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The exact output regulation problem for Takagi-Sugeno (TS) fuzzy models, designed from linear local subsystems, may have a
solution if input matrices are the same for every local linear subsystem. Unfortunately, such a condition is difficult to accomplish in
general. Therefore, in this work, an adaptive network-based fuzzy inference system (ANFIS) is integrated into the fuzzy controller
in order to obtain the optimal fuzzy membership functions yielding adequate combination of the local regulators such that the
output regulation error in steady-state is reduced, avoiding in this way the aforementioned condition. In comparison with the
steepest descent method employed for tuning fuzzy controllers, ANFIS approximates the mappings between local regulators with
membership functions which are not necessary known functions as Gaussian bell (gbell), sigmoidal, and triangular membership
functions. Due to the structure of the fuzzy controller, Levenberg-Marquardt method is employed during the training of ANFIS.

1. Introduction

A fundamental problem in dynamic systems is to control a
plant in order to have its outputs tracking some reference
signals produced by an exosystem (external generator), while
the stability property of the closed-loop system is guaranteed.
In this regard, the output regulation problem [1] consists of
finding the control law capable of

(a) stabilizing the closed-loop system when the plant is
not influenced by the exosystem,

(b) taking the tracking error asymptotically to zero when
the plant is under the action of the exosystem.

One of the first works on output regulation theory pre-
sented in the literature was developed by Francis and Won-
ham in 1975 [2]. This paper obtains structural criteria neces-
sary to synthesize multivariable linear regulators with struc-
tural stability to small perturbations. The main contribution
of this work is that structural stability requires feedback from
the regulate variable, and these structural features are called
“internal model principle.” Later in 1977 [3], the linear reg-
ulation theory for tracking a reference is proposed by Francis,

by finding that the solution for the output regulation of an
autonomous linear system subject to perturbations and ref-
erence signals can be obtained from a system of linear matrix
equations.

Isidori and Byrnes [1] extend the results obtained by
Francis to the general case in which the plant and/or the exo-
system are nonlinear. They also show that Francis equations
are a particular case of nonlinear output regulation equations.
In addition, they also show, as in linear case, that if the
plant is exponentially stabilizable via output feedback, the
solution for the nonlinear case requires an error feedback
regulator. Unfortunately, the so-called Francis-Isidori-Byrnes
(FIB) equations used to solve the nonlinear output regulation
problem involve a set of nonlinear partial differential equa-
tions which inmany cases are too difficult, or even impossible
to solve in a practical way (see Figure 1).

On the other hand, in the real world, there exists a wide
range of problems that involve the analysis of uncertain and
inaccurate information, and that is the main reason for the
“soft computing.” The term soft computing, according to
Zadeh, is “A collection of methodologies that aim to exploit
the tolerance for imprecision and uncertainty to achieve
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Figure 1: Output regulation scheme for (a) linear systems and (b) nonlinear systems [4].

tractability, robustness, and low solution cost.” Its principal
constituents are fuzzy logic, neurocomputing, and proba-
bilistic reasoning [5]. Each of these approaches has features
that make them suitable to solve different problems. Fuzzy
systems are characterized by their ability to handle and use
inaccurate approximate reasoning, while neural networks
have the property of learning. Many of these tools have been
used with efficiency to solve complex real world problems as
diagnosis, estimation, control, and autonomy of systems.

In that sense, some techniques have been developed to
characterize nonlinear systems by means of linear local sub-
systems [5]. One of these approaches is the well-known
Takagi Sugeno (TS) fuzzy modeling. This technique allows
describing the nonlinear dynamics by means of a suitable
“blending” of linear subsystems, each of them corresponding
to different operation points. Basically, the “combination” is
performed by a weighted summation of linear local sub-
systems. Thus, local controllers can be designed for each
subsystem, obtaining the aggregate controller by using the
same membership functions of the TS fuzzy plant.

As mentioned previously, the set of differential equations
derived by Isidori and Byrnes in nonlinear regulation is dif-
ficult to solve, representing an interesting opportunity to ap-
ply soft computing: in particular neural networks and fuzzy
logic.

For instance, in [6], an iterative algorithm with the struc-
ture of a recurrent neural network is presented. The net-
work is introduced with the purpose of dealing with model
errors caused by the estimation of parameters of an off-line

training and the possible dynamic changes; an online learning
approach providing the necessary parameters for the network
is also used. In this sense, the network can capture the
uncertainties of the system, and the regulator adjusts the
control action in order to guarantee the regulation condition.
That is an attempt to combine the identification capability of
neural networks and the stability properties of the control
theory. As a result, the control structure learns the system
dynamics and ensures the asymptotic convergence of the
error. Subsequently, this method was applied at the control
scheme of a solar plant [7]. Zhang and Wang [8] propose
an approximation in power series form, wherein a neural
network carries out the synthesis and self-tuning of controller
in real time. This method ensures regulation properties,
namely, stability and asymptotic tracking.

Later in [9], the fuzzy output regulation is formulated,
in which a nonlinear system described by a Takagi-Sugeno
fuzzy model follows a reference signal generated by a fuzzy
exosystem. It was also shown that the fuzzy regulation pro-
blem can be solved by means of local linear regulator only if
the following conditions are satisfied.

(i) The zero error manifold 𝜋(w) is equal for every local
linear subsystem (see Figure 1).

(ii) Input matrices B
𝑖
are equal for every local linear

subsystem, that is, (𝐵
1
= 𝐵
2
= ⋅ ⋅ ⋅ = 𝐵

𝑖
).

