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Amutualism quantum genetic algorithm (MQGA) is proposed for an integrated supply chain scheduling with thematerials pickup,
flow shop scheduling, and the finished products delivery. The objective is to minimize the makespan, that is, the arrival time of the
last finished product to the customer. In MQGA, a new symbiosis strategy named mutualism is proposed to adjust the size of
each population dynamically by regarding the mutual influence relation of the two subpopulations. A hybridQ-bit coding method
and a local speeding-up method are designed to increase the diversity of genes, and a checking routine is carried out to ensure
the feasibility of each solution; that is, the total physical space of each delivery batch could not exceed the capacity of the vehicle.
Compared with the modified genetic algorithm (MGA) and the quantum-inspired genetic algorithm (QGA), the effectiveness and
efficiency of the MQGA are validated by numerical experiments.

1. Introduction

The coordination of logistics activities in a supply chain has
received a lot of attention recently. From the manufacturer’s
point of view, the important problem in the supply chain
scheduling is the coordination of the three stages including
material supply, production scheduling, andproduct delivery.
Traditionally, research on scheduling generally focuses on the
models with various machine setting, job characteristics, and
performance measures [1], and the transportation arrange-
ments of thematerials and the finished products are normally
ignored in these models.

In the past decades, many researchers studied the
machine scheduling problems with transportation under
consideration. Someof the results consider the transportation
of the jobs between machines in the flow shop model, which
incorporates transport times when the jobs are transferred
from one machine to another. Maggu et al. [2–4] firstly con-
sidered the scheduling problem with transportation between
machines. In addition, Langston [5] designed algorithms for
the problem of planning and coordinating movement within

a deterministic flow shop system and analyzed the worst-
case performances of the algorithms. Haouari and Ladhari
[6] presented an effective branch and bound algorithm for
the model proposed by Langston [5]. Hurink and Knust [7]
considered the flow shop problems with transportation and a
single robot with the objective of minimizing the makespan.
They derived complexity results for the problems. Hurink
and Knust [8] developed a tabu search algorithm for the
problem with time windows. Hurink and Knust [9] extended
some of the results in [8] to the job-shop scheduling models.
For the model with a single robot, Lee and Strusevich [10]
studied the two machine flow shop and open shop problems.
They presented a best possible approximation algorithm for
each of the two problems with some constraints. Naderi et
al. [11] proposed simulated annealing algorithms for flow
shop problems with the objective of minimizing the total
weighted tardiness and makespan. For more new results
on the scheduling problems with transportation between
machines, please see [12–15], among others.

Another type of scheduling model with transportation
focuses on the delivery of finished jobs to customers.
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Lee and Chen [16] considered some scheduling models that
incorporate the delivery decisions of the finished jobs. They
researched the computational complexity of some problems
and proposed polynomial or pseudopolynomial algorithms
for them. Chang and Lee [17] extended one of the models in
[16] to the environment in which each job has an individual
amount of space. Li et al. [18] studied a single-machine
scheduling problem with routing decisions of a vehicle that
serves customers at different addresses. In addition, Chen and
Vairaktarakis [19] researched eight problemswith production
and distribution under consideration and either designed a
polynomial time algorithm or proved the NP-hardness for
each of the problems. Geismar et al. [20] extended the Chen
and Vairaktarakis model to the problem with a short shelf
life and no inventory in the process. In addition, Soukhal et
al. [21] investigated the scheduling models with constraints
on both transportation and buffer capacities to minimize the
makespan. They proved new complexity results for special
cases of the problems considered. We refer to, for example,
[22–25], for more recent results on the model with delivery
operations for finished products.

This paper considers the scheduling model that inte-
grates the pickup of materials, flow shop scheduling, and
the delivery of finished jobs. In this model, the material
warehouse, the factory, and the customer are located at three
different places.There are two vehicles (namely, conveyor and
truck) each with a limited capacity. One vehicle (conveyor)
travels between the factory and the warehouse for material
transportation, and the other vehicle (truck) travels between
the customer and the factory for finished products delivery.
This model applies to many situations in supply chain busi-
ness activities. For example, a shoes manufacturer purchases
materials from India and arranges the production in China.
Finally, the finished products are delivered to the USA.

