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In a B2C scenario, the retailer is confronted with two kinds of demand. One requires an immediate delivery after placing an order,
while the other prefers a delayed shipment due to some personal reasons. Considering demands for different delivery time, we
explore a newsvendormodel with resalable returns and an additional order to optimize the procurement decision under a stochastic
demand distribution. The impact of the proportion of the instant delivery needs and the return rate on the order quantity and the
expected profit is illustrated through numerical tests. It is shown that the expected profit decreases as the ratios of immediate
delivery needs and returned products increase. Besides, if the sum of the percentage of the instant delivery needs and the return
rate is less than 1, the expected profit is always greater than the result if the sum of them is equal to or greater than 1. Management
implications are also discussed.

1. Introduction

Consider the following scenario. Kevin places an order for
a free-size navy-blue hoodie online on Monday. In order to
get the hoodie as soon as possible, he prefers the immediate
delivery. Meanwhile, Jason orders the same hoodie in the
same online shop.However, because of a business trip, he asks
for his hoodie being sent at least five days later. The next day,
Kevin receives his hoodie as scheduled, but it turns out that
the color seems so much darker than the one shown on the
Internet that he decides to return it instantly. Afterwards, the
online shop sends the hoodie that Kevin returned to Jason on
Saturday, and Jason is quite satisfied with the product and the
timing.

In this scenario, what Kevin and Jason experience is quite
prevalent nowadays. With the booming of E-commerce, the
number of consumers shopping online shoots up. Comparing
to the in-store shopping, however, online consumers aremore
likely to return products due to a lack of seeing, touching,
and trying the commodities, which results in the return
rate ranging from 18% to 74% [1]. Since consumers return
products due to their personal reasons, most of the returns

are in good condition and can be resold directly once received
by the e-tailer. In this sense, managing the returns becomes
an integral part of e-tailers’ supply chain management. For
instance, when deciding the procurement quantity at the very
beginning, the B2C retailermust take the quantity of resalable
returns into account. Additionally, as shown in the previous
example, another difference between the online shopping and
the in-store shopping is that, in traditional brick-and-mortar
shopping, consumers can get the product instantaneously
once it is paid. When consumers are shopping on the
Internet, they are free to choose an instant delivery or a
delayed delivery. In this case, the B2C retailer is confronted
with two kinds of demand, which complicate the process
of decision-making about the replenishment quantity. One
demand prefers the immediate delivery after placing an order,
while the other asks for the delayed shipment. Since the
sales in former case may be lost when there is a shortage,
the retailer needs to order and decide the procurement
quantity at the beginning of the sales period, which is used
to meet the instant delivery needs. As to the consumers
requiring the delayed delivery, the retailer can satisfy them
with the returns arriving before the end of the selling period,
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the remaining stocks of the initial replenishment (if any),
and a second order. Based on the abovementioned reasons,
both the quantity of resalable returns and the demands for
either immediate or delayed delivery have a great influence
on inventory management of B2C retailers. Thus, Internet
retailers’ flexibility in deciding the order quantity is of vital
importance, which aims at maximizing their profit as well as
achieving an optimal service level.

Since returns play such an important role in deciding
order quantity, much of the existing literature dealing with
procurement decisions considers the case with returns that
need recovery, remanufacture, or recycle [2, 3]. They mainly
analyze the impact of the quality and quantity of the returned
goods and the lead-time to refurbish them on the decision-
making about the order quantity. Generally, this kind of
problem focuses on the traditional business because when
shopping at the physical store, consumers can have a better
overall idea about the product’s size, texture, appearance, and
performance before purchasing. Hence, the ratio of returns
due to quality problems or the end of service life is much
larger than the ratio of returns due to personal preference
[4]. Besides, most of the former returns need refurbishing,
remanufacturing, or recovery. So, in the background of
traditional business, the research usually focuses on returned
products with quality problem, which is refurbished or
recovered before reselling to the market.

In contrast with consumers shopping at the physical store,
online consumers evaluate the commodity through pictures
displayed on the website. Therefore, they return products
mostly becausewhat they get eventually is different fromwhat
they saw on the Internet. The ratio of returns as good as
new constitutes a large amount of total returns [5]. When
deciding the order quantity, the quantity of the resalable
returns should be taken into account. So, another stream
of literature modeling procurement decisions has emerged,
analyzing the effect of the quantity of resalable returns [1, 5, 6]
and the return policy [7–10] on the order quantity of Internet
retailers.

In the context of E-commerce, not only do the returns
affect the replenishment decision, but also demands for
different delivery timehave influence on it.Online consumers
can choose between receiving the product as soon as possible
and delaying the delivery time, which is the unique feature
of online shopping differing from in-store shopping. To the
best of our knowledge, few literatures consider the different
delivery time. Hence, we extend existing research to the case
considering demands for different delivery options as well as
the returns.

Previous literature models a procurement decision with
returns from the perspectives of either the single period or the
multiperiod, depending on the properties of the products in
the research. In contrast with the products in themultiperiod
model, the goods in a single period model are highly
seasonal or more perishable [11]. In the context of e-business,
commodities with short period and seasonal characteristics
such as apparel and personal electronics account for most
of the sales [12], which leads us to formulate the problem
based on a single period model (also known as the newsboy
or newsvendor model).

Comparing to the classic newsvendormodel that only one
order is placed before the beginning of the sales period, a
recourse case is proposed where an additional replenishment
takes place during or at the end of the period [13–15].
Research on the single period problem with a second order
points out that an additional order chance can effectively
improve the accuracy of demand forecasting and increase
revenue. However, existing research dealing with a second
procurement ignores the effect of returns. Besides, research
considers returns without taking an additional order into
account. Thus, we extend the classic newsvendor model to
the one considering both resalable returns and an additional
order simultaneously.

For brevity, the following novel contributions differen-
tiate our model from the abovementioned literature. First
of all, in a B2C scenario, the delivery time uncertainty is
considered.We distinguish the demand asking for immediate
delivery from the demand requiring delayed shipment and
analyze their impact on the procurement decisions and the
expected profit of the B2C retailer. Additionally, we extend
the newsboy problem to themodel considering both resalable
returns and a second order simultaneously. Considering
demands for different delivery time, resalable returns, and an
additional replenishment, we formulate the problembased on
the newsvendor model to analyze the order quantity that not
only maximizes Internet retailers’ profit but also optimizes
their service level.