Unfortunately, the aforementioned conditions are not
satisfied in a great number of systems. A proposal to over-
come this problem is presented in [5, 10], wherein the fuzzy
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regulator is designed on the overall fuzzy model instead of
local linear subsystems.The advantage of this approach is the
global convergence of the tracking error in the interest region,
in contrast to local properties of classicalmethod of nonlinear
control. Moreover, the solution of the fuzzy regulation prob-
lem is given in terms of the “dynamical Francis equations,”
and a very practical way to solve such a dynamical equation
is also given. However, a disadvantage of this approach is that
exact fuzzy controller is far more complex than the regulator
designed from the fuzzy summation of local linear regulators,
in general. For that reason, in the present work, an approach
based on the local design of linear regulators is proposed,
but considering that the nonlinearity of the controller may be
different from the nonlinearity of the plant. In other words, it
will be assumed that the membership functions of the fuzzy
plant and the membership functions of fuzzy regulator are
different. Therefore, the appropriate membership functions
for the fuzzy regulators will be obtained by means of an
adaptive network-based fuzzy inference system (ANFIS) and
the steepest descent approach.

A hybrid intelligent system combines two or more soft
computing techniques [10]. Such combination allows taking
advantage of each tool, improving the behavior of the overall
system. According to [11, 12], the following combinations can
be found in the literature:

(i) fuzzy controllers tuned by neural networks,
(ii) fuzzy controller tuned by evolutionary computation,
(iii) neural networks synthesized by evolutionary compu-

tation,
(iv) neural networks controlled by fuzzy logic,
(v) evolutionary computation controlled by fuzzy logic.

The Artificial Neural Networks (ANN) have shown great
efficiency in different fields as identification, classification,
or recognition patterns. On the other hand, a system based
on fuzzy logic has the capability of working with uncertain
information and taking decisions based on rules previously
established by an expert system. A neurofuzzy system takes
the inference under cognitive uncertainty from fuzzy logic
and from ANNs their learning capability, adaption, paral-
lelism, and generalization [13, 14].

The performance of a fuzzy controller is extensively
linked to the shape of membership functions that represent
linguistic variables [15], so as the binary operators [16].These
parameters conform the structure of fuzzy controller and
generally are defined by an expert to trial and error [17]. ANN
brings the possibility of avoiding the trial and error procedure
[18–20].Therefore, ANNgives to fuzzy controller the capabil-
ity of learning, which means that fuzzy system can be tuned
by itself [21]. Besides, the neural approach can not only be
used to adjust the parameters of the fuzzy controller but also
anANN can be used as a fuzzy controller, in the sense that the
fuzzy controller will have the structure of a neural network
[22]. For instance, Moreno-Velo develops Xfuzzy which is a
program where several proposed approaches are applied to
learning process on neurofuzzy systems. Xfuzzy integrates a
wide variety of supervised learning algorithms [23].

In [24, 25], the authors presentmethodologies that reduce
the time of training for neurofuzzy systems with the aim of
using them on real-time applications.

(Adaptive Neural-Fuzzy Network Inference System)
(ANFIS) proposed by Jang [26] builds a mapping between
input-output pairs, using IF-THEN rules. ANFIS employs
hybrid training, combining backpropagation and the least-
squares estimator, and it has been used for modeling nonlin-
ear functions, identification of nonlinear components in con-
trol systems, and for prediction of chaotic series.

So, the main contribution of the present work is to
develop an approach based on ANFIS that is capable of ap-
proximating the appropriate membership functions, such
that tracking error for the overall fuzzy system is reduced
when the fuzzy controller is obtained from the fuzzy summa-
tion of local linear regulators, while avoiding the restriction of
proposing a priori form of the membership functions, which
is the main disadvantage of the steepest descent approach.

The rest of the paper is organized as follows. In Section 2,
a review of basic concepts of fuzzy output regulation is pre-
sented. In Section 3, an overview of ANFIS and an introduc-
tory example using the steepest descent in fuzzy regulation
are given. In Section 4, some cases of study are solved and
their respective simulation results are depicted. Finally, in
Section 5, some conclusions are drawn.

2. The Output Regulation Problem

From a given linear system

�̇� = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥

(1)

and an exosystem

�̇� = 𝑆𝜔,

𝑦ref = 𝑄𝜔,

(2)

it is desired to design a controller that stabilizes asymptoti-
cally the system (1) when the exosystem (2) is disconnected,
that is, (𝜔 = 0), and achieving 𝑒(𝑡) → 0 as 𝑡 → ∞ when (1)
is under the influence of (2). According to [26], the controller
is 𝑢 = 𝐾(𝑥 − Π𝜔) + Γ𝜔 and the tracking error is 𝑒ss = 𝑥 − 𝑥ss,
where 𝑥ss = Π𝜔

𝑒ss = 𝑥 − Π𝜔 ∴ ̇𝑒ss = �̇� − Π�̇� → �̇� = ̇𝑒ss + Π�̇�. (3)

By substituting the previous equations in (1), one gets

̇𝑒ss = 𝐴𝑒ss + 𝐴Π𝜔 + 𝐵𝐾𝑒ss + 𝐵𝐾Π𝜔

− 𝐵𝐾Π𝜔 + 𝐵Γ𝜔 − Π�̇�.

(4)

ButK has to be designed such that (𝐴+𝐵𝐾) is asymptotically
stable. Therefore, 𝑒(𝑡) → 0 as 𝑡 → ∞ if and only if

Π𝑆 = 𝐴Π + 𝐵Γ,

0 = 𝐶Π − 𝑄.

(5)
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The set of (5) is called Francis equations. Dimensions of each
matrix are

𝐴 ∈ R
𝑛×𝑛

, 𝐵 ∈ R
𝑛×𝑚

,

𝐶 ∈ R
𝑚×𝑛

, Π ∈ R
𝑛×𝑟

,

𝑆 ∈ R
𝑟×𝑟

, Γ ∈ R
𝑚×𝑟

,

𝑃 ∈ R
𝑛×𝑟

, 𝑄 ∈ R
𝑚×𝑟

.

