
Hindawi Publishing Corporation
The Scientific World Journal
Volume 2013, Article ID 765732, 6 pages
http://dx.doi.org/10.1155/2013/765732

Research Article
Some New Algebraic and Topological Properties of
the Minkowski Inverse in the Minkowski Space

Hanifa Zekraoui,1 Zeyad Al-Zhour,2 and Cenap Özel3

1 Department of Mathematics and Informatic, Faculty of Exact and Natural Sciences, Oum-El-Bouaghi University,
Oum-El-Bouaghi 04000, Algeria

2 Department of Basic Sciences and Humanities, College of Engineering, University of Dammam, P.O. Box 1982,
Dammam 34151, Saudi Arabia

3 Department of Mathematics, Faculty of Sciences, University of Abant Izzet Baysal, Bolu Turkey, 14280 Bolu, Turkey

Correspondence should be addressed to Zeyad Al-Zhour; zeyad1968@yahoo.com

Received 9 August 2013; Accepted 18 September 2013

Academic Editors: J. Hoff da Silva and L. Székelyhidi
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We introduce some new algebraic and topological properties of the Minkowski inverse 𝐴⊕ of an arbitrary matrix 𝐴 ∈ 𝑀
𝑚,𝑛

(including singular and rectangular) in aMinkowski space 𝜇. Furthermore, we show that theMinkowski inverse𝐴⊕ in aMinkowski
space and theMoore-Penrose inverse𝐴+ in a Hilbert space are different in many properties such as the existence, continuity, norm,
and SVD. New conditions of the Minkowski inverse are also given. These conditions are related to the existence, continuity, and
reverse order law. Finally, a new representation of the Minkowski inverse 𝐴⊕ is also derived.

1. Introduction and Preliminaries

In this work, we consider matrices over the field of complex
numbers as C and real numbers as R. The set of 𝑚-by-
𝑛 complex matrices is denoted by 𝑀

𝑚,𝑛
(C) = C𝑚×𝑛. For

simplicity, we write𝑀
𝑚,𝑛

instead of𝑀
𝑚,𝑛
(C) or𝑀

𝑚,𝑛
(R), and

when 𝑚 = 𝑛, we write 𝑀
𝑛
instead of 𝑀

𝑛,𝑛
. The notations

𝐴
𝑡, 𝐴∗, 𝐴∼, 𝑟(𝐴), 𝑅(𝐴), 𝑁(𝐴), tr(𝐴), det(𝐴), ‖𝐴‖

2
, 𝐴+,

𝐴
⊕, and 𝜎(𝐴) stand for the transpose, conjugate transpose,

𝜇-symmetric, rank, range, null space, trace, determinant,
Frobenius norm,Moore-Penrose inverse,Minkowski inverse,
and set of all eigenvalues of a matrix 𝐴, respectively.

TheMoore-Penrose inverse iswidely used in perturbation
theory, singular systems, neural network problems, least-
squares problems, optimization problems, and many other
subjects [1–8]. The Moore-Penrose inverse of an arbitrary
matrix 𝐴 ∈ 𝑀

𝑚,𝑛
is defined to be the unique solution of the

following four matrix equations [3, 4, 8–10]:

𝐴𝑋𝐴 = 𝐴, 𝑋𝐴𝑋 = 𝑋,

(𝐴𝑋)
∗
= 𝐴𝑋, (𝑋𝐴)

∗
= 𝑋𝐴,

(1)

and it is often denoted by 𝑋 = 𝐴
+. Note that if we designate

any matrix 𝑋 that satisfying the 𝑖th matrix equation (𝑖 ∈

{1, 2, 3, 4}) in (1) is called the 𝑖-inverse and denoted by 𝐴(𝑖).
TheMoore-Penrose inverse can be explicitly expressed by

the singular value decomposition (SVD) due to van Loan [11].
For any matrix 𝐴 ∈ 𝑀

𝑚,𝑛
with 𝑟(𝐴) = 𝑟, there exist unitary

matrices 𝑈 ∈ 𝑀
𝑚
and 𝑉 ∈ 𝑀

𝑛
satisfying 𝑈∗𝑈 = 𝐼

𝑚
and

𝑉
∗
𝑉 = 𝐼
𝑛
such that

𝐴 = 𝑈[
𝐷 0

0 0
]𝑉
∗
, (2)

where 𝐷 = diag(𝛿
1
, 𝛿
2
, . . . , 𝛿

𝑟
) ∈ 𝑀

𝑟
, 𝛿
1
≥ 𝛿
2
≥ ⋅ ⋅ ⋅ ≥ 𝛿

𝑟
> 0,

and 𝛿2
𝑖
(𝑖 = 1, 2, . . . , 𝑟) are the nonzero eigenvalues of 𝐴∗𝐴.

Then, the Moore-Penrose inverse can be represented as

𝐴
+
= 𝑉[

𝐷
−1

0

0 0
]𝑈
∗
. (3)

Some algebraic properties concerning the null space,
range, rank, continuity, and some representations of some
types of the generalized inverses of a given matrix over com-
plex and real fields are widely studied by many researchers
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[12–16]. The Minkowski inverse 𝐴⊕ of an arbitrary matrix
𝐴 ∈ 𝑀

𝑚,𝑛
is one of the important generalized inverses for

solving matrix equations in the Minkowski space 𝜇 with
respect to the generalized reflection antisymmetric matrix
𝐴
∼ [17]. Some methods such as iterative, Borel summable,

Euler-Knopp summable, Newton-Raphson, and Tikhonov’s
methods are used for representation and computation of the
Minkowski inverse 𝐴⊕ in the Minkowski space 𝜇 [18, 19].