The remainder of the paper is organized as follows.
Section 2 reviews the relevant literature and points out the
characteristics of the paper. Section 3 delineates the problem
in detail. Section 4 introduces the notation and formulates
the expected profit function of the B2C retailer. In Section 5,
a brief numerical illustration is presented, from which some
observations andmanagement implications are deduced. Last
but not least, Section 6 summarizes the findings of the paper
and shows some extensions.

2. Literature Review

Research concentrating on procurement decisions has been
increasing rapidly.There are three streams of research related
to our problem.The first stream focuses on used returns that
need to be refurbished before reselling. Providing the demand
is known and returns are stochastic; Ferrer [16] presents
a remanufacturing procedure with only one collection site.
Robotis et al. [17] extend Ferrer’s system to two collection
sites storing two distinct returned products, respectively.
Based on the system proposed by Robotis et al., Webster
and Weng [11] examine a system with two collection sites
and one refurbishing site. Not only do they derive the
optimal production and procurement quantities maximizing
the profit of the entire supply chain, but also they figure
out under what condition it is better to use only one of the
collection sites. Additionally, since timely quality information
is of vital importance, Teng et al. [10] demonstrate a quality
classification scheme for the automotive industry. In a similar
vein, Ferguson et al. [4] further explore the value of classifi-
cation according to different quality levels. In order to timely
evaluate the quality of returns, Panagiotidou et al. [2] study
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the sampling inspection in a remanufacturing system, which
improves the procurement decision. The aforesaid literature
mainly concentrates on returns from offline consumers.
Because they can have a better understanding of products
before purchasing, offline consumers usually return products
because of quality problems. So, the quality and quantity
of returns and the lead-time to remanufacture them are
considered. In contrast, we concentrate on the intact returns,
the quality of which is as good as the new.There is no need to
recover the returned products and they can be resold after a
quick quality check.

Returns requiring refurbishing or recovery take the lion’s
share of total returns in the background of traditional
business. However, since online consumers make purchase
decisions mostly based on picture on the Internet, their
likelihood to return intact products is high due to the fact
that the item they receive is usually far from what they
expected. In most cases, the items they return have no
difference from brand new commodities. So a second group
of literature deals with this kind of returned products, which
can be resold instantly. According to the values of the cost
coefficients, Vlachos and Dekker [5] first study the optimal
replenishment strategies with uncontrollable return flows.
Under the condition of various return options, they derive
different optimal order quantities. Mostard and Teunter [1]
relax two hypotheses in the research of Vlachos and Dekker,
which assume that commodities can be returned only once
and the proportion of the returns is fixed. In the model of
Mostard and Teunter, products can be returned more than
once. Furthermore, in consideration of the variability in the
percentage of returns, they figure out a closed-form equation
determining the optimal order quantity. Last but not least,
using real data from a mail order enterprise, they compare
the procurement quantity deduced from their model to those
presented by Vlachos and Dekker and to the original order
quantity of the company. Most of the earlier research uses
historical data to forecast the mean and standard deviation
of demand. In practice, however, sales data of highly seasonal
products is difficult to obtain. Mostard et al. [6] extend the
newsvendor problem to a distribution-free one with resalable
returns. Even though the existing literature analyzes the
impact of resalable returns on procurement decisions, few
of them take an additional order into consideration at the
same time, which can significantly improve the accuracy of
demand forecast and increase profit.

Comparing to the classic newsvendor model, where the
order can only be placed once before the sales period,
Gallego and Moon [13] analyze a recourse case based on
the distribution-free newsvendor problem. The unsatisfied
demand is assumed to be deterministic and can be met
by an additional replenishment at the end of the season.
Kodama [18] discusses a sophisticated situation with returns
to manufacturer in the case of surplus and a second order
in the case of stock-out. Two cases are considered. One is
the demand that occurs once only at a particular point of
the period. The other is the demand that follows a general
demand pattern. Similarly, Khouja [14] extends the model
of Gallego and Moon to the case that a ratio of the unmet
demand is lost immediately and the remainder is satisfied

by an emergency order. In contrast, H. S. Lau and A. H. L.
Lau [15] introduce the additional order quantity as a second
decision variable, which is determined during the midseason
compared to the first order quantity determined at the start of
the sales period.The coordination between these twodecision
variables is of vital importance. Previous research considering
an additional order ignores the effect of returns. Also, as
mentioned, research dealing with returns does not analyze
the influence of a second order.

So far, few literatures consider both resalable returns and
a second order aswe do. Besides,most of the abovementioned
research explores the problem in the setting of offline business
and refers to the same method in the context of e-business.
But consumers are free to choose either an instant delivery or
a delayed delivery while shopping online, which differentiates
the e-shopping from the in-store shopping. The B2C retailer
should take the impact of different delivery time on inventory
into considerationwhen deciding the replenishment quantity
at the very beginning. Therefore, based on a newsvendor
model, we consider demands for different delivery options,
returns, and a second order simultaneously and formulate
and optimize the expected profit of the B2C retailer.

3. Problem Description

In the setting of E-commerce, the demand 𝑥 for a single
product is stochastic, which follows a distribution function
𝐹(𝑥) and a probability density function 𝑓(𝑥). Since the
delivery time can be customized to the needs of consumers,
demand is classified into two types by the different delivery
time that consumers require. Consumers preferring the
immediate delivery after placing an order account for 𝛼

percent (according to historical data, 𝛼 is a constant) of the
total demand, while the proportion of consumers asking for
a delayed delivery because of some personal reasons is (1−𝛼).
Before the sales period, the vendor needs to estimate the
demand asking for instant delivery and to decide the initial
order quantity 𝑄

1
, the only decision variable in the model.

