝑟

∑

𝑙=1

𝑘+1

∑

𝑖=1

𝑘+1

∑

𝑗=1

(𝑉
𝑘+1
)
𝑙𝑖
(𝐿
𝑘+1
)
𝑖𝑗
(𝑉
𝑇

𝑘+1
)
𝑗𝑙

≈

𝑛

∑

𝑖=1

𝑘

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘
)
𝑖𝑗
]
2

+ 𝜆

𝑟

∑

𝑙=1

𝑘

∑

𝑖=1

𝑘

∑

𝑗=1

(𝑉
𝑘
)
𝑙𝑖
(𝐿
𝑘

𝑘+1
)
𝑖𝑗
(𝑉
𝑇

𝑘
)
𝑗𝑙

+

𝑛

∑

𝑖=1

[x − (𝑈
𝑘+1

k)
𝑖
]
2

+ 𝜆

𝑟

∑

𝑙=1

{

{

{

k2(𝐿
𝑘+1
)
𝑘+1,𝑘+1

+

𝑘

∑

𝑗=1

[2k(𝑉
𝑘
)
𝑙𝑗
(𝐿
𝑘+1
)
𝑗,𝑘+1
]

}

}

}

= 𝐹
𝑘

𝑘+1
+ 𝑓
𝑘+1
,

(12)

where xmeans the new coming facial vector and kmeans the
coefficient vector corresponding to x.

After constructing the objective function given by (12),
gradient descent optimization that yields IGNMF can be
performed.The update rule of k can be formulated within the
framework of gradient descent algorithm as follows:

k
𝑎
← k
𝑎
− 𝜇
𝑎
⋅
𝜕𝐹
𝑘+1

𝜕k
𝑎

. (13)

In (13), 𝜕𝐹
𝑘+1
/𝜕k
𝑎
is the partial derivative of 𝐹

𝑘+1
with

respect to k
𝑎
and 𝜕𝐹

𝑘+1
/𝜕k
𝑎
= 𝜕𝐹
𝑘

𝑘+1
/𝜕k
𝑎
+𝜕𝑓
𝑘+1
/𝜕k
𝑎
, because

𝐹
𝑘

𝑘+1
is the functionwhich is not relevant to k

𝑎
, so 𝜕𝐹𝑘

𝑘+1
/𝜕k
𝑎
=

0, and we just need to compute the partial derivative of 𝑓
𝑘+1

:

𝜕𝐹
𝑘+1

𝜕k
𝑎

=
𝜕𝐹
𝑘

𝑘+1

𝜕k
𝑎

+
𝜕𝑓
𝑘+1

𝜕k
𝑎

=
𝜕

𝜕k
𝑎

{{

{{

{

𝑛

∑

𝑖=1

[x − (𝑈
𝑘+1

k)
𝑖
]
2

+ 𝜆

𝑟

∑

𝑙=1

[
[

[

k2(𝐿
𝑘+1
)
𝑘+1,𝑘+1

+

𝑘

∑

𝑗=1

[2k(𝑉
𝑘
)
𝑙𝑗
(𝐿
𝑘+1
)
𝑗,𝑘+1
+ (𝑉
𝑘
)
2

𝑗,𝑘+1
(𝑊
𝑘+1
)
𝑙,𝑘+1
]

]
]

]

}}

}}

}

= 2[−𝑈
𝑇

𝑘+1
x + 𝑈𝑇
𝑘+1
𝑈
𝑘+1

k + 𝜆k(𝐿
𝑘+1
)
𝑘+1,:
]
𝑎
.

(14)
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𝜇
𝑎
is the step size and is calculated by

𝜇
𝑎
=

k
𝑎

2[𝑈
𝑇

𝑘+1
𝑈
𝑘+1

k + 𝜆 ⋅ k(𝐷
𝑘+1
)
𝑘+1,:
]
𝑎

, (15)

where (𝐿
𝑘+1
)
𝑘+1,:

, (𝐷
𝑘+1
)
𝑘+1,:

and (𝑊
𝑘+1
)
𝑘+1,:

are vectorswhich
are equal to the (𝑘 + 1)th row of 𝐿

𝑘+1
, 𝐷
𝑘+1

and 𝐷
𝑘+1

,
respectively.