(6)

According to Isidori and Byrnes, the extension of the regula-
tion problem to the nonlinear case is

�̇� = 𝑓 (𝑥, 𝜔, 𝑢) ,

𝑦 = ℎ (𝑥) ,

�̇� = 𝑠 (𝜔) ,

𝑦ref = 𝑞 (𝜔) .

(7)

Thus, the control signal becomes 𝑢 = 𝑘[𝑥 − 𝜋(𝜔)] + 𝛾(𝜔).
Then, similar to the linear case, the error in steady-state is
̇𝑒ss = �̇� − �̇�ss with 𝑥ss = Π𝜔:

𝑒ss = 𝑓 (𝑥, 𝜔, 𝑢) −

𝑑

𝑑𝑡

[𝜋 (𝜔)] , (8)

𝑒ss = 𝑓 (𝑥, 𝜔, 𝑢) −

𝜕𝜋

𝜕𝜔

�̇�, (9)

𝑒ss = 𝑓 (𝑥, 𝜔, 𝑢) −

𝜕𝜋

𝜕𝜔

𝑠 (𝜔) , (10)

𝜕𝜋

𝜕𝜔

𝑠 (𝜔) = 𝑓 (𝜋 (𝜔) , 𝜔, 𝛾 (𝜔)) ,

0 = ℎ (𝜋 (𝜔)) − 𝑞 (𝜔) .

(11)

The set (11) is called Francis-Isidori-Byrnes (FIB) equations
[1], subjected to

𝑓 (0, 0, 0) = 0,

ℎ (0) = 0,

𝜋 (0) = 0,

𝛾 (0) = 0,

𝑆 (0) = 0,

𝑞 (0) = 0.

(12)

2.1. Exact Fuzzy Output Fuzzy Regulation. The fuzzy model
proposed by Takagi and Sugeno is a fuzzy system described
by the rules of the type IF-THEN, where the consequent parts
include the local dynamics represented by linear subsystems
[27], that is.

Local linear subsystems:

�̇� (𝑡) = 𝐴
𝑖
𝑥 (𝑡) + 𝐵

𝑖
𝑢 (𝑡) , 𝑦 (𝑡) = 𝐶

𝑖
𝑥 (𝑡)

𝑖 = 1, 2, . . . , 𝑟.

(13)

Therefore, the nonlinear dynamics can be approximated by
the following TS model:

�̇� =

𝑟
1

∑

𝑖=1

ℎ
1

𝑖
{𝐴
𝑖
𝑥 + 𝐵
𝑖
𝑢} +

𝑟
1

∑

𝑖=1

ℎ
1

𝑖
𝑃
𝑖
,

𝑦 =

𝑟
1

∑

𝑖=1

ℎ
1

𝑖
𝐶
𝑖
𝑥.

(14)

In a similar way, the exosystem can be approximated by a TS
fuzzy system of r

2
rules as follows:

�̇� =

𝑟
2

∑

𝑖=1

ℎ
2

𝑖
𝑆
𝑖
𝜔,

𝑦ref =

𝑟
2

∑

𝑖=1

ℎ
2

𝑖
𝑄
𝑖
𝜔.

(15)

Note that the membership functions of the plant are not
necessarily the same as the exosystem functions. Fuzzy plant
(14) and fuzzy exosystem (15) can be rewritten as

�̇� = 𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) 𝑢 (𝑡) ,

𝑦 = 𝐶 (𝑡) 𝑥 (𝑡) ,

�̇� = 𝑆 (𝑡) 𝜔 (𝑡) ,

𝑦ref = 𝑄 (𝑡) 𝜔 (𝑡) .

(16)

And the desired fuzzy controller is

𝑢 (𝑡) =

𝑟
1

∑

𝑖=1

ℎ
1

𝑖
(𝑧
1 (
𝑡))𝐾𝑖 [

𝑥 (𝑡) − 𝜋 (𝜔 (𝑡))] + 𝛾 (𝜔 (𝑡)) . (17)

With this representation, the steady-state manifold is
𝜋(𝜔(𝑡)) = Π̃(𝑡)𝜔(𝑡), while the steady-state input is 𝛾(𝜔(𝑡)) =
Γ̃(𝑡)𝜔(𝑡) [9, 28]. Π̃(𝑡) and Γ̃(𝑡) can be obtained by differen-
tiating the steady-state error:

̇𝑒ss = �̇� (𝑡) −
̇

Π̃ (𝑡) 𝜔 (𝑡) − Π̃ (𝑡) �̇� (𝑡) . (18)

In steady-state, one gets

̇
Π̃ (𝑡) + Π̃ (𝑡) 𝑆 (𝑡) = 𝐴 (𝑡) Π̃ (𝑡) + 𝐵 (𝑡) Γ̃ (𝑡) + �̃� (𝑡) . (19)

Solving (19) in an analytical way may be very difficult. But its
numerical solution is given in [4] through a very practical
way. However, the resulting controller is very complex, in
general.

3. Overview of Adaptive-Network-Bases Fuzzy
Inference System (ANFIS)

In Figure 2, an Adaptive-Network-Based Fuzzy Inference
System network is shown. ANFIS is a system that employs the
structure of fuzzy Takagi-Sugeno-Kang systems (TSK) and
learning algorithms of neural networks with the purpose of
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Figure 2: ANFIS architecture for 2 input variables.

adjusting the consequent and antecedent parameters of the
fuzzy system.

Basically, ANFIS architecture is formed by five layers,
each of them is described in the following.

Layer 1. Fuzzification process, variables x and y are the inputs
to membership functions 𝑂

1,𝑖
. Generally, gbell functions are

used in this stage, for example.