The retailer purchases at the price 𝑐
𝑝
per unit ordered and sells

at the price 𝑝 per unit sold. All the commodities replenished
before the selling season are used to meet the instant delivery
needs. Due to forecast errors, this kind of demand is lost at the
cost 𝑐
𝑠
per shortage once there is a stock-out. Otherwise, the

remaining stocks are used to satisfy the demand, preferring
delayed delivery. Meanwhile, returns arriving before the end
of the selling season are assumed to be of the same quality
as new products and resold to meet the delayed delivery
needs at the same price. Consumers receive a full refund if
products are returned. Since the number of returned products
is uncontrollable, we assume that the returns comprise 𝛽

percent of total sales. The vendor pays at the unit cost 𝑐
𝑚
to

collect, inspect, repack, and restock the returned products.
Compared to the classic newsboy model, if the demand
requiring delayed delivery is higher than the remaining stocks
of the first procurement (if any) and the returned products,
according to the unmet needs, an additional order is allowed
in our model. Of course, the second order at the end leads
to higher purchase cost 𝑐

𝑝
. At the end of the season, unsold

products are disposed at the unit cost 𝑐
𝑑
without salvage value.
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4. Notation and Models

Notation

𝑥: Demand

𝑄
0
: First order quantity

𝑄
1
: Second order quantity

𝛼: Proportion of demand requiring instant delivery
(1 < 𝛼 < 0)

𝛽: Proportion of returns (1 < 𝛽 < 0)

𝑝: Unit selling price

𝑐
𝑝
: First order purchase cost per product

𝑐
𝑝
: Second order purchase cost per product

𝑐
𝑠
: Penalty cost per shortage

𝑐
𝑑
: Disposal cost per product

𝑐
𝑚
: Return management cost per returned product

𝜋: Profit

𝑄
0

∗: Optimal order quantity

𝐸𝜋(𝑄
0
): Expected profit for the order quantity 𝑄

0
.

The problem described in the former part has only one
decision variable: the first order quantity 𝑄

0
. 𝑄
1
is placed at

the end of the season after observing the unsatisfied demand.
Formulating the expected profit for the replenishment quan-
tity𝑄
0
, we derive the optimal order quantity𝑄

0

∗.We begin to
formulate and optimize the model from the situation without
returns, based on which the model considering returns is
formulated and optimized.

4.1. Model without Returns

Case A (𝛼𝑥 ≥ 𝑄
0
,𝑄
1
= (1−𝛼)𝑥).The profit of the B2C vendor

when the first order quantity is 𝑄
0
and the demand is 𝑥 is

𝜋 (𝑄
0
, 𝑥) = 𝑝𝑄

0
+ 𝑝 (1 − 𝛼) 𝑥 − 𝑐

𝑝
𝑄
0
− 𝑐
𝑝
𝑄
1
− 𝑐
𝑠
(𝛼𝑥 − 𝑄

0
) .

(1)

Case B (𝛼𝑥 < 𝑄
0
, 𝑄
1
= max{(1 − 𝛼)𝑥 − (𝑄

0
− 𝛼𝑥), 0}). The

profit of the B2C vendor when the first order quantity is 𝑄
0

and the demand is 𝑥 is

𝜋 (𝑄
0
, 𝑥) = 𝑝𝛼𝑥 + 𝑝 (1 − 𝛼) 𝑥 − 𝑐

𝑝
𝑄
0
− 𝑐
𝑝
𝑄
1

− 𝑐
𝑑
max {(𝑄

0
− 𝛼𝑥) − (1 − 𝛼) 𝑥, 0} .

(2)

Let

𝐻(𝑄
0
, 𝑥) = 𝑝min {𝛼𝑥, 𝑄

0
} + 𝑝 (1 − 𝛼) 𝑥 − 𝑐

𝑝
𝑄
0
, (3)

𝐺
1
(𝑄
0
, 𝑥) = 𝑐

𝑝
𝑄
1
+ 𝑐
𝑠
(𝛼𝑥 − 𝑄

0
) , (4)

𝐺
2
(𝑄
0
, 𝑥) = 𝑐

𝑝
𝑄
1
+ 𝑐
𝑑
max {(𝑄

0
− 𝛼𝑥) − (1 − 𝛼) 𝑥} . (5)

Combining (3), (4), and (5) gives

𝜋 (𝑄
0
, 𝑥) =

{

{

{

𝐻(𝑄
0
, 𝑥) − 𝐺

1
(𝑄
0
, 𝑥) 𝑥 ≥

𝑄
0

𝛼

𝐻 (𝑄
0
, 𝑥) − 𝐺

2
(𝑄
0
, 𝑥) otherwise.

(6)

The expected profit of the B2C retailer is

𝐸𝜋 (𝑄
0
, 𝑥) = ∫

∞

0

𝐻(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

− ∫

𝑄0/𝛼

0

𝐺
2
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

− ∫

∞

𝑄0/𝛼

𝐺
1
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥.

(7)

Taking the derivative of (3), (4), and (5),

𝑑

𝑑𝑄
0

∫

∞

0

𝐻(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

= ∫

𝑄0/𝛼

0

𝑑

𝑑𝑄
0

𝑝 (𝛼𝑥 − 𝑄
0
) 𝑓 (𝑥) 𝑑𝑥 + (𝑝 − 𝑐

𝑝
)

= −𝑝𝐹(

𝑄
0

𝛼

) + (𝑝 − 𝑐
𝑝
) ,

(8)

𝑑

𝑑𝑄
0

∫

∞

𝑄0/𝛼

𝐺
1
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

= ∫

∞

𝑄0/𝛼

𝑑

𝑑𝑄
0

𝑐
𝑠
(𝛼𝑥 − 𝑄

0
) 𝑓 (𝑥) 𝑑𝑥

− 𝑐
𝑝
(1 − 𝛼)

𝑄
0

𝛼

𝑓(

𝑄
0

𝛼

)

1

𝛼

= −𝑐
𝑠
[1 − 𝐹(

𝑄
0

𝛼

)] − 𝑐
𝑝
(1 − 𝛼)

𝑄
0

𝛼

𝑓(

𝑄
0

𝛼

)

1

𝛼

,

(9)

𝑑

𝑑𝑄
0

∫

𝑄0/𝛼

0

𝐺
2
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

=

𝑑

𝑑𝑄
0

∫

𝑄0/𝛼

0

[𝑐
𝑝
(𝑥 − 𝑄

0
)
+

+ 𝑐
𝑑
(𝑄
0
− 𝑥)
+

] 𝑓 (𝑥) 𝑑𝑥

= 𝑐
𝑝
(

𝑄
0

𝛼

− 𝑄
0
)𝑓(

𝑄
0

𝛼

)

1

𝛼

+ ∫

𝑄0

0

𝑑

𝑑𝑄
0

𝑐
𝑑
(𝑄
0
− 𝑥)𝑓 (𝑥) 𝑑𝑥

+ ∫

𝑄0/𝛼

𝑄0

𝑑

𝑑𝑄
0

𝑐
𝑝
(𝑥 − 𝑄

0
) 𝑓 (𝑥) 𝑑𝑥

= 𝑐
𝑝
(

𝑄
0

𝛼

− 𝑄
0
)𝑓(

𝑄
0

𝛼

)

1

𝛼

+ 𝑐
𝑑
𝐹 (𝑄
0
)

− 𝑐
𝑝
[𝐹 (

𝑄
0

𝛼

) − 𝐹 (𝑄
0
)] .