By letting C𝑛 be the space of complex 𝑛-tuples, we will
index the components of a complex vector in C𝑛 from 0

to 𝑛 − 1; that is, 𝑢 = (𝑢
0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛−1
). In addition

to that, let 𝐺 be the Minkowski metric tensor defined by
𝐺𝑢 = (𝑢

0
, −𝑢
1
, −𝑢
2
, . . . , −𝑢

𝑛−1
). Clearly, the Minkowski

metric matrix is defined by [18, 20]

𝐺 = [
1 0

0 −𝐼
𝑛−1

] ∈ 𝑀
𝑛
, (4)

and 𝐺∗ = 𝐺 and 𝐺2 = 𝐼
𝑛
.

In [21, 22], theMinkowski inner product onC𝑛 is defined
by (𝑢, V) = [𝑢, 𝐺V], where [⋅, ⋅] denotes the conventional
Hilbert (unitary) space inner product. The space with the
Minkowski inner product is called a Minkowski space and
is denoted by 𝜇. For any square matrix 𝐴 ∈ 𝑀

𝑛
and vectors 𝑥

and 𝑦 ∈ C𝑛, we have

(𝐴𝑥, 𝑦) = [𝐴𝑥, 𝐺𝑦] = [𝑥, 𝐴
∗
𝐺𝑦] = [𝑥, 𝐺 (𝐺𝐴

∗
𝐺)𝑦]

= [𝑥, 𝐺𝐴
∼
𝑦] = (𝑥, 𝐴

∼
𝑦) ,

(5)

where 𝐴
∼

= 𝐺𝐴
∗
𝐺 is called the Minkowski conjugate

transpose of 𝐴 in the Minkowski space 𝜇. Naturally, the
matrix𝐴 ∈ 𝑀

𝑛
is called 𝜇-symmetric in theMinkowski space

𝜇 if 𝐴 = 𝐴
∼. Now, it is easy to show that 𝐴 is 𝜇-symmetric if

and only if 𝐴𝐺 is Hermitian if and only if 𝐺𝐴 is Hermitian.
Also, it is easy to verify that 𝐺−1 = 𝐺 and 𝜎(𝐴∼) = 𝜎(𝐴).
More generally, if 𝐴 ∈ 𝑀

𝑚,𝑛
, then the Minkowski conjugate

transpose of𝐴 is defined by𝐴∼ = 𝐺
1
𝐴
∗
𝐺
2
(where 𝐺

1
and𝐺

2

are theMinkowski metric matrices of orders 𝑛×𝑛 and𝑚×𝑚,
resp.), and it satisfies the following algebraic properties as in
the following result.

Lemma 1. Let 𝐴 ∈ 𝑀
𝑚,𝑛

. Then, the following one given:

(i) 𝐴∼ is unique,
(ii) (𝐴∼)∼ = 𝐴,
(iii) (𝐴𝐵)∼ = 𝐵∼𝐴∼,
(iv) ∼-cancellation rule 𝐴∼𝐴𝑋 = 𝐴

∼
𝐴𝑌 ⇒ 𝐴𝑋 = 𝐴𝑌,

(v) 𝑟(𝐴) = 𝑟(𝐴∼),
(vi) 𝑅(𝐴∗) = 𝑅(𝐴∼),
(vii) 𝑁(𝐴∗) = 𝑁(𝐴∼).

Finally, a matrix𝐴 ∈ 𝑀
𝑚,𝑛

is said to be a range symmetric
in unitary space (or equivalently 𝐴 is said to be EP) if
𝑁(𝐴
∗
) = 𝑁(𝐴). For further properties of EP matrices, one

may refer to [3, 4, 10, 11].
In this paper, some algebraic properties concerning the

rank, range, existence, uniqueness, continuity, and reverse

order law of the Minkowski inverse 𝐴
⊕ are introduced.

The relationships between 𝐴
⊕ and 𝐴

∼ are also discussed.
Furthermore, a new representation of 𝐴⊕ related to the
full-rank factorization of the matrix 𝐴 is derived, and new
conditions for the existence and continuity of 𝐴⊕ are also
given.

2. Some Algebraic Properties of
the Minkowski Inverse

In this section, we derive some attractive algebraic properties
and the reverse order law property of the Minkowski inverse
in a Minkowski space.

The Minkowski inverse of an arbitrary matrix 𝐴 ∈

𝑀
𝑚,𝑛

(including singular and rectangular), analogous to the
Moore-Penrose inverse, is defined as follows.

Definition 2. Let 𝐴 ∈ 𝑀
𝑚,𝑛

be any matrix in the Minkowski
space 𝜇. Then, the Minkowski inverse of𝐴 is the matrix𝐴⊕ ∈
𝑀
𝑛,𝑚

which satisfies the following four matrix equations:

𝐴𝐴
⊕
𝐴 = 𝐴, 𝐴

⊕
𝐴𝐴
⊕
= 𝐴
⊕
,

(𝐴𝐴
⊕
)
∼

= 𝐴𝐴
⊕
, (𝐴

⊕
𝐴)
∼

= 𝐴
⊕
𝐴.