Rule 1. If 𝑥 is 𝑂
1,1

and 𝑦 is 𝑂
1,3
, then 𝑓

1
= 𝑝
1
𝑥 + 𝑞
1
𝑦 + 𝑟
1
.

Rule 2. If 𝑥 is 𝑂
1,2

and 𝑦 is 𝑂
1,4
, then 𝑓

2
= 𝑝
2
𝑥 + 𝑞
2
𝑦 + 𝑟
2
.

Consider

𝑚
𝐴,𝑗

= 𝑂
1,𝑗 (

𝑥) =

1

1 + ((𝑥 − 𝑐
𝑖
) /𝑎
𝑖
)
2
𝑏
𝑗

𝑗 = 1, 2 (20)

or

𝑚
𝐵,𝑗

= 𝑂
1,𝑗

(𝑦) =

1

1 + ((𝑦 − 𝑐
𝑖
) /𝑎
𝑖
)
2
𝑏
𝑗

𝑗 = 3, 4. (21)

Parameters 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
are called premise parameters, where

these premise parameters can be modified (Figure 3).

Layer 2.Nodes denotedwithΠ. In these nodes, the inferences
between fuzzy sets are performed. The T-norm is used for
firing strengths:

𝑂
2,𝑗

= 𝑤
𝑗
= 𝑚
𝐴
𝑗
(𝑥) ⋅ 𝑚𝐵

𝑗
(𝑥) , 𝑗 = 1, 2. (22)

Layer 3. Normalization of firing strengths

𝑂
3,𝑗

= 𝑤
𝑗
=

𝑤
𝑗

𝑤
1
+ 𝑤
2

. (23)

Layer 4.The consequent part of fuzzy system is in nodes O4
𝑖
,

and it is given by a set of functions𝑓
𝑖
= 𝑝
𝑖
𝑥+𝑞
𝑖
𝑦+𝑟
𝑖
, and they

are activated according to the normalize firing strengths:

𝑂
4

𝑗
= 𝑤
𝑗
𝑓
𝑗
= 𝑤
𝑗
(𝑝
𝑗
𝑥 + 𝑞
𝑗
𝑦 + 𝑟
𝑗
) . (24)

Layer 5. Summation of input signals is obtained as

𝑂
5

1
= ∑

𝑗

𝑂
4

𝑗
= ∑

𝑗

𝑤
𝑗
𝑓
𝑗
. (25)

3.1. Case of Study. Consider the following TS fuzzy system:

�̇� (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑥
1 (
𝑡)) [𝐴 𝑖

𝑥 (𝑡) + 𝐵
𝑖
𝑢 (𝑡)] ,

�̇� (𝑡) = 𝑆𝜔 (𝑡) ,

𝑒 (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑥
1 (
𝑡)) 𝐶𝑖

𝑥 (𝑡) − 𝑄𝜔 (𝑡) ,

(26)

where

𝐴
1
= [

0 1

2 0
] , 𝐴

2
= [

0 1

3 0
] ,

𝐵
1
= [

0

2
] , 𝐵

2
= [

0

1
] ,

𝐶
1
= 𝐶
2
= 𝑄 = [1 0] , 𝑆 = [

0 1

−1 0
] ,

(27)

with the control

𝑢 (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑥
𝑖 (
𝑡))𝐾𝑖

[𝑥 (𝑡) − Π
𝑖
𝜔 (𝑡)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

fuzzy stabilizer

+

2

∑

𝑖=1

ℎ
𝑖
(𝑥
𝑖 (
𝑡)) Γ𝑖

𝜔 (𝑡)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

fuzzy regulator

.

(28)

It is important to remark that the fuzzy regulator included in
(28) is obtained by using the same membership functions of
the plant.

Observe that in this example, x
1
should track𝜔

1
.This can

be easily deduced from matrices C
1
, C
2
, and Q. Π

𝑖
and Γ
𝑖
are

obtained from the solution of (5) for each of the two rules.
Thus, a fuzzy regulator is designed on the basis of two local
linear systems.Themembership functions h

𝑖
are proposed as

triangular ones satisfying h
1
+ h
2
= 1.

The fuzzy steady-state manifold is

𝜋 (𝜔 (𝑡)) = Π
1
𝜔 (𝑡) = Π

2
𝜔 (𝑡)

= [

1 0

0 1
] [

𝜔
1 (
𝑡)

𝜔
2 (
𝑡)
] = Π𝜔 (𝑡) ,

(29)

while the steady-state input is

𝛾 (𝜔 (𝑡)) =

2

∑

𝑖=1

ℎ
𝑖
(𝜔
1 (
𝑡)) Γ𝑖

𝜔 (𝑡)

= [−

3

2

ℎ
1
(𝜔
1 (
𝑡)) − 4ℎ

2
(𝜔
1 (
𝑡))] [

𝜔
1 (
𝑡)

𝜔
2 (
𝑡)
] .

(30)

And the 𝐾
𝑖
gains are obtained from LMI approach [29] in

order to ensure global stability:

𝐾
1
= [−1.61 −0.35] ,

𝐾
2
= [−4.22 −0.71] .

(31)
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Figure 3: Shapes of gbell function with modified parameters.

From the matrices considered in the system (26), it is clear
that B

1
and B

2
are different from each other. Therefore,

an asymptotical error cannot be expected when the fuzzy
regulator is constructed by the fuzzy summation of the local
linear regulators using the samemembership functions of the
plant [28]. So, Figure 4 shows the behavior of state variable 𝑥

1

of fuzzy plant and state 𝜔
1
of exosystem, while the tracking

error is given in Figure 5.
In order to overcome the problem of controller (28),

a decoupling between the membership functions of fuzzy
stabilizer and fuzzy regulator is proposed, that is,

𝑢 (𝑡) =

2

∑

𝑖=1

ℎ
𝑖
(𝑥
𝑖 (
𝑡))𝐾𝑖 [

𝑥 (𝑡) − Π𝜔 (𝑡)]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Fuzzy Stabilizer

+

2

∑

𝑖=1

𝜇
𝑖
(𝑥
𝑖 (
𝑡)) Γ𝑖

𝜔 (𝑡)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Fuzzy Regulator

.