(10)
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Combining (8), (9), and (10) gives

𝑑

𝑑𝑄
0

𝐸𝜋 (𝑄
0
, 𝑥)

= −𝑝𝐹(

𝑄
0

𝛼

) + (𝑝 − 𝑐
𝑝
) + 𝑐
𝑠
[1 − 𝐹(

𝑄
0

𝛼

)]

− 𝑐
𝑑
𝐹 (𝑄
0
) + 𝑐
𝑝
[𝐹 (

𝑄
0

𝛼

) − 𝐹 (𝑄
0
)]

= (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) − (𝑝 + 𝑐

𝑠
− 𝑐
𝑝
) 𝐹 (

𝑄
0

𝛼

)

− (𝑐
𝑑
+ 𝑐
𝑝
) 𝐹 (𝑄

0
) .

(11)

So (𝑑
2
/𝑑
2
𝑄
0
)𝐸𝜋(𝑄

0
, 𝑥) = −(𝑝 + 𝑐

𝑠
− 𝑐
𝑝
)𝑓(𝑄
0
/𝛼)(1/𝛼) − (𝑐

𝑑
+

𝑐
𝑝
)𝑓(𝑄
0
).

Because (𝑑
2
/𝑑
2
𝑄
0
)𝐸𝜋(𝑄

0
, 𝑥) < 0, 𝐸𝜋(𝑄

0
, 𝑥) is strictly

concave.
Let (𝑑/𝑑𝑄

0
)𝐸𝜋(𝑄

0
, 𝑥) = 0.

Denote 𝑟 = (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
)/(𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
) and 1 − 𝑟 = (𝑐

𝑑
+

𝑐
𝑝
)/(𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
).

Then, (𝑝+𝑐
𝑠
−𝑐
𝑝
)−(𝑝+𝑐

𝑠
+𝑐
𝑑
)[𝑟𝐹(𝑄

0
/𝛼)+(1−𝑟)𝐹(𝑄

0
)] = 0.

As 𝐹(𝑥) is a cumulative distribution function (of course
nondecreasing function), we can derive

(𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) − (𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
)

× [𝑟𝐹 (

𝑄
0

𝛼

) + (1 − 𝑟) 𝐹 (

𝑄
0

𝛼

)] ≤ 0,

(𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) − (𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
) [𝑟𝐹 (𝑄

0
) + (1 − 𝑟) 𝐹 (𝑄

0
)] ≥ 0.

(12)

The optimal order quantity 𝑄
0

∗ belongs to a closed interval

𝑄
0

∗
∈ [𝛼𝐹

−1
(

𝑝 + 𝑐
𝑠
− 𝑐
𝑝

𝑝 + 𝑐
𝑠
+ 𝑐
𝑑

) , 𝐹
−1

(

𝑝 + 𝑐
𝑠
− 𝑐
𝑝

𝑝 + 𝑐
𝑠
+ 𝑐
𝑑

)] . (13)

4.2. Model with Returns

Case A (𝛼𝑥 ≥ 𝑄
0
,𝑄
1
= max{(1 − 𝛼)𝑥 − 𝛽[𝑄

0
+ (1 − 𝛼)𝑥], 0}).

The profit of the B2C vendor when the first order quantity is
𝑄
0
and the demand is 𝑥 is

𝜋 (𝑄
0
, 𝑥) = 𝑝𝑄

0
+ 𝑝 (1 − 𝛼) 𝑥 − (𝑝 + 𝑐

𝑚
) 𝛽 [𝑄

0
+ (1 − 𝛼) 𝑥]

− 𝑐
𝑠
(𝛼𝑥 − 𝑄

0
) − 𝑐
𝑝
𝑄
0
− 𝑐
𝑝
𝑄
1

− 𝑐
𝑑
max {𝛽 [𝑄

0
+ (1 − 𝛼) 𝑥] − (1 − 𝛼) 𝑥, 0} .

(14)

Case B (𝛼𝑥 < 𝑄
0
, 𝑄
1
= max{(1 − 𝛼)𝑥 − 𝛽𝑥 − (𝑄

0
− 𝛼𝑥), 0}).

The profit of the B2C vendor when the first order quantity is
𝑄
0
and the demand is 𝑥 is

𝜋 (𝑄
0
, 𝑥) = 𝑝𝛼𝑥 + 𝑝 (1 − 𝛼) 𝑥 − (𝑝 + 𝑐

𝑚
) 𝛽𝑥 − 𝑐

𝑝
𝑄
0
− 𝑐
𝑝
𝑄
1

− 𝑐
𝑑
max {𝛽𝑥 + (𝑄

0
− 𝛼𝑥) − (1 − 𝛼) 𝑥, 0} .

(15)

Let

𝐻(𝑄
0
, 𝑥) = 𝑝min {𝛼𝑥 − 𝑄

0
, 0} + 𝑝 (1 − 𝛼) 𝑥 − (𝑝 + 𝑐

𝑚
) 𝛽𝑥

− 𝑐
𝑠
max {𝛼𝑥 − 𝑄

0
, 0} + (𝑝 − 𝑐

𝑝
)𝑄
0
,

(16)

𝐺
1
(𝑄
0
, 𝑥) = 𝑐

𝑝
𝑄
1
− (𝑝 + 𝑐

𝑚
) (𝑄
0
− 𝛼𝑥) 𝛽

+ 𝑐
𝑑
max {𝛽 [𝑄

0
+ (1 − 𝛼) 𝑥] − (1 − 𝛼) 𝑥, 0} ,

(17)

𝐺
2
(𝑄
0
, 𝑥) = 𝑐

𝑝
𝑄
1
+ 𝑐
𝑑
max {𝛽𝑥 + (𝑄

0
− 𝛼𝑥) − (1 − 𝛼) 𝑥, 0} .