To the best of our knowledge, research on this model
includes Hall and Potts [26], Li and Ou [27], and Wang
and Cheng [28]. Hall and Potts [26] provided algorithms
for models in which jobs are produced on machines and
formed in batches for delivery. Li and Ou [27] studied the
problem with a vehicle traveling between a warehouse and
the factory. They proved the problem is NP-hard in strong
sense and developed polynomial time and effective heuristic
algorithms, respectively, for special case and the general
setting. Wang and Cheng [28] studied the complexity of the
model in which the warehouse, the factory, and the customer
locations are different. They proved the problem is strongly
NP-hard and proposed a heuristic with a tight bound of 2.

The model considered in this paper is different from that
in [26]. Each job in our model has its own transportation
time between the warehouse and the factory and between
the factory and the customer. Our model also differs from Li
and Ou’s model in which the locations of the warehouse and
the customer are the same. Furthermore, this paper considers
flow shop during the production scheduling, while themodel
in [28] considers processing jobs in a single machine.

Quantum genetic algorithms (QGA) are heuristic search
techniques inspired from the principles of survival of the
fittest in natural genetic evolution and quantum theory. They
are known to be efficient in a large search space, without

explicitly requiring additional information (such as convexity
or derivative information) about the objective. In addition,
the 𝑄-bit encoding method has the superposition and prob-
ability expression characteristics, and each individual can
express more states to increase the diversity of populations.
For these reasons, in the last few years, they have been applied
to many combinatorial problems, including scheduling and
vehicle routing applications that are partially related to our
problem.

In order to solve the integrated supply chain scheduling
model with the materials pickup, flow shop scheduling, and
the finished products delivery, a technique called mutualism
quantum genetic algorithm (MQGA) is developed, which
differs from traditional QGAmethod in two aspects.The first
aspect is the encoding method. With the encoding method
in [29], a chromosome including two segments, the job
sequence and the job-to-batch assignment, is designed, and
this encoding method could equally and uniquely represent
all possible solutions. Furthermore, in order to improve
the encoding performance, a local speeding-up method is
introduced to perform the deep search operation. After that, a
checking routine is carried out to ensure the feasibility of each
solution, that is, ensure that the total physical space of each
delivery batch could not exceed the capacity of the vehicle.
The second aspect is as follows: based on the relationship
between twomutually symbiotic species, a population growth
model (namely, mutualism) is introduced to improve the
performance of the algorithm. In this model, a symbiosis
strategy is developed to dynamically adjust the sizes of two
subpopulations. This strategy helps to increase the diversity
of genes and avoid premature convergence.

The remainder of this paper is organized as follows.
In Section 2, the problem including the assumptions and
notations is introduced. In Section 3, the two species growth
model and the corresponding evolutionary strategy are pro-
posed. The mechanism of MQGA is introduced in Section 4,
and the experimental results are discussed in Section 5.
Section 6 contains some concluding remarks.

2. Problem Description

In this paper, it is assumed that the material warehouse, the
factory, and the customer are located at different addresses,
and there is a set of jobs, 𝐽 = {𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
}, processed

in a flow shop scheduling, which consists of 𝑚 machines
𝑀 = {𝑀

1
,𝑀
2
, . . . ,𝑀

𝑚
}. All unprocessed jobs are initially

located at the supplier’s warehouse andneed to be transported
to the factory for processing by a vehicle (conveyor). The
conveyor is located at the warehouse at the beginning and
is available for transportation of jobs from warehouse to the
factory and comes back. Each pickup journey takes a constant
amount of time, and in a trip the conveyor loads a limited
number of jobs due to the limitation of its space capacity. In
addition, the finished jobs need to be delivered to a customer
by another vehicle (truck), which is initially located at the
factory. Because of the constraint of its space capacity, the
truck transports limited finished jobs to the customer and
returns to the factory. Each trip also takes a constant amount
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of time.Theobjective is tominimize themakespan, that is, the
arrival time of the last finished job to the customer. Figure 1
gives a description of the integrated supply chain problem
including the pickup of materials, flow shop scheduling, and
the delivery of finished products.

2.1. Assumptions. Before the introduction of the notations, a
number of assumptions are given as follows:

(i) all the facilities including conveyor, machines, and
truck are available from time zero;

(ii) there is no idle time between any consecutive two
pickup journeys;

(iii) the time of loading and unloading jobs is included in
the pickup time and delivery time;

(iv) the time of transporting jobs between machines is
negligible;

(v) the storage or buffer capacities between successive
machines are unlimited;

(vi) there is no priority among jobs;
(vii) machine failure is not considered.