(32)

Observe that in this new controller, the membership func-
tions of the regulation part are not the same as that considered
in the fuzzy plant. In the following, these membership fun-
ctions 𝜇

𝑖
will be estimated by means of the Steepest Descent

approach and ANFIS.

According to [5], a fuzzy system with membership fun-
ctions of type gbell is a universal approximator and conse-
quently gbell functions are used to approximate fuzzy map-
ping in local regulators, subjected to condition 𝜇

2
= 1 − 𝜇

1
,

where

𝜇
1
= 𝑓 (𝑥, 𝑎, 𝑏, 𝑐) =

1

1 + |(𝑥 − 𝑐) /𝑎|
2𝑏
. (33)

The parameters a, b, and c determine the shape of gbell
function. As a consequence, the main goal is to estimate a,
b, and c such that the resulting membership functions 𝜇

1

and 𝜇
2
improve the performance of the fuzzy controller (32).

One of the most useful methods for tuning task found in the
literature is the “steepest descent” method:

𝑎
𝑖 (
𝑘 + 1) = 𝑎

𝑖 (
𝑘) − 𝜂

𝑎
𝑖

𝜕𝐸 (𝑎, 𝑏, 𝑐)

𝜕𝑎

𝑖 = 1, 2,

𝑏
𝑖 (
𝑘 + 1) = 𝑏

𝑖 (
𝑘) − 𝜂

𝑏
𝑖

𝜕𝐸 (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
)

𝜕𝑏
𝑖

𝑖 = 1, 2,

𝑐
𝑖 (
𝑘 + 1) = 𝑐

𝑖 (
𝑘) − 𝜂

𝑐
𝑖

𝜕𝐸 (𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
)

𝜕𝑐
𝑖

𝑖 = 1, 2.

(34)

It can be readily observed that expressions (34) depend on
error 𝑒ee(𝑘) = 𝑥(𝑘) − Π𝜔(𝑘), where 𝑥(𝑘) and 𝜔(𝑘) represent
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Figure 5: Tracking error when the membership functions of the
plant are used to fuzzily combine the local regulators.

the kth training input-output pair for the fuzzy plant and the
exosystem, respectively.

The “steepest descent” approachmust reduce the error on
the direction of the parameters of the controller. Therefore,
(34) need to be adapted such that they consider the evolution
of the states of the plant and exosystem (see Figure 6).

In order to obtain the training pairs, the plant is
discretized using the approximation �̇� ≈ (𝑥

𝑘
− 𝑥
𝑘−1

)/𝑇.
Therefore, the following discrete plant can be readily
obtained:

𝑥
𝑘
= [ (ℎ

1
𝐴
1
+ ℎ
2
𝐴
2
) 𝑥
𝑘−1

+ (ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
)

x1

x3

x2

yref

Initial conditions

Stabilizer

Steady-state input
uss = 𝛾(𝜔)

ess = x − xss

Steady-state zero
-error manifold

Steady-state error

xss = 𝜋(𝜔)

uss for n epochs
uss for n + 1 epochs

u = k(x − 𝜋(𝜔))

x(0)

Figure 6: Scheme of the iterative regulation.

×(

ℎ
1
𝐾
1
𝑥
𝑘−1

+ ℎ
2
𝐾
2
𝑥
𝑘−1

− ℎ
1
𝐾
1
Π𝜔
𝑘

−ℎ
2
𝐾
2
Π𝜔
𝑘
+ 𝜇
1
Γ
1
𝜔
𝑘
+ 𝜇
2
Γ
2
𝜔
𝑘

)]𝑇

+ 𝑥
𝑘−1

.

(35)

And the mean squared error is

𝑒ss = 𝑥 − Π𝜔→𝑒ss (𝑘) = 𝑥
𝑘
− Π𝜔
𝑘
⇒𝐸ss =

1

2

(𝑥
𝑘
− Π𝜔
𝑘
)
2
.

(36)

The current value of state x
𝑘
is an explicit function of 𝜇

1
and

𝜇
2
, and this implies that x

𝑘
depends on parameters a, b, and c.

Therefore, the steepest descent method should minimize the
error function with respect to independent variables [30–33]
(see Figure 7), that is,

𝜕𝐸

𝜕𝑎
1

= (𝑥
𝑘
− Π𝜔
𝑘
)
𝑇
[(ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
) (Γ
1
− Γ
2
) 𝜔
𝑘
] 𝑇

𝜕𝜇
1

𝜕𝑎
1

,

𝜕𝐸

𝜕𝑏
1

= (𝑥
𝑘
− Π𝜔
𝑘
)
𝑇
[(ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
) (Γ
1
− Γ
2
) 𝜔
𝑘
] 𝑇

𝜕𝜇
1

𝜕𝑏
1

,

𝜕𝐸

𝜕𝑐
1

= (𝑥
𝑘
− Π𝜔
𝑘
)
𝑇
[(ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
) (Γ
1
− Γ
2
) 𝜔
𝑘
] 𝑇

𝜕𝜇
1

𝜕𝑐
1

.

(37)
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Figure 7: Training of the fuzzy controller.