After substituting (14) and (15) into (13), The update rule
equation for k

𝑎
yields as

k
𝑎
← k
𝑎
⋅

[𝑈
𝑇

𝑘+1
x + 𝜆 ⋅ k(𝑊

𝑘+1
)
𝑘+1,:
]
𝑎

[𝑈
𝑇

𝑘+1
𝑈
𝑘+1

k + 𝜆 ⋅ k(𝐷
𝑘+1
)
𝑘+1,:
]
𝑎

. (16)

The update rule of (𝑈
𝑘+1
)
𝑖𝑎
can also be formulated within

the framework of gradient descent algorithm as

(𝑈


𝑘+1
)
𝑖𝑎
← (𝑈

𝑘+1
)
𝑖𝑎
− 𝜂
𝑖𝑎
⋅
𝜕𝐹
𝑘+1

𝜕(𝑈
𝑘+1
)
𝑖𝑎

. (17)

In (17), 𝜕𝐹
𝑘+1
/𝜕(𝑈
𝑘+1
)
𝑖𝑎
is the partial derivative of 𝐹

𝑘+1
with

respect to (𝑈
𝑘+1
)
𝑖𝑎
and is given as

𝜕𝐹
𝑘+1

𝜕(𝑈
𝑘+1
)
𝑖𝑎

=
𝜕

𝜕(𝑈
𝑘+1
)
𝑖𝑎

{

{

{

𝑛

∑

𝑖=1

𝑘+1

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

+ 𝜆

𝑟

∑

𝑙=1

𝑘+1

∑

𝑖=1

𝑘+1

∑

𝑗=1

(𝑉
𝑘+1
)
𝑙𝑖
(𝐿
𝑘+1
)
𝑖𝑗
(𝑉
𝑇

𝑘+1
)
𝑗𝑙

}

}

}

=
𝜕

𝜕(𝑈
𝑘+1
)
𝑖𝑎

𝑛

∑

𝑖=1

𝑘+1

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
]
2

= 2

𝑘+1

∑

𝑗=1

[−𝑋
𝑖𝑗
(𝑈
𝑘+1
)
𝑎𝑗
+ (𝑉
𝑘+1
)
𝑎𝑗
(𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
] .

(18)

𝜂 is the step size and is calculated by

𝜂
𝑖𝑎
=

(𝑈
𝑘+1
)
𝑖𝑎

2∑
𝑘+1

𝑗=1
(𝑈
𝑘+1
𝑉
𝑘+1
)
𝑖𝑗
𝑉
𝑇

𝑗𝑎

. (19)

After substituting (18) and (19) into (17), The update rule
equation for (𝑈

𝑘+1
)
𝑖𝑎
yields as

(𝑈


𝑘+1
)
𝑖𝑎
← (𝑈

𝑘+1
)
𝑖𝑎
⋅

(𝑋
𝑘
𝑉
𝑇

𝑘
+ 𝑋
𝑘+1

k𝑇)
𝑖𝑎

(𝑈
𝑘+1
𝑈
𝑘
𝑉
𝑇

𝑘
+ 𝑈
𝑘+1

kk𝑇)
𝑖𝑎

. (20)

We omit the proof of its convergence as it is similar to that
of GNMF while IGNMF just assumes the first 𝑘 columns of
𝑉 would not be updated during iterations.

3.2. Batch-IGNMF. In practice, images often come in
batches. For example, a face recognition system needs to
record a batch of images belonging to a new class or belonging
to many different classes.