2.2. Notations. The following notations are used in the
problem model:

𝑐
𝑖
: physical space of job 𝐽

𝑖
;

𝑆
1
(𝑆
2
): physical space capacity of the conveyor

(truck);
𝑇
11
(𝑇
12
): travel time from the warehouse to the

factory (from the factory to the warehouse);
𝑇
21
(𝑇
22
): travel time from the factory to the customer

(from the customer to the factory);
𝑙
1𝑖
: the arrival time of 𝐽

𝑖
to the factory;

𝑙
2𝑖
: the arrival time of 𝐽

𝑖
to the customer;

𝑝
𝑖𝑘
: processing time of 𝐽

𝑖
on machine𝑀

𝑘
;

𝑠
𝑘𝑜
: the earliest start time of the 𝑜th position job on

machine𝑀
𝑘
;

𝑢
1𝑗
: departure time of the 𝑗th batch from the ware-

house to the workshop;
𝑢
2𝑗
: departure time of the 𝑗th batch from the work-

shop to the customer;
𝑞
𝑖𝑘𝑜
: equal to 1 if job 𝐽

𝑖
is scheduled on the 𝑜th position

on machine𝑀
𝑘
; 0, otherwise;

𝐿
𝑗
: the latest completion time of the jobs in the 𝑗th

delivery batch;
𝑈
𝑖𝑗
: equal to 1 if job 𝐽

𝑖
is in the 𝑗th pickup batch; 0,

otherwise;
𝑉
𝑖𝑗
: equal to 1 if job 𝐽

𝑖
is in the 𝑗th delivery batch; 0,

otherwise;
𝑀: very large positive constant.

Flow shop workshop

Truck

Warehouse

Conveyor

Customer

Figure 1: Schematic of the cooperative problem of flow shop
production with pickup and delivery transportations.

2.3. The Optimization Model. Tang and Gong [30] proposed
a mixed integer programming (MIP) model for a single-
machine batch scheduling with pickup and delivery trans-
portations. Based on it, this paper studies a different inte-
grated supply chain problem, which consists of the pickup of
materials, flow shop scheduling, and the delivery of finished
products. For this problem, a MIP model is constructed
below. This model is to decide the following policy: (1)
how and when the materials are assigned to an appropriate
delivery batch, (2) what the scheduling of n jobs on a series
of𝑚machines is, (3) how to dispatch the finished product as
soon as possible to satisfy the customer’s demand:

min (max
1≤𝑖≤𝑛

𝑙
2𝑖
) (1)

Subject to
𝑛

∑
𝑜=1

𝑞
𝑖𝑘𝑜

= 1, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚,

(2)
𝑛

∑

𝑖=1

𝑞
𝑖𝑘𝑜

= 1, 𝑜 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚, (3)

𝑠
𝑘𝑜
+

𝑛

∑

𝑖=1

𝑝
𝑖𝑘
𝑞
𝑖𝑘𝑜

≤ 𝑠
𝑘,𝑜+1

,

𝑘 = 1, 2, . . . , 𝑚, 𝑜 = 1, 2, . . . , 𝑛 − 1

(4)

𝑠
𝑘𝑜
+

𝑛

∑

𝑖=1

𝑝
𝑖𝑘
𝑞
𝑖𝑘𝑜

≤ 𝑠
𝑘+1,𝑜

𝑘 = 1, 2, . . . , 𝑚 − 1, 𝑜 = 1, 2, . . . , 𝑛,

(5)

𝑠
1𝑜
≥ 𝑙
1𝑖
−𝑀(1 − 𝑞

𝑖1𝑜
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑜 = 1, 2, . . . , 𝑛,

(6)

𝐿
𝑗
≥ 𝑠
𝑚𝑜

+ 𝑝
𝑖𝑚
−𝑀(2 − 𝑉

𝑖𝑗
− 𝑞
𝑖𝑚𝑜

) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑜 = 1, 2, . . . , 𝑛,

(7)

𝑛

∑

𝑖=1

𝑐
𝑖
𝑈
𝑖𝑗
≤ 𝑆
1
, 𝑗 = 1, 2, . . . , 𝑛, (8)

𝑛

∑

𝑖=1

𝑐
𝑖
𝑉
𝑖𝑗
≤ 𝑆
2
, 𝑗 = 1, 2, . . . , 𝑛, (9)