(6)

Theorem 3. Let 𝐴 ∈ 𝑀
𝑚,𝑛

be any matrix in the Minkowski
space 𝜇. Then, the Minkowski inverse 𝐴⊕ satisfies the following
properties:

(i) (𝐴⊕)∼ = (𝐴∼)⊕,

(ii) 𝐴⊕ is a unique matrix,

(iii) (𝐴⊕)⊕ = 𝐴,

(iv) 𝐴𝐴⊕ and𝐴⊕𝐴 are idempotents (i.e.,𝐴𝐴⊕ and𝐴⊕𝐴 are
projectors on 𝑅(𝐴) and 𝑅(𝐴⊕), resp.),

(v) 𝐴⊕𝐴+𝛼𝐼
𝑛
and𝐴𝐴⊕+𝛼𝐼

𝑚
are invertiblematrices, where

𝛼 > 0,

(vi) (𝐴∼𝐴)⊕𝐴∼ = 𝐴⊕ = 𝐴∼(𝐴𝐴∼)⊕,

(vii) 𝑅(𝐴⊕) = 𝑅(𝐴∼).

Proof. (i) Since the following four matrix equations are
satisfied:

𝐴
∼
(𝐴
⊕
)
∼

𝐴
∼
= (𝐴𝐴

⊕
𝐴)
∼

= 𝐴
∼
,

(𝐴
⊕
)
∼

𝐴
∼
(𝐴
⊕
)
∼

= (𝐴
⊕
𝐴𝐴
⊕
)
∼

= (𝐴
⊕
)
∼

,

(𝐴
∼
(𝐴
⊕
)
∼

)
∼

= ((𝐴
⊕
)
∼

)
∼

(𝐴
∼
)
∼

= 𝐴
⊕
𝐴

= (𝐴
⊕
𝐴)
∼

= 𝐴
∼
(𝐴
⊕
)
∼

,

((𝐴
⊕
)
∼
𝐴
∼
)
∼

= ((𝐴
∼
)
∼

) ((𝐴
⊕
)
∼

)
∼

= 𝐴𝐴
⊕
= (𝐴𝐴

⊕
)
∼

= (𝐴
⊕
)
∼

𝐴
∼
,

(7)

then, by (6), we get the result.
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(ii) Let 𝐺
1
and 𝐺

2
be two Minkowski metric tensors such

that 𝐴⊕
1
and 𝐴⊕

2
are two Minkowski inverses of a matrix 𝐴;

then, by using Lemma 1 andTheorem 3(i), we have

𝐴
⊕

1
= 𝐴
⊕

1
𝐴𝐴
⊕

1
= 𝐴
⊕

1
(𝐴𝐴
⊕

1
)
∼

= 𝐴
⊕

1
(𝐴
⊕

1
)
∼

𝐴
∼

= 𝐴
⊕

1
(𝐴
⊕

1
)
∼

𝐴
∼
(𝐴
⊕

2
)
∼

𝐴
∼
= 𝐴
⊕

1
(𝐴𝐴
⊕

1
)
∼

(𝐴𝐴
⊕

2
)
∼

= 𝐴
⊕

1
(𝐴𝐴
⊕

1
) (𝐴𝐴

⊕

2
) = 𝐴
⊕

1
𝐴𝐴
⊕

2
= 𝐴
⊕

1
𝐴𝐴
⊕

2
𝐴𝐴
⊕

2

= (𝐴
⊕

1
𝐴)
∼

(𝐴
⊕

2
𝐴)
∼

𝐴
⊕

2
= 𝐴
∼
(𝐴
⊕

1
)
∼

𝐴
∼
(𝐴
⊕

2
)
∼

𝐴
⊕

2

= 𝐴
∼
(𝐴
⊕

2
)
∼

𝐴
⊕

2
= (𝐴
⊕

2
𝐴)
∼

𝐴
⊕

2
= (𝐴
⊕

2
𝐴)𝐴
⊕

2
= 𝐴
⊕

2
.

(8)

This means that 𝐴⊕ is a unique matrix.
(iii) It follows by applying the four matrix equations in

(6).
(iv) By using the matrix equations in (6), we have

(𝐴𝐴
⊕
)
2

= 𝐴(𝐴
⊕
𝐴𝐴
⊕
) = 𝐴𝐴

⊕ and (𝐴⊕𝐴)2 = 𝐴
⊕
(𝐴𝐴
⊕
𝐴) =

𝐴
⊕
𝐴.
(v) Since 𝐴𝐴⊕ is an idempotent matrix, then eigenvalues

of 𝐴𝐴⊕ are 0 or 1. That is, det(𝐴𝐴⊕ + 𝛼𝐼
𝑚
) = 0 ⇔ 𝛼 = 0 or

𝛼 = −1. So, for all 𝛼 > 0, we have det(𝐴𝐴⊕ + 𝛼𝐼
𝑚
) ̸= 0 (i.e.,

𝐴
⊕
𝐴 + 𝛼𝐼

𝑛
is an invertible matrix). Similarly, we can prove

that 𝐴𝐴⊕ + 𝛼𝐼
𝑚
is also an invertible matrix.