Once several images come, our IGNMF needs to run one
time for each image, which is time consuming if there are too
many images. In this section,we propose an improved version
of IGNMF algorithm which can deal with a batch of images.
This improved version is named Batch-IGNMF (B-IGNMF),
which is able to perform incremental study in batch of images
no matter whether the batch of images belongs to the same
class or different classes.

Let 𝑋
𝑙
denote the new coming 𝑙 images. So 𝑋

𝑘+𝑙
is the

total sample with its first 𝑘 columns equal to 𝑋
𝑘
and the rest

𝑙 columns equal to 𝑋
𝑙
. 𝑈
𝑘+𝑙

and 𝑉
𝑘+𝑙

denote the optimized
factor matrices of 𝑋

𝑘+𝑙
, assuming 𝑉

𝑘
as the first 𝑘 columns

of 𝑉
𝑘+𝑙

which would not change during incremental study,
𝑉
𝑙
is the last 𝑙 columns of 𝑉

𝑘+𝑙
denoting the corresponding

coefficient matrix of 𝑋
𝑙
, and (𝑊

𝑘+𝑙
)
𝑘+1∼𝑘+𝑙,:

denotes the rows
of𝑊
𝑘+𝑙

from 𝑘 + 1 to 𝑘 + 𝑙.
So the objective function 𝐹

𝑘+𝑙
can be rewriten as

𝐹
𝑘+𝑙
=

𝑛

∑

𝑖=1

𝑘+𝑙

∑

𝑗=1

[𝑋
𝑖𝑗
− (𝑈
𝑘+𝑙
𝑉
𝑘+𝑙
)
𝑖𝑗
]
2

+ 𝜆Tr (𝑉
𝑘+𝑙
𝐿
𝑘+𝑙
𝑉
𝑇

𝑘+𝑙
) .

(21)

We omit the detailed derivation process due to its similarity
to the derivation process of IGNMF. We just list the multi-
plicative update rules as

(𝑉


𝑙
)
𝑖𝑎
← (𝑉

𝑙
)
𝑖𝑎
⋅

[𝑈
𝑇

𝑘+1
𝑋
𝑙
+ 𝜆 ⋅ 𝑉

𝑘+𝑙
(𝑊
𝑘+𝑙
)
𝑘+𝑙∼𝑘+𝑙,:

]
𝑖𝑎

[𝑈
𝑇

𝑘+𝑙
𝑈
𝑘+𝑙
𝑉
𝑙
+ 𝜆 ⋅ 𝑉

𝑘+𝑙
(𝐷
𝑘+𝑙
)
𝑘+𝑙∼𝑘+𝑙,:

]
𝑖𝑎

,

(𝑈


𝑘+𝑙
)
𝑖𝑎
← (𝑈

𝑘+𝑙
)
𝑖𝑎
⋅

(𝑋
𝑘
𝑉
𝑇

𝑘
+ 𝑋
𝑙
𝑉
𝑇

𝑙
)
𝑖𝑎

(𝑈
𝑘+𝑙
𝑈
𝑘
𝑉
𝑇

𝑘
+ 𝑈
𝑘+𝑙
𝑉
𝑙
𝑉
𝑇

𝑙
)
𝑖𝑎

.

(22)

4. Experiments

In this section, the FERET database [23, 24] and CMU-PIE
database [25] are selected to evaluate the performance of our
IGNMF and B-IGNMF algorithms, along with two canonical
face recognition algorithms: supervised GNMF (GNMF-S)
and unsupervised GNMF (GNMF-U) and three incremental
algorithms: INMF, CINMF, and IOPNMF. NMF is selected
as the baseline. The stopping condition of iterative update is
defined as (23) in all experiments:

𝐹
(𝑛−1)
− 𝐹
(𝑛)

𝐹(𝑛)
< 𝛿, (23)

where 𝐹(𝑛) is the 𝑛th iteration of the update criterion function
defined in (9) under the 𝑛th iteration.