𝑛

∑

𝑗=1

𝑈
𝑖𝑗
= 1, 𝑖 = 1, 2, . . . , 𝑛, (10)
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𝑛

∑

𝑗=1

𝑉
𝑖𝑗
= 1, 𝑖 = 1, 2, . . . , 𝑛, (11)

𝑛

∑

𝑖=1

𝑈
𝑖(𝑗+1)

≤ 𝑀

𝑛

∑

𝑖=1

𝑈
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1, (12)

𝑛

∑

𝑖=1

𝑉
𝑖(𝑗+1)

≤ 𝑀

𝑛

∑

𝑖=1

𝑉
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1, (13)

𝑢
21
= 𝐿
1
, (14)

𝑢
2𝑗
≥ 𝐿
𝑗
, 𝑗 = 2, 3, . . . , 𝑛, (15)

𝑢
1𝑗
≥ 𝑢
1(𝑗−1)

+ 𝑇
11
+ 𝑇
12
, 𝑗 = 2, 3, . . . , 𝑛, (16)

𝑢
2𝑗
≥ 𝑢
2(𝑗−1)

+ 𝑇
21
+ 𝑇
22
, 𝑗 = 2, 3, . . . , 𝑛, (17)

𝑙
1𝑖
≥ 𝑢
1𝑗
+ 𝑇
11
−𝑀(1 − 𝑈

𝑖𝑗
) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛,

(18)

𝑙
2𝑖
≥ 𝑢
2𝑗
+ 𝑇
21
−𝑀(1 − 𝑉

𝑖𝑗
) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛,

(19)

𝑙
2𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛, (20)

𝐿
𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, (21)

𝑢
1𝑗
≥ 0, 𝑢

2𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, (22)

𝑠
𝑘𝑜
≥ 0, 𝑘 = 1, 2, . . . , 𝑚, 𝑜 = 1, 2, . . . , 𝑛, (23)

𝑈
𝑖𝑗
, 𝑉
𝑖𝑗
∈ {0, 1} , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, (24)

𝑞
𝑖𝑘𝑜

∈ {0, 1} ,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑚, 𝑜 = 1, 2, . . . , 𝑛.
(25)

Objective function (1) represents the arrival time of the last
finished product to the customer. Constraints (2) ensure that
job 𝐽
𝑖
should be placed in one and only one position on

each machine. Constraints (3) guarantee that there is one
and only one job processed on the 𝑜th position on each
machine. Constraints (4) define that the earliest start time
of the job on the (𝑜 + 1)th position should not be earlier
than the completion time of the 𝑜th position job on the same
machine. Constraints (5) ensure that, for the same job, the
earliest start time onmachine𝑀

𝑘+1
should not be earlier than

its completion time on machine 𝑀
𝑘
. Constraints (6) define

that the start processing time of a job should not be earlier
than its release time. Constraints (7) indicate that the ready
time for delivering the 𝑜th job should not be earlier than its
completion time on the last machine. Constraints (8) and (9)
define that the number of jobs in each batch should satisfy
the space capacity of the conveyor or the truck. Constraints
(10) and (11) determine each job to be assigned to one and
only one batch. Constraints (12) and (13) indicate that if no
job is assigned to batch 𝑗, then no job will be assigned to
batch (𝑗 + 1). Constraints (14) and (15) define the departure
time 𝑢

1𝑗
. Constraints (16) and (17) define that the departure

time of the 𝑗th batch should not be earlier than the returning
time of the (𝑗 − 1)th batch. Constrains (18) and (19) specify
the nonnegativity of 𝑙

1𝑖
and 𝑙
2𝑖
. Equations (20)–(25) define the

variables.

3. The Mutualism Strategy for
Population Growth

As the long evolutionary process of nature, the relationship
between living beings is complicated. The phenomenon that
two species live together is generally referred to as the
symbiosis. This paper studies a kind of symbiosis called
mutualism, which refers to two species living together and
depending on each other over a long period of time. The
nutrition of one species is the food source of the other one.

Mutualism brings two advantages to our algorithm.
Firstly, there is no need to design the fitness function, and
the fitness value of an individual is obtained by the coop-
eration between two populations, which could reduce the
dependence on the domain knowledge. Secondly, different
from the traditional framework in which the evolution of
populations depends on the fitness values of individuals,
mutualism incorporates the cooperative behavior between
an individual and its surroundings, so as to postpone the
premature convergence and improve the convergence speed.