(vi) Since 𝐴∼𝐴(𝐴∼𝐴)⊕𝐴∼𝐴 = 𝐴
∼
𝐴, then, from ∼-can-

cellation, we have

𝐴(𝐴
∼
𝐴)
⊕

𝐴
∼
𝐴 = 𝐴. (9)

Now, by using the four matrix equations in (6), Theorem 3,
and Lemma 1, we have

((𝐴
∼
𝐴)
⊕

𝐴
∼
)𝐴 ((𝐴

∼
𝐴)
⊕

𝐴
∼
) = ((𝐴

∼
𝐴)
⊕

(𝐴
∼
𝐴) (𝐴

∼
𝐴)
⊕

)𝐴
∼

= (𝐴
∼
𝐴)
⊕

𝐴
∼
,

(10)

(𝐴(𝐴
∼
𝐴)
⊕

𝐴
∼
)
∼

= 𝐴((𝐴
∼
𝐴)
⊕

)
∼

𝐴
∼

= 𝐴((𝐴
∼
𝐴)
∼

)
⊕

𝐴
∼

= 𝐴(𝐴
∼
𝐴)
⊕

𝐴
∼
,

(11)

((𝐴
∼
𝐴)
⊕

𝐴
∼
𝐴)
∼

= 𝐴
∼
𝐴(𝐴
∼
𝐴)
⊕

= (𝐴
∼
𝐴(𝐴
∼
𝐴)
⊕

)
∼

= (𝐴
∼
𝐴)
⊕

𝐴
∼
𝐴.

(12)

Consequently, (9), (10), and (11) show that (𝐴∼𝐴)⊕𝐴∼ = 𝐴⊕.
(vii) Equations (9) and (10) show that 𝑟(𝐴⊕) = 𝑟(𝐴) =

𝑟(𝐴
∼
). Now, by applying Theorem 3(vi), we have 𝑅(𝐴⊕) ⊂

𝑅(𝐴
∼
); then, the equality holds.

The reverse order law property for the Moore-Penrose
inverse of the product of twomatrices is investigated bymany
researchers; one may refer to [23]. Analogous to Greville’s
conditions that were stated in [6], we reached the following
result.

Theorem 4. Let 𝐴 ∈ 𝑀
𝑚,𝑛

and 𝐵 ∈ 𝑀
𝑛.𝑝

be two matrices
in the Minkowski space 𝜇 such that the Minkowski inverses
𝐴
⊕, 𝐵⊕, and (𝐴𝐵)⊕ exist. Then, (𝐴𝐵)⊕ = 𝐵

⊕
𝐴
⊕ if and only if

𝑅(𝐴
∼
𝐴𝐵) ⊂ 𝑅(𝐵) and 𝑅(𝐵𝐵∼𝐴∼) ⊂ 𝑅(𝐴∼).

Proof. Since 𝐵𝐵⊕ is a projector on 𝑅(𝐵) as in Theorem 3(iv),
then

𝐵𝐵
⊕
𝐴
∼
𝐴𝐵 = 𝐴

∼
𝐴𝐵. (13)

Now, by Definition 2 andTheorem 3, we have

𝐴
⊕
𝐴𝐵𝐵
∼
𝐴
∼
= 𝐵𝐵
∼
𝐴
∼
. (14)

Taking the Minkowski conjugate transpose of the two sides
of (13), we have

𝐵
∼
𝐴
∼
𝐴𝐵𝐵
⊕
= 𝐵
∼
𝐴
∼
𝐴. (15)

Multiplying the right side and the left side of (15) by 𝐴⊕ and
((𝐴𝐵)

∼
)
⊕, respectively, we have

((𝐴𝐵)
∼
)
⊕

(𝐴𝐵)
∼
(𝐴𝐵) 𝐵

⊕
𝐴
⊕
= ((𝐴𝐵)

∼
)
⊕

(𝐴𝐵)
∼
𝐴𝐴
⊕
. (16)

Since 𝑅(𝐴𝐵) ⊂ 𝑅(𝐴) = 𝑅(𝐴𝐴⊕), then we have

𝐴𝐵𝐵
⊕
𝐴
⊕
= ((𝐴𝐵) (𝐴𝐵)

⊕
)
∼

(𝐴𝐵) 𝐵
⊕
𝐴
⊕

= ((𝐴𝐵) (𝐴𝐵)
⊕
)
∼

𝐴𝐴
⊕
= (𝐴𝐵) (𝐴𝐵)

⊕
.

(17)

Also, multiplying the right side and the left side of (14) by
((𝐴𝐵)

∼
)
⊕ and 𝐵⊕, respectively, and applying Theorem 3 and

Definition 2 for (𝐴𝐵)⊕, we have

𝐵
⊕
𝐴
⊕
𝐴𝐵(𝐴𝐵)

⊕
(𝐴𝐵) = 𝐵

⊕
𝐵𝐵
∼
𝐴
∼
((𝐴𝐵)

∼
)
⊕

. (18)

Since 𝐵⊕𝐵 is a projector on 𝑅(𝐵∼), we have

𝐵
⊕
𝐴
⊕
𝐴𝐵 = 𝐵

∼
𝐴
∼
((𝐴𝐵)

∼
)
⊕

= ((𝐴𝐵))
⊕
(𝐴𝐵) . (19)

Equations (17) and (19) imply that 𝐵⊕𝐴⊕ satisfies the first,
third, and fourth equations in (6). Finally, by taking the
Minkowski conjugate transpose of the two sides of the first
and the second equations in (6) for matrices 𝐴 and 𝐵 and by
usingTheorem 3(vi), we have

𝐵
∼
𝐴
∼
= 𝐵
∼
𝐵𝐵
⊕
𝐴
⊕
𝐴𝐴
∼
,

𝐵
⊕
𝐴
⊕
= 𝐵
⊕
(𝐵
⊕
)
∼

𝐵
∼
𝐴
∼
(𝐴𝐴
∼
)
⊕

.

