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Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often
adopted. However, because a higher steam pressure (compared to the necessary steam pressure) is generated, the boiler’s steam
pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is
somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced
by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during
the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the
paper.The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic
process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality
will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt
theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for
the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

1. Introduction

Because of the continuing increase in the cost of electricity,
reducing manufacturing costs using energy-saving processes
is essential. To ensure steam quality, the real pressure is often
designated at a higher pressure than its targeted pressure;
therefore, the steam is passed through a pressure regulator
reducing the pressure before steam is introduced into the
system. In this reduction process, energy will be wasted.
This drawback can be improved if the pressure regulator is
replaced by the steam expander [1–6].

The isothermal expander was inspired by the Rankine
Stirling cycle proposed by Isshiki et al. [7]. In that system,
steam was guided into the Stirling cycle to improve output
efficiency. In 2009, Yoshiyuki [8] developed an 𝛼 type steam

Stirling engine with a higher output efficiency [9]. In line
with the design concept of the Rankine Stirling cycle and
an 𝛼 type steam Stirling engine, a new type of isothermal
steam expander used to increase output work is proposed
in this paper. Here, an isentropic process is replaced by
the isothermal expansion process. The isothermal steam
expander can reduce steam condensation, increase output
efficiency, and improve steam quality. In order to enhance
the isothermal expansion process, the heat regenerator for
the traditional steam expander is improved. Also, based
on the Schmidt theory, the theoretical P-V diagram and
related output efficiency will be established. Consequently, a
prototype 100 c.c. isothermal steamexpander is built andused
to verify the correctness of the mathematical model.
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Figure 1: The ideal isothermal expansion cycle for a steam expander.
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Figure 2: The isothermal steam expander.

2. Design Concept of the Isothermal
Steam Expander

Acogeneration system is very efficient for energy transforma-
tion. Current cogeneration systems are often linked to large
scale steam turbines. However, the development of a small
scale steam supplying systemused in the cogeneration system
is rare. In order to develop cogeneration systems that extract
more output work from the steam’s pressure, research on a
small scale cogeneration system linked with a small boiler
and a steam expander becomes crucial. In this study, the
traditional steam expander is improved. In order to decrease
the steam’s condensation, the isentropic process is replaced by
an isothermal expansion process using a thermal expansion
type steam expander.

As indicated in Figure 1, the isothermal expansion cycle of
the steam expander is composed of two isothermal processes
and two isovolumetric processes. High pressure steam will
be guided into the isothermal expansion cycle of the steam
expander.The cyclewill produce heat and then domechanical
work. Subsequently, steam will be discharged and introduced
into the manufacturing process.The steam pressure will then
be decreased and extra heat will be produced. The resulting
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Figure 3: The influence of the P-V diagram with respect to various
phase angles.

quality of the steam released from the isothermal expansion
cycle will be improved. Moreover, the output efficiency
produced by the isothermal expansion cycle is increased
beyond that of the traditional expander.

As indicated in Figure 2, the isothermal steam expander
is similar to the 𝛽 type Stirling cycle. The phase angle
between the piston and the regenerator (displacer) is set at
90∘. Because the intake valve and the exhaust valve are set
in the isothermal steam expander, high pressure gas will be
introduced into the cycle when the piston approaches top
dead center. Additionally, low pressure gas will be discharged
when the piston approaches bottom dead center. However,
the 90∘ phase angle is not the best value for producing more
mechanical work. Therefore, based on the Schmidt theory,
an analysis of the best phase angle for the isothermal steam
expander is assessed in the following section.
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Figure 4: Output work with respect to the phase angle (between the
piston and the displacer of the isothermal expander).