(18)

Combining (16), (17), and (18) gives

𝜋 (𝑄
0
, 𝑥) =

{

{

{

𝐻(𝑄
0
, 𝑥) − 𝐺

1
(𝑄
0
, 𝑥) 𝑥 ≥

𝑄
0

𝛼

𝐻 (𝑄
0
, 𝑥) − 𝐺

2
(𝑄
0
, 𝑥) otherwise.

(19)

The expected profit of the B2C retailer is

𝐸𝜋 (𝑄
0
, 𝑥) = ∫

∞

0

𝐻(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

− ∫

𝑄0/𝛼

0

𝐺
2
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

− ∫

∞

𝑄0/𝛼

𝐺
1
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥.

(20)

Taking the derivative of (16), (17), and (18),

𝑑

𝑑𝑄
0

∫

∞

0

𝐻(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

= ∫

𝑄0/𝛼

0

𝑑

𝑑𝑄
0

𝑝 (𝛼𝑥 − 𝑄
0
) 𝑓 (𝑥) 𝑑𝑥

+ ∫

∞

𝑄0/𝛼

𝑑

𝑑𝑄
0

[−𝑐
𝑠
(𝛼𝑥 − 𝑄

0
)] + (𝑝 − 𝑐

𝑝
)

= ∫

𝑄0/𝛼

0

−𝑝𝑓 (𝑥) 𝑑𝑥 + ∫

∞

𝑄0/𝛼

𝑐
𝑠
𝑓 (𝑥) 𝑑𝑥 + (𝑝 − 𝑐

𝑝
)

= −𝑝𝐹(

𝑄
0

𝛼

) + 𝑐
𝑠
[1 − 𝐹(

𝑄
0

𝛼

)] + (𝑝 − 𝑐
𝑝
)

= (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) − (𝑝 + 𝑐

𝑠
) 𝐹 (

𝑄
0

𝛼

) ,

(21)
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(∗) =

𝑑

𝑑𝑄
0

∫

∞

𝑄0/𝛼

𝐺
1
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

=

𝑑

𝑑𝑄
0

∫

∞

𝑄0/𝛼

{𝑐
𝑝
[(1 − 𝛼) 𝑥 − 𝛽 (𝑄

0
+ (1 − 𝛼) 𝑥)]

+

+ 𝑐
𝑑
[𝛽 (𝑄
0
+ (1 − 𝛼) 𝑥) − (1 − 𝛼) 𝑥]

+

−𝛽 (𝑝 + 𝑐
𝑚
) (𝑄
0
− 𝛼𝑥) } 𝑓 (𝑥) 𝑑𝑥

= 𝑔 (𝑄
0
) + ∫

∞

𝑄0/𝛼

𝑑

𝑑𝑄
0

× {𝑐
𝑝
[(1 − 𝛼) 𝑥 − 𝛽 (𝑄

0
+ (1 − 𝛼) 𝑥)]

+

+ 𝑐
𝑑
[𝛽 (𝑄
0
+ (1 − 𝛼) 𝑥) − (1 − 𝛼)𝑥]

+

−𝛽 (𝑝 + 𝑐
𝑚
) (𝑄
0
− 𝛼𝑥) } 𝑓 (𝑥) 𝑑𝑥

= 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
) [1 − 𝐹(

𝑄
0

𝛼

)]

+ ∫

∞

𝑄0/𝛼

𝑑

𝑑𝑄
0

{𝑐
𝑝
[(1 − 𝛼) (1 − 𝛽) 𝑥 − 𝛽𝑄

0
]
+

+ 𝑐
𝑑
[𝛽𝑄
0
− (1 − 𝛼) (1 − 𝛽)𝑥]

+

}𝑓(𝑥)𝑑𝑥,

(22)

where 𝑔(𝑄
0
) = −(1/𝛼)𝑓(𝑄

0
/𝛼){𝑐
𝑝
[(1 − 𝛼)(𝑄

0
/𝛼) − 𝛽(𝑄

0
/

𝛼)]
+
+ 𝑐
𝑑
[𝛽(𝑄
0
/𝛼) − (1 − 𝛼)(𝑄

0
/𝛼)]
+
} and

(∗∗) =

𝑑

𝑑𝑄
0

∫

∞

𝑄0/𝛼

𝐺
2
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥

= −𝑔 (𝑄
0
) + ∫

𝑄0/𝛼

0

𝐺
2
(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥.

(23)

(i) Consider 𝛼 < 1 − 𝛽 and then 𝛽/(1 − 𝛽)(1 − 𝛼) < 1/𝛼:

(∗) = 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
) [1 − 𝐹(

𝑄
0

𝛼

)]

+ ∫

∞

𝑄0/𝛼

𝑑

𝑑𝑄
0

𝑐
𝑝
[(1 − 𝛼) (1 − 𝛽) 𝑥 − 𝛽𝑄

0
] 𝑓 (𝑥) 𝑑𝑥

= 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
) [1 − 𝐹(

𝑄
0

𝛼

)]

− 𝛽𝑐
𝑝
[1 − 𝐹(

𝑄
0

𝛼

)]

= 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
) [1 − 𝐹(

𝑄
0

𝛼

)] ,

(24)

(∗∗) = −𝑔 (𝑄
0
) + ∫

𝑄0/𝛼

𝑄0/(1−𝛽)

𝑑

𝑑𝑄
0

𝑐
𝑝
[(1 − 𝛽) 𝑥 − 𝑄

0
] 𝑓 (𝑥) 𝑑𝑥

+ ∫

𝑄0/(1−𝛽)

0

𝑑

𝑑𝑄
0

𝑐
𝑑
[𝑄
0
− (1 − 𝛽) 𝑥] 𝑓 (𝑥) 𝑑𝑥

= −𝑔 (𝑄
0
) − 𝑐
𝑝
[𝐹(

𝑄
0

𝛼

) − 𝐹(

𝑄
0

1 − 𝛽

)] + 𝑐
𝑑
𝐹(

𝑄
0

1 − 𝛽

)

= −𝑔 (𝑄
0
) − 𝑐
𝑝
𝐹(

𝑄
0

𝛼

) + (𝑐
𝑝
+ 𝑐
𝑑
) 𝐹(

𝑄
0

1 − 𝛽

) .