(20)

This equation shows that

𝑟 (𝐵
⊕
𝐴
⊕
) = 𝑟 (𝐵

∼
𝐴
∼
) = 𝑟(𝐴𝐵)

∼
= 𝑟 (𝐴𝐵) . (21)

Consequently, 𝐵⊕𝐴⊕ satisfies the second equation in (6).
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3. Existence of the Minkowski Inverse

The Minkowski inverse of a matrix 𝐴 exists if and only if
𝑟(𝐴𝐴
∼
) = 𝑟(𝐴

∼
𝐴) = 𝑟(𝐴) [12]. In this section, we give

some equivalent conditions for the existence and derive a new
representation of the Minkowski inverse. If 𝐴 ∈ 𝑀

𝑚,𝑛
is a

matrix of full row rank (column rank), then 𝐴𝐴∗ and 𝐴∗𝐴
are invertible matrices of orders𝑚×𝑚 and 𝑛×𝑛, respectively,
in a Hilbert (Euclidian) space. Here, in a Minkowski space, if
we define ‖𝐴‖

02
= (tr(𝐴𝐴∼))1/2, then the following example

shows that 𝐴∼𝐴 and 𝐴𝐴
∼ are, in general, not invertible

matrices and also ‖𝐴‖
02

̸= ‖𝐴‖
2
.

Example 5. Let 𝐴 = [
1 −1 1

1 1 1
]. Then, 𝑟(𝐴) = 2, and

𝐴
∼
= 𝐺
1
𝐴
∗
𝐺
2
= [

[

1 0 0

0 −1 0

0 0 −1

]

]

[

[

1 1

−1 1

1 1

]

]

[
1 0

0 −1
]

= [

[

1 −1

1 1

−1 1

]

]

,

𝐴𝐴
∼
= [

1 −1 1

1 1 1
][

[

1 −1

1 1

−1 1

]

]

= [
−1 −1

1 1
] .

(22)

Note that 𝑟(𝐴𝐴∼) = 1 (i.e., det(𝐴𝐴∼) = 0), and hence 𝐴𝐴∼ is
not invertible. Also, ‖𝐴‖

2
= √tr(𝐴𝐴∗) = √6, and ‖𝐴‖

02
= 0,

which are not equal.

Lemma6. Let𝐴 ∈ 𝑀
𝑚,𝑛

and 𝐵 ∈ 𝑀
𝑛.𝑝

be twomatrices.Then,
the following are considered.

(i) If 𝑟(𝐴) = 𝑛, then 𝑟(𝐴𝐵) = 𝑟(𝐵).
(ii) If 𝑟(𝐵) = 𝑛, then 𝑟(𝐴𝐵) = 𝑟(𝐴).

Proof. (i) Since 𝑟(𝐴) = 𝑛, then 𝐴 is a left invertible; thus,
there exists a matrix 𝑋 ∈ 𝑀

𝑛,𝑚
such that 𝑋𝐴 = 𝐼

𝑛
. Hence,

𝑟(𝐵) = 𝑟(𝑋𝐴𝐵) ≤ 𝑟(𝐴𝐵) ≤ 𝑟(𝐵), which implies that 𝑟(𝐴𝐵) =
𝑟(𝐵). Similarly, we can prove (ii).

Theorem 7. Let 𝐴 = 𝐵𝐶 ∈ 𝑀
𝑚,𝑛

be a rank factorization
of rank 𝑟. Then, (𝐶𝐶∼)−1 and (𝐵

∼
𝐵)
−1 exist if and only if

𝑟(𝐴𝐴
∼
) = 𝑟(𝐴

∼
𝐴) = 𝑟(𝐴).

Proof. Since 𝐴 = 𝐵𝐶, then 𝐵 and 𝐶 are of orders 𝑚 × 𝑟 and
𝑟 × 𝑛, respectively, and 𝑟(𝐴) = 𝑟(𝐵) = 𝑟(𝐶) = 𝑟. Hence,

𝐴𝐴
∼
= 𝐵𝐶 (𝐺

1
𝐶
∗
𝐺) (𝐺𝐵

∗
𝐺
2
) = 𝐵𝐶𝐶

∼
𝐵
∼
, (23)

where 𝐺, 𝐺
1
, and 𝐺

2
are the Minkowski metric matrices of

orders 𝑟 × 𝑟, 𝑛 × 𝑛, and 𝑚 × 𝑚, respectively. Since 𝐵 and
𝐵
∼ are matrices of full ranks (i.e., 𝑟(𝐵) = 𝑟(𝐵∼) = 𝑟), then, by

Lemma 6, we have 𝑟(𝐴𝐴∼) = 𝑟(𝐶𝐶∼). Similarly, we can prove
that 𝑟(𝐴∼𝐴) = 𝑟(𝐵∼𝐵).