Recalling that partial derivatives for a generalized bell (gbell)
membership function are [34]

𝜕𝜇
1

𝜕𝑎
1

=

2𝑏

𝑎

𝜇
1
(1 − 𝜇

1
) ,

𝜕𝜇
1

𝜕𝑏
1

=

{

{

{

− ln








𝜔
𝑘−1

− 𝑐

𝑎









𝜇
1
(1 − 𝜇

1
) , if 𝜔

𝑘−1
̸= 𝑐,

0, if 𝜔
𝑘−1

= 𝑐,

𝜕𝜇
1

𝜕𝑐
1

=

{

{

{

2𝑏

𝜔
𝑘−1

− 𝑐

𝜇
1
(1 − 𝜇

1
) , if 𝜔

𝑘−1
̸= 𝑐,

0, if 𝜔
𝑘−1

= 𝑐.

(38)

The parameters that adjust the membership functions 𝜇
𝑖
are

updated by the steepest descent method according to the
following training law in the antecedent part:

𝑎
1 (
𝑘 + 1) = 𝑎

1 (
𝑘) − 𝜂

𝑎
(𝑥
𝑘
− Π𝜔
𝑘
)
𝑇

× [(ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
) (Γ
1
− Γ
2
) 𝜔
𝑘
] 𝑇

𝜕𝜇
1

𝜕𝑎
1

,

𝑏
1 (
𝑘 + 1) = 𝑏

1 (
𝑘) − 𝜂

𝑏
(𝑥
𝑘
− Π𝜔
𝑘
)
𝑇

× [(ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
) (Γ
1
− Γ
2
) 𝜔
𝑘
] 𝑇

𝜕𝜇
1

𝜕𝑏
1

,

𝑐
1 (
𝑘 + 1) = 𝑐

1 (
𝑘) − 𝜂

𝑐
(𝑥
𝑘
− Π𝜔
𝑘
)
𝑇

× [(ℎ
1
𝐵
1
+ ℎ
2
𝐵
2
) (Γ
1
− Γ
2
) 𝜔
𝑘
] 𝑇

𝜕𝜇
1

𝜕𝑐
1

.

(39)

The simulation results are shown in Figure 8, where state
x
1
tracks to 𝜔

1
. From Figure 9, it is observed that the error

is minimized considerably in comparison with the linear
controller (28) (Figure 5).When the regulator is fully trained,
the reference tracking is achieved in a very acceptable way,
which is depicted in Figures 10 and 11.

But according to [1], if the regulation problem has a
solution, then it is unique. In fuzzy regulation, thismeans that
the membership functions of the fuzzy regulator cannot have
arbitrary shapes, and in many cases, their shape is unknown.
Obviously, the steepest descent approach is not applicable if
the shape of the membership functions is not given a priori.
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Figure 8: x
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during the learning scheme.
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Figure 9: Tracking error during the learning scheme.

In the following, this disadvantage will be overcome by con-
sidering ANFIS.

3.2. ANFIS in Output Fuzzy Regulation. Considering (26),
when h

1
is equal to 1, the dynamics of the overall fuzzy system

are described by the first local linear subsystem and the exact
output regulator is obtained from Γ

1
. In the same way, if h

2

is equal to 1, the exact output regulator is obtained directly
from Γ

2
. With this in mind, the next fuzzy implications are

obtained:

IF ℎ
1
is 1, THEN 𝜇

1
= 1 → 𝑢(𝑡) = ℎ

1
𝐾
1
[𝑥(𝑡) −

Π𝜔(𝑡)] + 𝜇
1
Γ
1
𝜔(𝑡),

IF ℎ
2
is 1, THEN 𝜇

2
= 1 → 𝑢(𝑡) = ℎ

2
𝐾
2
[𝑥(𝑡) −

Π𝜔(𝑡)] + 𝜇
2
Γ
2
𝜔(𝑡).
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Figure 11: Tracking error when the controller has been fully trained.

A set of fuzzy rules can be established, taking into account
that the regulation problem is exactly solved by local linear
regulator, that is,

If ℎ
1
is 1 then 𝜇

1
= 1 ⇒ 𝑢reg(𝑡) = Γ

1
,

If ℎ
2
is 1 then 𝜇

2
= 1 ⇒ 𝑢reg(𝑡) = Γ

2
.

In the fuzzy rules given previously, it is supposed that 𝜇
𝑖

is a function of𝜔
1
, while 𝜇

2
can be obtained from 𝜇

2
= 1−𝜇

1
.

Then, 𝜔
1
is chosen as the input variable in ANFIS. Figure 12

shows the ANFIS architecture with one input.

Layer 1. For this example, gbell membership functions are
chosen, and 8 nodes are distributed uniformly (see Figure 13)
according to [35]

𝑎
1
= 4, 𝑏

1
= 2, 𝑐

1
= −30,

𝑎
2
= 4, 𝑏

2
= 2, 𝑐

2
= −21,

𝑎
3
= 4, 𝑏

3
= 2, 𝑐

3
= −12,

𝑎
4
= 4, 𝑏

4
= 2, 𝑐

4
= −3,

𝑎
5
= 4, 𝑏

5
= 2, 𝑐

5
= 3,

𝑎
6
= 4, 𝑏

6
= 2, 𝑐

6
= 12,

𝑎
7
= 4, 𝑏

7
= 2, 𝑐

7
= 21,

𝑎
8
= 4, 𝑏

8
= 2, 𝑐

8
= 30,

𝜇
𝐴
𝑗

(ℎ
1
) =

1

1 + ((ℎ
1
− 𝑐
𝑖
) /𝑎
𝑖
)
2
𝑏
𝑖

𝑗 = 1, 2, . . . , 8; 0 ≥ ℎ
1
≤ 1.

(40)

Layer 2. The weight of each function corresponds to its own
membership function because only one input variable is
considered:

𝑤
1
= 𝜇
𝐴1
, 𝑤

2
= 𝜇
𝐴2
,

𝑤
3
= 𝜇
𝐴3
, 𝑤

4
= 𝜇
𝐴4
,

𝑤
5
= 𝜇
𝐴5
, 𝑤

6
= 𝜇
𝐴6
,

𝑤
7
= 𝜇
𝐴7
, 𝑤

8
= 𝜇
𝐴8
.