(25)

Combining (21), (24), and (25) gives

𝑑

𝑑𝑄
0

𝐸𝜋 (𝑄
0
, 𝑥)

=

𝑑

𝑑𝑄
0

∫

∞

0

𝐻(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥 − (∗) − (∗∗)

= (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) − (𝑝 + 𝑐

𝑠
) 𝐹 (

𝑄
0

𝛼

) + 𝛽 (𝑝 + 𝑐
𝑚

+ 𝑐
𝑝
)

− [𝛽 (𝑝 + 𝑐
𝑚

+ 𝑐
𝑝
) − 𝑐
𝑝
] 𝐹(

𝑄
0

1 − 𝛽

)

= (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

− [𝑝 + 𝑐
𝑠
− 𝑐
𝑝
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)] 𝐹 (

𝑄
0

𝛼

)

− (𝑐
𝑝
+ 𝑐
𝑑
) 𝐹(

𝑄
0

1 − 𝛽

) .

(26)

Let (𝑑/𝑑𝑄
0
)𝐸𝜋(𝑄

0
, 𝑥) = 0.

Denote 𝑟 = (𝑝+𝑐
𝑠
−𝑐
𝑝
+𝛽(𝑝+𝑐

𝑚
+𝑐
𝑝
))/(𝑝+𝑐

𝑠
+𝑐
𝑑
+𝛽(𝑝+

𝑐
𝑚

+ 𝑐
𝑝
)) and 1 − 𝑟 = (𝑐

𝑝
+ 𝑐
𝑑
)/(𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
+ 𝛽(𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)).

Then, (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽(𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
) − [𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
+ 𝛽(𝑝 +

𝑐
𝑚

+ 𝑐
𝑝
)][𝑟𝐹(𝑄

0
/𝛼) + (1 − 𝑟)𝐹(𝑄

0
/(1 − 𝛽))] = 0.

As 𝐹(𝑥) is a cumulative distribution function (of course
nondecreasing function), we can derive

(𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

− [𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)]

× [𝑟𝐹 (

𝑄
0

𝛼

) + (1 − 𝑟) 𝐹 (

𝑄
0

𝛼

)] ≤ 0,

(𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

− [𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)]

× [𝑟𝐹(

𝑄
0

1 − 𝛽

) + (1 − 𝑟) 𝐹(

𝑄
0

1 − 𝛽

)] ≥ 0.

(27)
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The optimal order quantity 𝑄
0

∗ belongs to a closed interval

𝑄
0

∗
∈ [𝛼𝐹

−1
(

𝑝 + 𝑐
𝑠
− 𝑐
𝑝
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

) ,

(1 − 𝛽) 𝐹
−1

(

𝑝 + 𝑐
𝑠
− 𝑐
𝑝
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

)] .

(28)

(ii) Consider 𝛼 ≥ 1 − 𝛽 and then 𝛽/(1 − 𝛽)(1 − 𝛼) ≥ 1/𝛼:

(∗) = 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
) [1 − 𝐹(

𝑄
0

𝛼

)]

+ ∫

∞

𝛽𝑄0/(1−𝛽)(1−𝛼)

𝑑

𝑑𝑄
0

𝑐
𝑝
[(1 − 𝛼) (1 − 𝛽) 𝑥 − 𝛽𝑄

0
]

× 𝑓 (𝑥) 𝑑𝑥

+ ∫

𝛽𝑄0/(1−𝛽)(1−𝛼)

𝑄0/𝛼

𝑑

𝑑𝑄
0

𝑐
𝑑
[𝛽𝑄
0
− (1 − 𝛼) (1 − 𝛽) 𝑥]

× 𝑓 (𝑥) 𝑑𝑥

= 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
) [1 − 𝐹(

𝑄
0

𝛼

)]

− 𝛽𝑐
𝑝
[1 − 𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

)]

+ 𝛽𝑐
𝑑
𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

) − 𝐹(

𝑄
0

𝛼

)

= 𝑔 (𝑄
0
) − 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑑
) 𝐹 (

𝑄
0

𝛼

)

+ 𝛽 (𝑐
𝑝
+ 𝑐
𝑑
) 𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

) ,

(29)

(∗∗) = −𝑔 (𝑄
0
) + ∫

𝑄0/𝛼

0

𝑑

𝑑𝑄
0

𝑐
𝑑
[𝑄
0
− (1 − 𝛽) 𝑥] 𝑓 (𝑥) 𝑑𝑥

= −𝑔 (𝑄
0
) + ∫

𝑄0/𝛼

0

𝑐
𝑑
𝑓 (𝑥) 𝑑𝑥 = −𝑔 (𝑄

0
) + 𝑐
𝑑
𝐹(

𝑄
0

𝛼

) .

(30)

Combining (21), (29), and (30) gives

𝑑

𝑑𝑄
0

𝐸𝜋 (𝑄
0
, 𝑥)

=

𝑑

𝑑𝑄
0

∫

∞

0

𝐻(𝑄
0
, 𝑥) 𝑓 (𝑥) 𝑑𝑥 − (∗) − (∗∗)

= (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) − (𝑝 + 𝑐

𝑠
) 𝐹 (

𝑄
0

𝛼

) + 𝛽 (𝑝 + 𝑐
𝑚

− 𝑐
𝑝
)

− 𝛽 (𝑝 + 𝑐
𝑚

− 𝑐
𝑑
) 𝐹 (

𝑄
0

𝛼

)

− 𝛽 (𝑐
𝑝
+ 𝑐
𝑑
) 𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

) − 𝑐
𝑑
𝐹(

𝑄
0

𝛼

)

= (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑝
)

− [𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑑
)] 𝐹 (

𝑄
0

𝛼

)

− 𝛽 (𝑐
𝑝
+ 𝑐
𝑑
) 𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

) .

(31)

Let (𝑑/𝑑𝑄
0
)𝐸𝜋(𝑄

0
, 𝑥) = 0.