In the FERET database [23, 24], we select 200 individual
faces (7 images for each). All images in the database are
aligned by the centers of eyes andmouth and then resized into
25 × 25. The CMU-PIE database includes total of 68 individ-
uals [25] and we select all these 68 individuals, each of which
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Figure 1: All images of one person from FERET database.

Figure 2: All images of one person from CMU-PIE database.

has 56 images, including 7 poses with neural expression in
different views and 38 different lighting conditions and 11
talking images in frontal view. All images in the database are
aligned by the centers of eyes and mouth and then resized
into 28 × 23. Examples of these two datasets are shown in
Figures 1 and 2. Each experiment is run for 10 trials, and the
parameters for our IGNMF and B-IGNMF are set as follows:
𝜆 = 0.01 and 𝛿 = 0.01 for both databases and 𝑟 = 200 for
the FERET database and 𝑟 = 68 for the CMU-PIE database.
Then the average accuracies and the mean running time are
recorded.

4.1. Incremental Study for Single Image. In these experiments,
we choose 5 images for each individual as the training set
from the FERET database and 42 images for each indi-
vidual from the CMU-PIE database. Our experiments are
performed as follows: first, GNMF and NMF are chosen for
initialization; second, IGNMF and INMF are performed to
incremental study; GNMF and NMF are also performed by
rerunning GNMF and NMF every time when new image
comes. We choose one image of each individual from the
rest of the database to incremental study, so all algorithms
were run at a total of 200 times for the FERET database
and 68 times for the CMU-PIE database. Notice INMF is an
unsupervised learning algorithm, so unsupervised IGNMF is
performed.

Figures 3 and 4 illustrate the curves of recognition rates
for INMF, IGNMF, NMF, and GNMF during incremental
study. We can see that when a small number of new
images come, incremental methods (INMF and IGNMF)
perform better than canonical methods (NMF and GNMF).
We also observe that incremental methods can keep the
recognition rate increasing smoothly with the number of
images increasing; while canonical methods would make the
recognition rate fluctuating. This is because every time when
we rerun the canonical methods, the initial values for 𝑈
and 𝑉 are randomly assigned; different initial values would
lead to different local minimum value, which in turn affect
the recognition rate significantly. It is also noted that the
recognition rates of IGNMF and GNMF are better than those
of NMF and INMF; this is because the use of the manifold
method, which preserves the geometrical information of
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Figure 3:The average recognition rate during incremental study for
the FERET database.
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Figure 4:The average recognition rate during incremental study for
the CMU-PIE database.

the original data, contributes to the improvement of the
recognition rate.

Figures 5 and 6 illustrate the running time of the selected
algorithms in both databases, from the figure we can see that
the mean running time of IGNMF for single image is close
then INMF, while faster than GNMF and NMF, which means
IGNMF achieved better recognition rate than INMF while
faster than it.

4.2. Incremental Study for One Batch of Images Belonging
to One Class. In this section, our B-IGNMF, and the other
two typical incremental algorithms (CINMF and IOPNMF)
are performed along with supervised GNMF, unsupervised
GNMF, and NMF. Because CINMF is a supervised learning
algorithm while IOPNMF is an unsupervised one, super-
vised B-IGNMF (BIGNMF-S) and unsupervised B-IGNMF
(BIGNMF-U) are both performed.

We choose 5 images for each individual as the training set
from the FERET database and 42 images for each individual
from theCMU-PIE database. First, we choose 195 individuals
from the FERET database and 63 individuals from the CMU-
PIE database for study. Second, one of the rest of five
individuals is chosen to add for incremental study, total 5
times. The parameters of CINMF are set to 𝛼 = 10, 𝛽 = 10−7,
and 𝑟
0
= 6 for the FERET database and 𝛼 = 0.1, 𝛽 = 10−4,

and 𝑟
0
= 6 for the CMU-PIE database; the parameters of

IOPNMF are set to 𝑟 = 200 for the FERET database and
𝑟 = 136 for the CMU-PIE database. Tables 1 and 2 showed
the recognition rates for two databases; “Add 1” means the
recognition rate of adding one batch of images into “Start,”
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Figure 5: The mean running time during incremental study with
single image for the FERET database.
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Figure 6: The mean running time during incremental study with
single image for the CMU-PIE database.

and “Add 2”means the recognition rate of adding another one
batch of images into “Add 1,” and so on.