Now, since 𝐵∼𝐵 and𝐶𝐶∼ are squarematrices of order 𝑟 ×
𝑟, then they are invertible if and only if they are of rank 𝑟.

By applying the four matrix equations in (6), we can get a
new representation of theMinkowski inverse as shown in the
following result.

Theorem 8. Let 𝐴 = 𝐵𝐶 ∈ 𝑀
𝑚,𝑛

be a rank factorization of
rank 𝑟. Then,

𝐴
⊕
= 𝐶
∼
(𝐶𝐶
∼
)
−1

(𝐵
∼
𝐵)
−1

𝐵
∼
. (24)

4. Some Topological Properties of
the Minkowski Inverse

In this section, we establish some attractive topological
properties and new conditions for the continuity of the
Minkowski inverse in a Minkowski space.

It is known that, in normed algebra of bounded linear
operators, the map of linear invertible operators associated
with its usual inverse is continuous. The following example
shows that this property is not valid in the Minkowski space.

Example 9. Let 𝐴
𝑛
= [
1 0

0 1/𝑛
] be a sequence of matrices

for 𝑛 ∈ N; then, 𝐴⊕
𝑛
= [
1 0

0 𝑛
], lim

𝑛→∞
𝐴
𝑛
= [
1 0

0 0
], and

(lim
𝑛→∞

𝐴
𝑛
)
⊕
= [
1 0

0 0
]. Note that lim

𝑛→∞
𝐴
⊕

𝑛
does not exist.

That is, for the map 𝑇, we have

𝑇( lim
𝑛→∞

𝐴
𝑛
) ̸= lim
𝑛→∞

𝑇 (𝐴
𝑛
) . (25)

For ‖𝐴⊕‖
02

̸= 0, the following results are very important
for finding the new conditions for the continuity of the
Minkowski inverse of rectangular matrices in a Minkowski
space.

Lemma 10. Let 𝐴 ∈ 𝑀
𝑚,𝑛

. Then, for any 𝑥 ∈ 𝑅(𝐴∼),

‖𝐴𝑥‖
02
≥

‖𝑥‖
02

‖𝐴
⊕
‖
02

. (26)

Proof. By using Theorem 3((iv) and (vii)), then, for any 𝑥 ∈

𝑅(𝐴
∼
), we have 𝑥 = 𝐴

⊕
𝐴𝑥. Thus, ‖𝑥‖

02
= ‖𝐴

⊕
𝐴𝑥‖
02

≤

‖𝐴
⊕
‖
02
‖𝐴𝑥‖
02
, and then we get the result.

Lemma 11. Let 𝐴 and 𝐸 ∈ 𝑀
𝑚,𝑛

such that ‖𝐴⊕‖
02

̸= 0 and
‖𝐸‖
02
< 1/‖𝐴

⊕
‖
02
. Then,

𝑟 (𝐴 + 𝐸) ≥ 𝑟 (𝐴) . (27)

Proof. Suppose that 𝑟(𝐴) = 𝑟 and {V
1
, . . . , V

𝑟
} are the basis of

𝑅(𝐴
∼
). Then, the set {(𝐴 + 𝐸)(V

1
), . . . , (𝐴 + 𝐸)(V

𝑟
)} is a subset

of 𝑅(𝐴 + 𝐸). Now, suppose that ∑𝑟
𝑖=1
𝛼
𝑖
(𝐴 + 𝐸)(V

𝑖
) = 0, for

𝛼
𝑖
∈ C; then, 𝑥 = ∑𝑟

𝑖=1
𝛼
𝑖
V
𝑖
̸= 0, and we have

0 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑟

∑

𝑖=1

𝛼
𝑖
(𝐴 + 𝐸) (V

𝑖
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩02

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝐴 + 𝐸)

𝑟

∑

𝑖=1

𝛼
𝑖
V
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩02

= ‖𝐴𝑥 + 𝐸𝑥‖
02
≥ ‖𝐴𝑥‖

02
− ‖𝐸‖

02
‖𝑥‖
02

> ‖𝐴𝑥‖
02
−

‖𝑥‖
02

‖𝐴
⊕
‖
02

.

(28)

Now, by using Lemma 10, we have 0 > (‖𝑥‖
02
/‖𝐴
⊕
‖
02
) −

(‖𝑥‖
02
/‖𝐴
⊕
‖
02
) = 0, which is impossible, and thus 𝑥 = 0.

As {V
1
, . . . , V

𝑟
} is linearly independent, it follows that 𝛼

𝑖
= 0

(for all 𝑖 = 1, . . . , 𝑟). Consequently, 𝑟(𝐴 + 𝐸) ≥ 𝑟 = 𝑟(𝐴).
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Corollary 12. Let 𝐴 and 𝐵 ∈ 𝑀
𝑚,𝑛

such that ‖𝐴⊕‖
02

̸= 0,
‖𝐵
⊕
‖
02

̸= 0, and ‖𝐴 − 𝐵‖
02
< 1/max{‖𝐴⊕‖

02
, ‖𝐵
⊕
‖
02
}. Then,

𝑟 (𝐴) = 𝑟 (𝐵) . (29)

Proof. Set 𝐸 = 𝐴 − 𝐵, and since ‖𝐵⊕‖
02

̸= 0, then, by using
Lemma 11, we have ‖𝐸‖

02
< 1/‖𝐵

⊕
‖
02
which implies that

𝑟 (𝐴) = 𝑟 (𝐵 + 𝐸) ≥ 𝑟 (𝐵) . (30)

Since ‖𝐴⊕‖
02

̸= 0, then we also have ‖𝐸‖
2
< 1/‖𝐴

⊕
‖
02

which
implies that

𝑟 (𝐵) = 𝑟 (𝐴 − 𝐸) ≥ 𝑟 (𝐴) . (31)

Now, the result follows by using (30) and (31).