(41)

Layer 3.Weight normalizing:

𝑤
𝑖
=

𝑤
𝑖

𝑤
1
+ 𝑤
2
+ 𝑤
3
+ 𝑤
4
+ 𝑤
5
+ 𝑤
6
+ 𝑤
7
+ 𝑤
8

,

𝑖 = 1, 2, . . . , 8.

(42)

Layer 4. Takagi-Sugeno coefficients:

𝑓
𝑖
= 𝑤
𝑖
(𝑝
𝑖
ℎ
1
+ 𝑟
𝑖
) 𝑖 = 1, 2, . . . , 8. (43)

Layer 5.

𝑓 = 𝑓
1
+ 𝑓
2
+ 𝑓
3
+ 𝑓
4
+ 𝑓
5
+ 𝑓
6
+ 𝑓
7
+ 𝑓
8
. (44)

3.3. Adjustment of Input Layer Parameters. Thus, the goal
is to generate the adequate membership functions for the
fuzzy regulator by means of ANFIS regulators, but these
values depend on the reference signal. The proposed scheme
is depicted in Figure 14.

As discussed in Section 3.1, the steepest descent method
adjusts parameters 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
.Then, the chain rule used for the

error function 𝑒ee = 𝑥
1
− 𝜔
1
depends on parameters 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
,

that is,
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Figure 12: ANFIS architecture for one input variable.
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𝜕𝐸

𝜕𝑎
𝑖

=

𝜕𝐸

𝜕𝑥
1

𝜕𝑥
1

𝜕𝜇
1

𝜕𝜇
1

𝜕𝑓
𝑖

𝜕𝑓
𝑖

𝜕𝑤
𝑖

𝜕𝑤
𝑖

𝜕𝜇
𝐴𝑖

𝜕𝜇
𝐴𝑖

𝜕𝑎
𝑖

,

𝜕𝐸

𝜕𝑏
𝑖

=

𝜕𝐸

𝜕𝑥
1

𝜕𝑥
1

𝜕𝜇
1

𝜕𝜇
1

𝜕𝑓
𝑖

𝜕𝑓
𝑖

𝜕𝑤
𝑖

𝜕𝑤
𝑖

𝜕𝜇
𝐴𝑖

𝜕𝜇
𝐴𝑖

𝜕𝑏
𝑖

,

𝜕𝐸

𝜕𝑐
𝑖

=

𝜕𝐸

𝜕𝑥
1

𝜕𝑥
1

𝜕𝜇
1

𝜕𝜇
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𝑖
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𝑖
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𝑖

𝜕𝜇
𝐴𝑖

𝜕𝜇
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𝜕𝑐
𝑖

,

𝜕𝐸

𝜕𝑥
1

= (𝑥
1
− 𝜔
1
) ,
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Figure 14: Rule tuning including ANFIS.

𝜕𝑥
1

𝜕𝜇
1

= [(Γ
1
− Γ
2
) ℎ
1
] 𝑇,

𝜕𝜇
1

𝜕𝐹
𝑖

= 1,

𝜕𝐹
𝑖

𝜕𝑤
𝑖

=

𝑤
𝑖

∑𝑤
𝑖

(𝑝
𝑖
𝑥 + 𝑟
𝑖
) =

𝑝
𝑖
𝑥 + 𝑟
𝑖
− 𝑓

∑𝑤
𝑖

,

𝜕𝑤
𝑖

𝜕𝜇
𝐴
1

= 1.

(45)

The terms 𝜕𝜇
𝐴𝑖
/𝜕𝑎
1
, 𝜕𝜇
𝐴𝑖
/𝜕𝑎
1
, and 𝜕𝜇

𝐴𝑖
/𝜕𝑎
1
are calculated

from (38), while

𝜕𝐸

𝜕𝑎
𝑖

= (𝑥
1
− 𝜔
1
) [(Γ
1
− Γ
2
) ℎ
1
] 𝑇(

𝑝
𝑖
ℎ
1
+ 𝑟
𝑖
− 𝑓

∑𝑤
𝑖

)(

𝜕𝜇
𝐴𝑖

𝜕𝑎
𝑖

) ,

𝜕𝐸

𝜕𝑏
𝑖

= (𝑥
1
− 𝜔
1
) [(Γ
1
− Γ
2
) ℎ
1
] 𝑇(

𝑝
𝑖
ℎ
1
+ 𝑟
𝑖
− 𝑓

∑𝑤
𝑖

)(

𝜕𝜇
𝐴𝑖

𝜕𝑏
𝑖

) ,

𝜕𝐸

𝜕𝑐
𝑖

= (𝑥
1
− 𝜔
1
) [(Γ
1
− Γ
2
) ℎ
1
] 𝑇(

𝑝
𝑖
ℎ
1
+ 𝑟
𝑖
− 𝑓

∑𝑤
𝑖

)(

𝜕𝜇
𝐴𝑖

𝜕𝑐
𝑖

) .

(46)
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1
versus 𝜔

1
when ANFIS is included in the fuzzy

controller.

Each one of the n functions that are proposed in the input
layer of ANFIS is fitted by using the previous expressions.

3.4. ANFIS Learning Using Levenberg-Marquardt Approach.
The Levenberg-Marquardt (L-M) method is an effective
nonlinear least-squares approach to nonlinear regression
problems [36]:

Θ
𝑘+1

= Θ
𝑘
− (𝐽
𝑇
𝐽 + 𝜆𝐼)

−1

𝑔
ℎ
, (47)

where 𝑔
ℎ
≡ (1/2)𝑔; 𝜆 is a nonnegative number.