3. Mathematical Model of the Isothermal
Steam Expander

The isothermal expander is similar to the 𝛽 type Stirling
engine cycle. Based on the Schmidt theory [10, 11], the
relationship in the P-V diagram between the instant pressure
and the volume inside the isothermal expander will be
predicted and plotted. Also, based on the 𝛽 type Stirling
cycle’s Schmidt theory, the relationship between the instant
pressure and the axial output phase angle can be predicted.
The related temperature ratio for the hot end and the cold end,
the stroke volume ratio, and the dead space ratio are

𝜏 =

𝑉
𝑐

𝑉
ℎ

,

𝜅 =

𝑉
𝑠𝑝

𝑉
𝑠𝑑

,
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According to the Schmidt theory, the relationship between
the instant pressure and the output phase angle is

𝑃 =

𝑃mean√1 − 𝛿
2

1 − 𝛿 ⋅ cos (𝜃 − 𝜙)
. (3)

Figure 5: The prototype of the isothermal expander with a capacity
of 100 c.c.

For the isothermal expander, the instant pressure will be
the same as 𝑃

ℎ
(the pressure of the pressure source) when the

valve opens. The average effective 𝑃mean-𝑒 can be obtained by
including the 𝜃

ℎV𝑐 and 𝑃ℎ (occurring at the valve closing) in
the calculation. Here, 𝑃 will be the same as 𝑃

ℎ
at 𝜃
ℎV𝑜 > 𝜃 >

𝜃
ℎV𝑐. The instant pressure during the expansion process is

𝑃
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(4)

Similarly, the instant pressure of the isothermal compression
process is

𝑃
𝑐
=

𝑃
𝑙
(1 − 𝛿 ⋅ cos (𝜃

𝑙V𝑐 − 𝜓))
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(where 𝜃
𝑙V𝑐 > (𝜃 − 𝛼) > 𝜃ℎV𝑜) .

(5)

Because the instant pressure will be the same as 𝑃
ℎ
(the

pressure of the pressure source) when the valve opens,
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Figure 6: The comparison at various intake pressure conditions between the theoretical output work and the experimental data.

the relationship between the instant pressure and the axial
output’s phase angle for the isothermal expander is

𝑃 = 𝑃
𝑒
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(1 − 𝛿 ⋅ cos (𝜃
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(where 𝜃
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(6)

Inputting the design parameters and the related operating
conditions of the 100 c.c. isothermal expander into the above
equations, the resulting P-V diagram is plotted and shown
in Figure 3. Figure 3 indicates that the black line profile is

the 90∘ phase angle. The deep gray line represents the 45∘
phase angle. Finally, the shallow gray line is the 0∘ phase angle.

The output work with respect to the phase angle is
depicted in Figure 4. As indicated in Figure 4, the maximal
output work will occur when the phase angle is 19.6∘.

4. Experimental Work of the Isothermal
Steam Expander

In order to verify the correctness of the mathematical
model of the isothermal expander, a prototype of the 100 c.c.
isothermal expansion expander is constructed and shown in
Figure 5. The surface of the piston and the cylinder is coated
with a thin ceramic film.Thehot end ismade of stainless steel.
The total height of the cylinder is 410mm and the diameter is
50mm. The piston stroke and the displacer are 50mm. The
venting rate per stroke is 98.2 c.c. In order to conveniently
operate and adjust the isothermal expander, the piston is
linked to the displacer with a gear. The related phase angle
is adjustable.
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Figure 7: The comparison of theoretical P-V diagram with the
experimental data at the same intake pressure.

In order to acknowledge the relationship between the
mechanical output work and the phase angle, the internal
instant pressure of the isothermal expander is detected by a
pressure sensor IC at various phase angles. The P-V diagram
is then obtained. Furthermore, the area of the P-V diagram
which shows mechanical output work will be calculated.

5. Results and Discussion

In the experimental work, the high pressure steam of the
intake pressure source will be replaced by compressed air
[12, 13]. The intake pressure will be set at 450 kPa, 400 kPa,
and 350 kPa. Because of the retarding force, the air pressure
will decrease when the air flows through the channel.The real
intake air pressures become 250 kPa, 240 kPa, and 230 kPa.
Inputting the data into the formula, we have found that a 19.6∘
phase angle will produce a maximal output of work. Because
the hardware’s resolution of the phase angle is 1∘, the setting
of the phase angle is 15∘, 20∘, 25∘, 30∘, 40∘, 65∘, and 90∘. The
related output work can also be measured. Consequently, a
comparison at various intake pressure conditions between the
theoretical output work and the experimental data is shown
in Figure 6. As indicated in Figure 6, the black line represents
the theoretical profile of the output work with respect to the
phase angle. Figure 6 indicates that the maximal output work
will occur when the phase angle is 20∘. The output work
will decrease when the phase angle is increased or decreased
from 20∘. Here, it is understood that the output work will
be at a minimum when the phase angle is 90∘. As indicated
in Figure 7, the black line represents the theoretical P-V
diagram. The gray line represents the experimental data. It
is obvious that the theoretical P-V diagram is similar to that
of the experimental data.