If 𝐴 ∈ 𝑀
𝑚,𝑛

and 𝜆
0
is the largest eigenvalue of 𝐴∼𝐴, then

‖𝐴‖
02
= √𝜆

0
in the Minkowski space 𝜇. Here, if 𝑃 is the 𝜇-

symmetric projector, then it is easy to show that𝑃⊕ = 𝑃. Since
the eigenvalues of a projector are only 0 and 1, then we have
‖𝑃‖
02
= ‖𝑃
⊕
‖
02
= 1, and by applying Corollary 12, we get the

following result.

Corollary 13. Let𝑃 and𝑄 be two 𝜇-symmetric projectors such
that ‖𝑃 − 𝑄‖

02
< 1. Then,

𝑟 (𝑃) = 𝑟 (𝑄) . (32)

Theorem 14. The matrix 𝐴 ∈ 𝑀
𝑚,𝑛

can be written by using
SVD as in the form𝐴 = 𝑈𝑆𝑉

∗ with𝑈∗𝑈 = 𝐼
𝑚
,𝑉∗𝑉 = 𝐼

𝑛
, and

𝑆 is a diagonal if and only if the following conditions hold:

(i) 𝜎(𝐴∼𝐴) are nonnegative real numbers,
(ii) 𝐴∼𝐴 is diagonalizable,
(iii) 𝑁(𝐴∼𝐴) = 𝑁(𝐴).

If only assumption (i) is violated but (ii) and (iii) hold
of Theorem 14, then we can still get singular value decom-
position (SVD). But in the Minkowski space, each of the
assumptions can fail even if the other two hold. This is
illustrated by the following three counterexamples [18].

Example 15. Let 𝐴 = [
−1 1

1 1
]. Then, 𝐴∼ = [ −1 −1

−1 −1
], and 𝐴𝐴∼ =

[
0 −2

2 0
]. Hence, 𝜎(𝐴∼𝐴) = {±2𝑖} which are not real numbers.

Example 16. Let 𝐴 = [
1.5 1

0.5 1
]. Then, 𝐴∼ = [

1.5 −0.5

−1 1
], and

𝐴𝐴
∼

= [
2 1

−1 0
]. Hence, 𝜎(𝐴∼𝐴) = {1} and cannot be

diagonalized.

Example 17. Let 𝐴 = [
1 −1

−1 1
]. Then, 𝐴∼ = [ 1 1

1 1
], and 𝐴𝐴∼ =

[
0 0

0 0
]. Hence,𝑁(𝐴∼𝐴) ̸=𝑁(𝐴).

The following result gives the equivalent conditions for
the continuity to be held for the Minkowski inverse of any
rectangular matrix.

Theorem 18. Let (𝐴
𝑛
)
𝑛∈N ∈ 𝑀

𝑚,𝑝
be a sequence of matrices

such that lim
𝑛→∞

𝐴
𝑛
= 𝐴. Then, lim

𝑛→∞
𝐴
⊕

𝑛
= 𝐴
⊕

=

(lim
𝑛→∞

𝐴
𝑛
)
⊕ if and only if 𝑟(𝐴

𝑛
) = 𝑟(𝐴).

Proof. Suppose that lim
𝑛→∞

𝐴
⊕

𝑛
= 𝐴
⊕
= (lim

𝑛→∞
𝐴
𝑛
)
⊕,

and set 𝐴
𝑛

= 𝐴 + 𝐸
𝑛
such that lim

𝑛→∞
𝐸
𝑛

= 0 and
lim
𝑛→∞

(𝐴 + 𝐸
𝑛
)
⊕
= 𝐴
⊕. Then,

lim
𝑛→∞

(𝐴 + 𝐸
𝑛
) (𝐴 + 𝐸

𝑛
)
⊕

= 𝐴𝐴
⊕
, (33)

which means that there exists 𝑛
0
such that, for any 𝑛 ≥ 𝑛

0
,

󵄩󵄩󵄩󵄩󵄩
(𝐴 + 𝐸

𝑛
) (𝐴 + 𝐸

𝑛
)
⊕

− 𝐴𝐴
⊕󵄩󵄩󵄩󵄩󵄩02

< 1. (34)

Since (𝐴+𝐸
𝑛
)(𝐴 + 𝐸

𝑛
)
⊕ and𝐴𝐴⊕ are𝜇-symmetric projectors,

then, by Corollary 13, we have

𝑟 ((𝐴 + 𝐸
𝑛
)) = 𝑟 ((𝐴 + 𝐸

𝑛
) (𝐴 + 𝐸

𝑛
)
⊕

) = 𝑟 (𝐴𝐴
⊕
) = 𝑟 (𝐴) .