Denote 𝑟 = (𝑝+𝑐
𝑠
+𝑐
𝑑
+𝛽(𝑝+𝑐

𝑚
−𝑐
𝑑
))/(𝑝+𝑐

𝑠
+𝑐
𝑑
+𝛽(𝑝+

𝑐
𝑚
+ 𝑐
𝑝
)) and 1 − 𝑟 = 𝛽(𝑐

𝑝
+ 𝑐
𝑑
)/(𝑝 + 𝑐

𝑠
+ 𝑐
𝑑
+ 𝛽(𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)).

Then, (𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽(𝑝+ 𝑐

𝑚
− 𝑐
𝑝
) − [𝑝+ 𝑐

𝑠
+ 𝑐
𝑑
+𝛽(𝑝+ 𝑐

𝑚

+ 𝑐
𝑝
)][𝑟𝐹(𝑄

0
/𝛼) + (1 − 𝑟)𝐹(𝛽𝑄

0
/(1 − 𝛽)(1 − 𝛼))] = 0.

As 𝐹(𝑥) is a cumulative distribution function (of course
nondecreasing function), we can derive

(𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑝
)

− [𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)]

× [𝑟𝐹 (

𝑄
0

𝛼

) + (1 − 𝑟) 𝐹 (

𝑄
0

𝛼

)] ≥ 0,

(𝑝 + 𝑐
𝑠
− 𝑐
𝑝
) + 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑝
)

− [𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)]

× [𝑟𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

) + (1 − 𝑟) 𝐹(

𝛽𝑄
0

(1 − 𝛽) (1 − 𝛼)

)]

≤ 0.

(32)

The optimal order quantity 𝑄
0

∗ belongs to a closed interval

𝑄
0

∗
∈[

(1 − 𝛽) (1 − 𝛼)

𝛽

𝐹
−1

(

𝑝 + 𝑐
𝑠
− 𝑐
𝑝
+ 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑝
)

𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

),

𝛼𝐹
−1

(

𝑝 + 𝑐
𝑠
− 𝑐
𝑝
+ 𝛽 (𝑝 + 𝑐

𝑚
− 𝑐
𝑝
)

𝑝 + 𝑐
𝑠
+ 𝑐
𝑑
+ 𝛽 (𝑝 + 𝑐

𝑚
+ 𝑐
𝑝
)

)] .

(33)

5. Numerical Test

The purpose of the numerical illustration is twofold. The
primary objective is to numerically analyze the impact of 𝛼
and 𝛽 on the optimal order quantity 𝑄

0

∗ and the expected
profit 𝐸𝜋(𝑄

0
). The second purpose is to determine the

management implications of the models. Even though it is
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Table 1

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.1

0.1 72.354 9.508 85.576 0.294 516.528
0.2 64.302 9.442 75.532 0.270 448.543
0.3 56.238 9.367 65.569 0.245 380.628
0.4 48.173 9.283 55.697 0.218 312.724
0.5 40.118 9.186 45.932 0.188 244.755
0.6 32.092 9.073 36.292 0.156 176.621
0.7 24.118 8.935 26.805 0.122 108.174
0.8 16.045 8.758 17.516 0.085 40.316
0.9 8.506 8.506 8.506 0.140 −80.561

Table 2

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.2

0.1 72.187 19.017 85.576 0.294 517.516
0.2 64.136 18.883 75.532 0.270 449.523
0.3 56.147 18.734 65.569 0.245 381.169
0.4 48.227 18.566 55.697 0.218 312.401
0.5 40.172 18.373 45.932 0.188 244.436
0.6 32.110 18.146 36.292 0.156 176.516
0.7 24.188 17.870 26.805 0.122 103.911
0.8 17.516 17.516 17.516 0.268 −61.653
0.9 7.630 7.561 17.012 0.140 −82.703

Table 3

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.3

0.1 72.317 28.525 85.576 0.294 516.748
0.2 64.191 28.325 75.532 0.270 449.198
0.3 56.275 28.101 65.569 0.245 380.411
0.4 48.191 27.849 55.697 0.218 312.617
0.5 40.118 27.559 45.932 0.188 244.607
0.6 33.368 27.219 36.292 0.156 135.444
0.7 26.805 26.805 26.805 0.385 −43.170
0.8 15.658 15.327 26.274 0.268 −66.316
0.9 6.676 6.616 25.518 0.140 −84.865

impossible to derive an optimal solution to both the model
without returns and the model with returns, fortunately,
it is possible to do so through a numerical illustration.
Without losing generality, we assume that the demand follows
a normal distribution with mean 𝜇 = 100 and standard
deviation 𝜎 = 10. In all numerical tests in this section, the
selling price, the penalty cost, the first order purchase cost,
the second order purchase cost, the disposal cost, and the
return management cost per unit are 𝑝 = 4, 𝑐

𝑠
= 1, 𝑐

𝑝
= 3,

𝑐
𝑝
= 3.1, 𝑐

𝑑
= 1, and 𝑐

𝑚
= 1, respectively. MATLAB is used to

obtain the closed interval of 𝑄
0

∗ and the value of 𝑄
0

∗ with a
margin of error 𝛿 = 0.01. We consider different combinations
of 𝛼 and 𝛽, under which the optimal replenishment quantity
and the expect profit change correspondingly. Tables 1, 2, 3,
4, 5, 6, 7, 8, and 9 present the optimal procurement quantity
and the expected profit when 𝛼 and 𝛽 change from 0.1 to 0.9,
respectively.