3.1. The Mutualism Population Growth Model. A differential
equation of mutualism population growth model is intro-
duced in this subsection. Assume two species A and B live
in the same environment and they do not take each other
as food, but the existence of one species can promote the
population growth of the other one. For example, algae and
fungi are two species living in lichen. Algae provide nutrient
to fungi through photosynthesis, and fungi offer algae water
and inorganic substance. If algae and fungi are separated in
lichen, both of them will die.

Let 𝑥(𝑡) and 𝑦(𝑡), respectively, be the numbers of indi-
viduals of species A and B at the 𝑡th generation. Define the
maximal individual number of species A (B) by 𝐾

1
(𝐾
2
), and

the cooperation degree is 𝑎
1
(𝑎
2
). In this way, the differential

equation of the cooperation system can be written as follows:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝑟
1
(1 −

𝑥 (𝑡)

𝐾
2

+
𝑎
1
𝑦 (𝑡)

𝐾
1

)𝑥 (𝑡) , (26)

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝑟
2
(1 +

𝑎
2
𝑥 (𝑡)

𝐾
2

−
𝑦 (𝑡)

𝐾
1

)𝑦 (𝑡) , (27)

where 𝑟
𝑖
(𝑖 = 1, 2) denotes the accrual rate, that is, birth

rate subtracting death rate. In time interval [𝑡, 𝑡 + Δ𝑡], define
𝑥(𝑡 + Δ𝑡) − 𝑥(𝑡) = 𝑟

1
⋅ Δ𝑡 ⋅ 𝑥(𝑡) as the modified number of

species A. So Δ𝑥/Δ𝑡 = 𝑟
1
𝑥(𝑡). Once the population number

reaches the maximal value, species A will stop growing, and
the accrual rate 𝑟

1
will become zero. 1 − 𝑥(𝑡)/𝐾

2
denotes the

block function on the population size of species A. Suppose
the total amount of food is 1; then 𝑥(𝑡)/𝐾

2
is the amount

of food consumed by species A. When species A and B live
together in the same environment, they cooperate with each
other and bring direct advantages for population growth,
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The 1st generation

Pop A

Pop B

Pop A

Pop B

Pop A

Pop B

The 2nd generation

a subpopulation and
adjustment of subpopulation

Delegation X

Expert evaluation

Individual i

Delete Δx

Add Δy
Or

Δx

Δy

Delete Δy

Add Δx

· · ·

Step 3: cooperative degree ofStep 2: cooperative degree of an individual

size (ΔxΔy)

Step 1: two subpopulations

Figure 2: Description of the mutualism strategy for population growth.

Job schedule

Batch of car
Part 2

Batch of truck
Part 3

[0 1 1 1 0 1 1 1 0]

1 2 3

1 0 1

0 0 1

⌊
⌈⌈⌈

Part 1
[ 0.1 −0.2 −0.3

−0.995 −0.979 0.9955
| 0.4 −0.5

−

0.6

0.916 −0.866 0.8
| −0.7 0.8 0.9

0.7141 −0.6 0.4359
]

[ 0.12 −0.31 0.09

0.9927 −0.95 0.9959
]

[ −0.89 0.7 0.5

0.4559 −0.7141 0.866
]

[1 0 1]

[0 0 1]

[3 5 6]

[1 2 3]

Figure 3: The encoding and decoding mode of 𝑄-bit.

and 𝛼
1
𝑦(𝑡)/𝐾

1
denotes the influence degree of species B on

the population size of species A. We have similar explanation
for (27).

3.2. The Mutualism Strategy. In the standard genetic algo-
rithm, the fitness function will be given as an input, and
the fitness is easy to reach the peak value. However, in the
real environment the adaptability of a species is dynamic
and is affected by its surroundings. Therefore, in MQGA, the
fitness value of an individual is replaced by its cooperation
degree with individuals in other species, and the details on
the computation of the cooperation degree are given below.

3.2.1. Expert Evaluation Method. Given two individuals 𝑖

and 𝑗, respectively, from populations A and B, a method is
proposed to evaluate the cooperation degree of individual 𝑖.
Let ob

𝑖
and ob

𝑗
be the objective values of 𝑖 and 𝑗. Denote,

respectively, by obmin, obmax, and ob the minimum value,
the maximum value, and the average objective value of all
individuals in A and B. By cooperating with individual 𝑗,
define Score

𝑖𝑗
as the cooperative degree of individual 𝑖.