Tables 1 and 2 showed the recognition rates for two
databases. We can see that the recognition rate of our
BIGNMF is close to GNMF, both for the supervised one and
the unsupervised one. In some cases BIGNMF is slightly bet-
ter than GNMF. The recognition rates of GNMF-U, GNMF-
S, and NMF are fluctuating during incremental study. In the
experiments we found that CINMFwas the fastest one to start
(study without incremental); it needs less than 40 s for the
FERET database and less than 15 s for CMU-PIE database,
but during the incremental process, the recognition rate of
our BIGNMF outperforms CINMF and is much more faster
than CINMF. It is noted that the recognition rate of IOPNMF
performs close to NMF for the FERET database while the
worst is for the CMU-PIE database; the reason does not
concern us.

Figures 7 and 8 illustrate the running time of the selected
algorithms in both databases; from the figure we can see
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Figure 7: The mean running time during incremental study with
images belonging to one class for the FERET database.
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Figure 8: The mean running time during incremental study with
images belonging to one class for the CMU-PIE database.

that the mean running time of BIGNMFs for one batch of
images belonging to one class is faster than other NMF-based
incremental algorithms, both for the supervised one and the
unsupervised one, which means our proposed algorithms
achieved better recognition rate than other NMF-based
incremental algorithms, while faster than then.

4.3. Incremental Study for one Batch of Images Belonging to
Different Classes. In this section, incremental study for one
batch of images belonging to different classes is performed.
Our B-IGNMF, both supervised method and unsupervised
method, is selected, along with supervised GNMF, unsuper-
vised GNMF, IOPNMF, and NMF.
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Table 1: The recognition rates (%) for the FERET database during adding 5 batches of images belonging to one class.

Supervised methods Unsupervised methods
BIGNMF-S GNMF-S CINMF BIGNMF-U GNMF-U IOPNMF NMF

Start 70.77 70.77 67.18 68.72 68.72 61.67 62.41
Add 1 70.28 69.47 66.84 68.37 65.5 61.52 61.12
Add 2 69.86 69.04 67.89 67.89 66.24 61.42 60.58
Add 3 69.44 70.54 67.3 67.3 67 61.4 61.89
Add 4 69.22 69.1 67.09 67 69 61.58 61.98
Add 5 70.28 69.47 66.84 68.37 65.5 61.52 61.12

Table 2: The recognition rates (%) for the CMU-PIE database during adding 5 batches of images belonging to one class.

Supervised methods Unsupervised methods
BIGNMF-S GNMF-S CINMF BIGNMF-U GNMF-U IOPNMF NMF

Start 85.05 85.05 82.36 83.64 83.64 50.34 79.20
Add 1 84.92 83.48 82.8 83.47 82.25 50.33 78.16
Add 2 84.79 83.77 82.66 83.3 83.02 50.66 78.54
Add 3 84.6 84.24 82.7 83.17 82.36 50.54 78.8
Add 4 84.62 84.5 82.8 83.13 82.46 50.75 78.88
Add 5 84.1 83.58 82.5 82.17 82.62 50.63 78.98

Experiments are designed as follows: we choose 4 images
for each individual (totally 7 images) as the starting training
set from the FERET database; the rest of the images are
considered as the testing set. For each incremental study,
one image for each individual from the testing set is selected
as one batch of images to incremental study, totally 200
images for each batch. The incremental study for FERET is
performed twice. For the CMU-PIE database, we choose 42
images for each individual (totally 56 images) as the starting
training set, then the rest of the images are considered as
the testing set. For each incremental study, 2 images for each
individual from the testing set are selected as one batch of
images to incremental study, total 68 × 2 images for each
batch.The incremental study for FERET is performed 5 times.
Tables 3 and 4 showed the recognition rates for two databases;
“Add 1” means the recognition rate of adding one batch of
images into “Start,” and “Add 2” means the recognition rate
of adding another one batch of images into “Add 1,” and so
on.