Table 4

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.4

0.1 72.391 38.034 85.576 0.294 516.306
0.2 64.173 37.766 75.532 0.270 449.306
0.3 56.238 37.468 65.569 0.245 380.614
0.4 48.662 37.131 55.697 0.218 303.337
0.5 42.935 36.745 45.932 0.188 155.762
0.6 36.292 36.292 36.292 0.494 −25.047
0.7 23.836 22.976 35.741 0.385 −50.831
0.8 13.421 13.137 35.033 0.268 −71.128
0.9 5.723 5.671 34.024 0.140 −87.027

Table 5

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.5

0.1 72.354 47.542 85.576 0.294 516.525
0.2 64.357 47.208 75.532 0.270 446.975
0.3 57.921 46.835 65.569 0.245 343.753
0.4 52.597 46.414 55.697 0.218 174.256
0.5 45.932 45.932 45.932 0.594 −7.235
0.6 32.030 30.243 45.365 0.494 −36.370
0.7 19.863 19.147 44.676 0.385 −59.026
0.8 11.180 10.948 43.791 0.268 −75.940
0.9 4.767 4.726 42.530 0.140 −89.190

Table 6

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.6

0.1 73.208 57.051 85.576 0.294 502.487
0.2 67.676 56.649 75.532 0.270 374.505
0.3 62.330 56.202 65.569 0.245 192.663
0.4 55.697 55.697 55.697 0.687 10.301
0.5 40.101 36.745 55.118 0.594 −23.272
0.6 25.634 24.195 54.438 0.494 −49.095
0.7 15.888 15.317 53.611 0.385 −67.221
0.8 8.945 8.758 52.549 0.268 −80.752
0.9 3.818 3.780 51.037 0.140 −91.352

Observations from Tables 1–8 are as follows.

(a) Both 𝑄
0

∗ and 𝐸𝜋(𝑄
0
) decrease as 𝛽 increases.

(b) 𝐸𝜋(𝑄
0
) is small or negative when 𝛼 + 𝛽 ≥ 1, but it is

positive when 𝛼 + 𝛽 < 1. Namely, when 𝛼 + 𝛽 < 1,
the expected profit 𝐸𝜋(𝑄

0
) is always greater than the

expected profit under the circumstance of 𝛼 + 𝛽 ≥ 1.

6. Conclusion and Extensions

In this paper, we present a model for a single period problem
with resalable returns and an additional order. Moreover, two
kinds of demand, demand for instant delivery and demand
for delayed delivery, are considered. The model is resolved
with the purpose of maximizing the expected profit. The
closed interval of the optimal order quantity is derived, which
shows many interesting characteristics. The optimal order
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Table 7

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.7

0.1 77.516 66.559 85.576 0.294 400.373
0.2 72.194 66.091 75.532 0.270 211.836
0.3 65.569 65.569 65.569 0.773 27.590
0.4 48.096 41.773 64.980 0.687 −12.321
0.5 30.089 27.559 64.304 0.594 −42.452
0.6 19.226 18.146 63.511 0.494 −61.822
0.7 11.918 11.488 62.546 0.385 −75.416
0.8 6.712 6.569 61.307 0.268 −85.564
0.9 2.861 2.835 59.543 0.140 −93.514

Table 8

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.8

0.1 82.104 76.068 85.576 0.294 230.786
0.2 75.532 75.532 75.532 0.854 44.654
0.3 66.703 43.712 74.936 0.773 −3.333
0.4 32.087 27.849 74.263 0.687 −41.543
0.5 20.061 18.373 73.491 0.594 −61.635
0.6 12.817 12.097 72.584 0.494 −74.548
0.7 7.951 7.659 71.481 0.385 −83.610
0.8 4.473 4.379 70.065 0.268 −90.376
0.9 1.908 1.890 68.049 0.140 −95.676

Table 9

𝛼 𝛽 𝑄
0

∗
𝑄
𝑎

𝑄
𝑏

𝑟 𝐸𝜋(𝑄
0
)

0.9

0.1 85.576 85.576 85.576 0.929 61.513
0.2 81.309 37.766 84.974 0.854 9.206
0.3 74.972 21.856 84.303 0.773 −43.749
0.4 16.040 13.924 83.546 0.687 −70.771
0.5 10.034 9.186 82.677 0.594 −80.817
0.6 6.411 6.049 81.657 0.494 −87.274
0.7 3.972 3.829 80.416 0.385 −91.805
0.8 2.237 2.190 78.823 0.268 −95.188
0.9 0.954 0.945 76.555 0.140 −97.838

quantity is affected by the values of 𝛼 and 𝛽 mostly, which
in turn affect the expected profit of the B2C retailer.

In order to analyze the impact of the proportion of the
immediate delivery needs and the return rate on the optimal
order quantity and the expected profit, an approximate
method is also used to estimate the changes of the optimal
procurement quantity and the corresponding expected profit.
Even though it is impossible to derive an optimal solution
to both the model without returns and the model with
returns, fortunately, it is possible to do so through a numerical
illustration.

Through the numerical test, we find that when 𝛼 + 𝛽 < 1,
the expected profit𝐸𝜋(𝑄

0
) is always greater than the expected

profit under the circumstance of 𝛼 + 𝛽 ≥ 1. In this sense,
it is better to keep the sum of 𝛼 and 𝛽 under 1 so as to
profit. If the sum of 𝛼 and 𝛽 is equal to or more than 1, the
retailer can consider changing the return policy in order to

reduce the cost. For instance, the consumers only get partial
refund once they return the goods due to their personal
reasons. Additionally, the retailer can charge consumers some
management fees for the returned products. Furthermore, it
is better to keep the return rate under a specific level since
the expected profit 𝐸𝜋(𝑄

0
) increases as the return rate 𝛽

decreases. Provided that the return rate of some products
continues to be high, there must be some problem with the
product itself.Thus, the retailer can think about pulling them
off the shelves. Another interesting finding is that the optimal
order quantity 𝑄

0

∗ is more affected by the proportion of
returns 𝛽 than the ratio of the immediate delivery needs 𝛼.
Therefore, accurately estimating the return rate is important
when deciding the first order quantity.

According to the existing research, the expected demand
as well as its distribution function undoubtedly influences
the order quantity and inventory management [19–21]. On
the basis of the newsvendor model, however, instead of
the impact of the demand estimation, we mainly focus
on the impact of the proportion of the instant delivery
needs and the return rate on the order quantity and the
expected profit. Following the hypothesis of the newsvendor
model, we assume that the demand 𝑥 for a single product is
stochastic, which follows a distribution function 𝐹(𝑥) and a
probability density function 𝑓(𝑥). In the future, we will take
the demand forecasting into consideration by using data from
the beginning of the sales period.

Further research extensions include freeing the second
order quantity as a decision variable. When taking the timing
of returns into consideration, we can extend the single period
model to a multiperiod problem. For example, returned
products arriving after the end of the first selling season can
be resold at the next sales period.
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