It has been proved that the L-M method reduces the root
mean squared error further than hybrid learning method. In
this work, the mean square error is used, and the gradient
takes into account T-S parameters of the fourth layer. There-
fore, the following training rules can be obtained:

𝜕𝐸

𝜕𝑝
𝑖

=

𝜕𝐸

𝜕𝑥
1

𝜕𝑥
1

𝜕𝜇
1

𝜕𝜇
1

𝜕𝑓
𝑖

𝜕𝑓
𝑖

𝜕𝑝
𝑖

𝑖 = 1, . . . , 𝑛,

𝜕𝐸

𝜕𝑟
𝑖

=

𝜕𝐸

𝜕𝑥
1

𝜕𝑥
1

𝜕𝜇
1

𝜕𝜇
1

𝜕𝑓
𝑖

𝜕𝑓
𝑖

𝜕𝑟
𝑖

𝑖 = 1, . . . , 𝑛.

(48)

4. Numerical Results after Applying ANFIS

From Figures 15 and 16, it can be observed that the fuzzy
tracking is improved and that the tracking error is smaller
than the one obtained through the steepest descent approach.

Figure 17 shows membership function 𝜇
1
obtained from

different methods: (1) analytically computed, (2) member-
ship functions for fuzzy regulator are the same than ones of
fuzzy plant (𝜇

1
= ℎ
1
), and (3)ANFIS estimation.Note that the

membership function generated by ANFIS tends to the real
one (analytically computed). It is important to recall that the
𝜇
1
+ 𝜇
2
= 1, and therefore the missing membership function,

𝜇
2
, can be easily obtained.
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Figure 16: Tracking error when ANFIS is included in the fuzzy
controller.
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The control signal appears in Figure 18.

Case 1. In some applications, it is desired that external ref-
erence signal has variable frequency, and thus a new exosys-
tem is proposed:

𝑆 = [

0 3

−3 0
] . (49)

The local steady-state manifolds can be obtained from

Π
1
= Π
2
= [

1 0

0 3
] ,

Γ
1
= [−

11

2

0] , Γ
2
= [−13 0] .

(50)
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Figure 19 shows the system behavior during the training
stage. As expected, the fuzzy plant tracks asymptotically the
exosystem.

Case 2. A practical example is the inverted pendulum
(Figure 20), whose nonlinear model is given by [29]

�̇�
1 (
𝑡) = 𝑥

2 (
𝑡)

�̇�
2
(𝑡) =

𝑔 sin (𝑥
1
(𝑡))−𝑎𝑚𝑙𝑥

2

2
(𝑡) sin (2𝑥

1
(𝑡)) /2−𝑎 cos (𝑥

1
(𝑡)) 𝑢 (𝑡)

4𝑙/3 − 𝑎𝑚𝑙 cos2 (𝑥
1
(𝑡))

,

(51)

where the mass of the cart is 𝑀 = 8 kg, the mass of the
pendulum is 𝑚 = 2 kg, the length of the pendulum is 2𝑙 =
1m, the gravity is 𝑔 = 9.81m/s2, and 𝑎 = 1/(𝑚 +𝑀).

m

x1

M

u

Figure 20: Inverted pendulum on a cart.

h1

h2

−𝜋/2 𝜋/2

1

0
0

Figure 21: Membership functions for the two-rule model [29].

This nonlinear model can be approximated by a TS fuzzy
model of two rules with

𝐴
1
= [

0 1

17.31176 0
] , 𝐴

2
= [

0 1

9.36957 0
] ,

𝐵
1
= [

0

−0.17647
] , 𝐵

2
= [

0

−0.00523
] ,

𝑆 = [

0 1

−1 0
] , 𝐾

1
= [−120.6667 −22.6667 ] ,

𝐾
2
= [−2551.6 −764] ,

(52)

and membership functions as those depicted in Figure 21.
The regulation condition is not satisfied when the mem-

bership functions of the plant are used to combine the
local regulators because matrices 𝐵

1
and 𝐵

2
are different

(Figure 22).
On the other hand, from Figures 23 and 24, it can be ob-

served that the tracking is improved, that is, the tracking error
is considerably reduced when ANFIS is used to obtain the
adequate membership.

5. Conclusions

In this paper, it has been shown that the nonlinearity of the
plant is not necessarily the same nonlinearity needed by the
regulator to ensure reference tracking. In other words, the
membership functions for fuzzy regulator and for the fuzzy
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plant are not the same, in general. In that sense, the steepest
descent and ANFIS approaches have been used to estimate
the adequate membership functions of fuzzy regulator in
order to reduce the tracking error when the overall fuzzy
controller is obtained from the fuzzy summation of local
controllers.

It is also important to mention that although the Steepest
Descent can be used to approximate the fuzzy membership
functions, the approach can be trapped in a local minimum
or local maximum. On the other hand, ANFIS due the hybrid
training avoids this problem.
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Figure 24: Tracking error when ANFIS is included in the fuzzy
controller.

On the other hand, the use ofANFIS avoids the restriction
of proposing a priori form of the membership functions,
which is another disadvantage of the Steepest Descent ap-
proach.

Finally, it can be concluded that a suitable approximation
of the nonlinearity of the fuzzy regulator is obtained when
ANFIS is used as a tuning tool during the designing of fuzzy
regulators.
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[35] M. A. Denäı, F. Palis, and A. Zeghbib, “ANFIS based modelling
and control of non-linear systems: a tutorial,” in Proceedings of
the IEEE International Conference on Systems, Man and Cyber-
netics (SMC ’04), pp. 3433–3438, October 2004.

[36] J. R. Jang and E. Mizutani, “Levenberg-Marquardt method for
ANFIS learning,” in Proceedings of the Biennial Conference of
the North American Fuzzy Information Processing Society—
NAFIPS, vol. 1, pp. 87–91, June 1996.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