In the experimental work, because of the insufficient cool-
ing rate of the working fluid during the isothermal compres-
sion process, the real temperature of the gas will be greater
than what the theoretical data shows. Therefore, a rapid

pressure increase will occur resulting in output work appear-
ing in a small area of the experimental P-V diagram. This is
why the theoretical area of the P-V diagram is greater than the
experimental diagram.

6. Conclusion

To improve the output efficiency of the expander, an isother-
mal steam expander is proposed. The isothermal expander
will be similar to the 𝛽 type Stirling engine. Because the high
pressure gas intake and gas discharge are added inside the
isothermal expander, the setting of the phase angle between
the piston and the displacer needs to be appropriately
adjusted.

The intent of this paper has been to provide a math-
ematical model of an isothermal expander using a mod-
ified Schmidt theory. Additionally, a prototype of 100 c.c.
isothermal expander was constructed and used to verify
the correctness of the isothermal expander’s mathematical
model. Results reveal that the theoretical P-V diagram is
similar to that of the experimental data. As can be seen, the
maximal theoretical output work of the 100 c.c. isothermal
expander will occur at the phase angle of 19.6∘. Additionally,
the maximal experimental output work occurs when the
phase angle is at 20∘. Consequently, the approach used for
the optimal phase angle of the isothermal steam expander
of various sizes proposed in this study efficiently produces
maximal output work.

Nomenclature

𝑚: Mass of working fluid (kg)
𝑃: Instant pressure of inner space (kPa)
𝑃mean: Average pressure (kPa)
𝑃mean-𝑒: Average pressure of expansion process

(kPa)
𝑃mean-𝑐: Average pressure compression process

(kPa)
𝑃
𝑒
: Instant pressure of expansion cycle (kPa)
𝑃
𝑐
: Instant pressure of compression cycle

(kPa)
𝑃
ℎ
: Pressure of intake fluid (kPa)
𝑃
𝑙
: Pressure of exhaust fluid (kPa)
𝑅: Gas constant (kJ/kgK)
𝑇
𝑐
: Temperature of cold end (K)
𝑇
ℎ
: Temperature of hot end (K)
𝑇
𝑟
: Temperature of regenerator (K)
𝑉: Instant volume of inner space (m3)
𝑉
𝑏
: Overlap volume of piston and displacer

(m3)
𝑉
𝑐
: Instant volume of cold space (m3)
𝑉
𝑑
: Volume of dead space (m3)
𝑉
𝑑𝑐
: Volume of dead space in cold end (m3)
𝑉
𝑑ℎ
: Volume of dead space in hot end (m3)
𝑉
𝑑𝑝
: Volume of dead space in piston (m3)
𝑉
𝑑𝑟
: Volume of dead space in regenerator (m3)
𝑉
ℎ
: Instant volume of hot space (m3)
𝑉
𝑠𝑑
: Swept volume of displacer (m3)
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𝑉
𝑠𝑝
: Swept volume of piston (m3)
𝑊: Mechanical work (kJ)
𝜃: Shaft angle where displacer at TDC is 0∘ (∘)
𝜃
ℎV𝑐: Intake valve closing angle (

∘)
𝜃
𝑙V𝑐: Exhaust valve closing angle (∘)
𝜃
ℎV𝑜: Intake valve opening angle (

∘)
𝜃
𝑙V𝑜: Exhaust valve opening angle (∘)
𝛼: Phase angle between the piston shaft and

displacer shaft (∘).
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