Tables 3 and 4 showed the recognition rates for two
databases; we can see that the recognition rate of our
BIGNMF, both the supervised one and the unsupervised
one, is close to that of GNMF and better than that of
NMF. Also, we can see that the recognition rate for both
BIGNMFs is increasing while the new batch of images comes,
which illustrate the effectiveness of the new incremental study
algorithms. Note in the experment of the FERET database,
in the starting, there are 4 images for each individual, totally
800 images; after adding the second batch of images, we
added totally 400 images (2 images for each individual).
Which means during the 50% amount of new images to
incremental study, our BIGNMF still works. It is noted that
the recognition rate of IOPNMF performs close to NMF
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Figure 9: The mean running time during incremental study with
images belonging to different classes for the FERET database.

for the FERET database while the worst for the CMU-PIE
database; the reason is unknown.

Figures 9 and 10 illustrate the mean running times for all
the selected algorithms in both database. From the figures
we can see that the mean running time of our BIGNMFs for
one batch of images belonging to different classes is faster
than other NMF-based incremental algorithms, both for the
supervised one and the unsupervised one, which means
the recognition rate of our proposed algorithms is close to
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Table 3: The recognition rates (%) for the FERET database during adding 2 batches of images belonging to different classes.

Supervised methods Unsupervised methods
BIGNMF-S GNMF-S BIGNMF-U GNMF-U IOPNMF NMF

Start 58.53 58.53 57.24 57.24 49.54 55.06
Add 1 63.41 60.36 60.46 61.93 59.63 59.28
Add 2 69.14 70.94 69.08 71.43 67 67.75

Table 4: The recognition rates (%) for the CMU-PIE database during adding 5 batches of images belonging to different classes.

Supervised methods Unsupervised methods
BIGNMF-S GNMF-S BIGNMF-U GNMF-U IOPNMF NMF

Start 81.37 81.37 79.15 79.64 46.32 79.01
Add 1 81.46 80.78 79.21 78.77 51.23 79.14
Add 2 81.26 81.98 81.29 81.75 54.85 79.85
Add 3 83.28 82.45 81.36 81.03 53.86 79.38
Add 4 83.3 83.45 83.61 83.59 51.96 80.28
Add 5 84.75 84.49 84.73 84.58 51.47 81.97
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Figure 10: The mean running time during incremental study with
images belonging to different classes for the CMU-PIE database.

rerunning GNMF algorithms (sometimes slightly better), but
faster.

5. Conclusions

In this paper, a novel incremental study method named
incremental graph regularized nonnegative matrix factor-
ization (IGNMF) has been proposed for face recognition.
IGNMF introduces the graph regularized nonnegativematrix
factorization algorithm into incremental study.The proposed
IGNMF is able to preserve discrimination information under
incremental study framework. In addition, we adapted our
IGNMF algorithm to deal with learning from image batches,
resulting in another new learning method called Batch

IGNMF (B-IGNMF). Experiments show that the recognition
rates of our IGNMF and B-IGNMF algorithms are close
to GNMF algorithms while they run faster than GNMF
algorithms.The running times of our IGNMF and B-IGNMF
algorithms are close to INMF, faster than other popularNMF-
based face recognition incremental algorithms, while the
recognition rate of our IGNMF and B-IGNMF algorithms
outperforms them.

Finally we point out the fact that if IGNMF and BIGNMF
run too many times, the recognition rate would worsen than
that of rerun GNMF. The reason for this is the assumption
that 𝑉

𝑘
remains unchanged during the iterations and cannot

hold if algorithms run too many times. So our future work
will be focusing on how to resolve this issue.
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