(35)

Conversely, suppose that 𝐴 satisfies the SVD conditions as
in Theorem 14; then, 𝐵 = 𝑈

∗
𝐴𝑉 = [

𝐷
𝑟
0

0 0
], where 𝐷

𝑟
is a

diagonal matrix and 𝑈 and 𝑉 are unitary matrices. Suppose
also that lim

𝑛→∞
𝐸
𝑛
= 0 and 𝑟(𝐴 + 𝐸

𝑛
) = 𝑟(𝐴) = 𝑟 for any

𝑛 ≥ 𝑛
0
. Now, set

𝐹
𝑛
= 𝑈
∗
𝐸
𝑛
𝑉 = [

𝐹
(𝑛)

11
𝐹
(𝑛)

12

𝐹
(𝑛)

21
𝐹
(𝑛)

22

] . (36)

Then,

𝑟 (𝐵 + 𝐹
𝑛
) = 𝑟 (𝐴 + 𝐸

𝑛
) = 𝑟, 𝐵

⊕
= 𝑉
∼
𝐴
⊕
(𝑈
∗
)
∼

,

(𝐵 + 𝐹
𝑛
)
⊕

= 𝑉
∼
(𝐴 + 𝐸

𝑛
)
⊕

(𝑈
∗
)
∼

.

(37)

Since lim
𝑛→∞

𝐹
𝑛
= 0, then, for ‖𝐷−1

𝑟
‖
02

̸= 0 and ‖𝐴⊕‖
02

̸= 0,
we have

󵄩󵄩󵄩󵄩𝐹𝑛
󵄩󵄩󵄩󵄩02

<
1

󵄩󵄩󵄩󵄩𝐷
−1

𝑟

󵄩󵄩󵄩󵄩02

=
1

‖𝐴
⊕
‖
02

. (38)

But ‖𝐹
𝑛
‖
02

≥ sup
𝑖,𝑗
{‖𝐹
(𝑛)

𝑖𝑗
‖
02

}, and then, by Lemma 11, we
have

𝑟 (𝐷
𝑟
+ 𝐹
(𝑛)

11
) ≥ 𝑟. (39)

On the other hand,

𝑟 = 𝑟 (𝐵 + 𝐹
𝑛
) ≥ 𝑟 (𝐷

𝑟
+ 𝐹
(𝑛)

11
) ≥ 𝑟. (40)

Now, by using (39) and (40), we get that 𝑟(𝐷
𝑟
+ 𝐹
(𝑛)

11
) = 𝑟,

whichmeans that (𝐷
𝑟
+ 𝐹
(𝑛)

11
)
−1

exists. Also by using the Schur
complement, we have

(𝐵 + 𝐹
𝑛
) = [

𝐷
𝑟
+ 𝐹
(𝑛)

11
𝐹
(𝑛)

12

𝐹
(𝑛)

21
𝐹
(𝑛)

21
(𝐷
𝑟
+ 𝐹
(𝑛)

11
)
−1

𝐹
(𝑛)

12

]

= [
𝐼
𝑟

𝑀
](𝐷
𝑟
+ 𝐹
(𝑛)

11
) [𝐼
𝑟
𝑁] ,

(41)
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where 𝑀 = 𝐹
(𝑛)

21
(𝐷
𝑟
+ 𝐹
(𝑛)

11
)
−1

and 𝑁 = (𝐷
𝑟
+ 𝐹
(𝑛)

11
)
−1

𝐹
(𝑛)

12
.

Now, if𝑀∼𝑀 ̸= − 𝐼
𝑟
and𝑁𝑁∼ ̸= − 𝐼

𝑟
, then, by Definition 2,

we can see that

(𝐵 + 𝐹
𝑛
)
⊕

= [
𝐼
𝑟

𝑁
∼] ((𝐼𝑟 +𝑀

∼
𝑀)(𝐷

𝑟
+ 𝐹
(𝑛)

11
) (𝐼
𝑟
+ 𝑁𝑁

∼
))
−1

× [𝐼
𝑟
𝑀
∼
]

(42)

is theMinkowski inverse of𝐵+𝐹
𝑛
. Since lim

𝑛→∞
𝐹
𝑛
= 0, then

lim
𝑛→∞

𝐹
(𝑛)

11
= lim

𝑛→∞
𝐹
(𝑛)

21
= lim

𝑛→∞
𝐹
(𝑛)

12
= 0. Therefore,

lim
𝑛→∞

(𝐷
𝑟
+ 𝐹
(𝑛)

11
)
−1

= 𝐷
𝑟
, lim
𝑛→∞

𝑀 = 0 = lim
𝑛→∞

𝑀
∼,

and lim
𝑛→∞

𝑁 = 0 = lim
𝑛→∞

𝑁
∼. Now, by using the fact that

the map which transforms an invertible matrix to its inverse
is continuous, consequently, we find that

lim
𝑛→∞

(𝐵 + 𝐹
𝑛
)
⊕

= [
𝐼
𝑟

0
]𝐷
−1

𝑟
[𝐼
𝑟
0] = [

𝐷
−1

𝑟
0

0 0
] = 𝐵

⊕
, (43)

which completes the proof of Theorem 18.

5. Conclusion

Several attractive properties and conditions of theMinkowski
inverse 𝐴

⊕ in the Minkowski space 𝜇 are presented. In
our opinion, it is worth extending these properties and
establishing some necessary and sufficient conditions for the
reverse order rule of theweightedMinkowski inverse𝐴⊕

𝑀,𝑁
in

the Minkowski space 𝜇 of two and multiple matrix products.
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