Case 1. Consider ob
𝑖
∈ [obmin, ob], ob𝑗 ∈ [obmin, ob]. In this

case, each of the two individuals has a high survival rate and
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Table 1: The cooperation degree of individual 𝑖 (with individual 𝑗)
Score

𝑖𝑗
.

Condition Score
ob
𝑖
∈ [obmin, ob], ob𝑗 ∈ [obmin, ob] 4

ob
𝑖
∈ [obmin, ob], ob𝑗 ∈ [ob, obmax] 2

ob
𝑖
∈ [ob, obmax], ob𝑗 ∈ [obmin, ob] 0

ob
𝑖
∈ [ob, obmax], ob𝑗 ∈ [ob, obmax] 1

Table 2: The processing times of the 8 jobs on 2 machines.

Processing time 𝐽
1

𝐽
2

𝐽
3

𝐽
4

𝐽
5

𝐽
6

𝐽
7

𝐽
8

𝑀
1

3 1 2 1 2 3 3 4
𝑀
2

4 1 2 3 4 3 1 2

the “matching” ability to cooperate. They can offer nutrition
to each other, and the collaborative effect is the best. So, the
cooperative degree of individual 𝑖 is set to be “4.”

Case 2. Consider ob
𝑖
∈ [obmin, ob], ob𝑗 ∈ [ob, obmax]. In

this case, compared to individual 𝑗, individual 𝑖 has a smaller
objective value, which indicates that individual 𝑖 is more
capable of growing and developing. If the two individuals
work together, individual 𝑖 cannot obtain enough nutrition
from individual 𝑗, and the cooperation is a “mismatch.”
Therefore, the cooperative degree of individual 𝑖 is set to be
“2.”

Case 3. Consider ob
𝑖
∈ [ob, obmax], ob𝑗 ∈ [obmin, ob].

Known from Case 2, in this case individual 𝑗 is more capable
of growing and developing, and individual 𝑗 will absorb
more nutrition from individual 𝑖.That will eventually impede
the development and growth of individual 𝑖. Therefore, the
cooperative degree of individual 𝑖 is defined to be “0.”

Case 4. Consider ob
𝑖
∈ [ob, obmax], ob𝑗 ∈ [ob, obmax].

In this case, the two individuals have the similar low levels
of growing, and a long period of time is needed for the
development of the individuals. But they have the “matching”
abilities and can cooperate with each other. Therefore, the
cooperative degree of individual 𝑖 is set to be “1.” The four
cases are summarized in Table 1.

3.2.2. Cooperative Degree of Individual. Given two popula-
tions A and B, denote by 𝑐Fitness

𝑖
the cooperative degree of

individual 𝑖 in A. Firstly choose some individuals from B to
form a delegation𝑋, and𝑋 can be chosen by ways including
random selection, greedy selection, or tournament. Then let
individual 𝑖 cooperate with each individual in 𝑋 with the
expert evaluation method. The fitness of 𝑖 is calculated as
follows:

𝑐Fitness
𝑖
= ∑

𝑗∈𝑋

Score
𝑖𝑗
, (28)

where Score
𝑖𝑗
denotes the cooperative degree of individual 𝑖

by cooperating with individual 𝑗.

1

2

3

4

5

6

7

8

Orders

5

8 2

1 3 6 4

7

Batches of car

5

8

2

1

3

6

4

7

Schedule Batches of truck

5 8 2

1 3

6 4 7

Figure 4: Job sequence and the job-to-batch assignment.

3.2.3. Cooperative Degree of a Population. The cooperative
degree of a population stands for the cooperative level of the
population, and it can be calculated as follows:

𝑎
1
=
∑
𝑖∈Pop1 𝑐Fitness𝑖

∑
𝑖∈Pop2 𝑐Fitness𝑖

, 𝑎
2
=

1

𝑎
1

, (29)

where Pop1 (Pop2) is the delegation of population A (B). If
𝑎
1
> 1, A is more cooperative and obtains more advantage or

nutrition from B. Conversely, if 𝑎
2
> 1, B is more cooperative

than A. The two parameters 𝑎
1
and 𝑎

2
show the mutual

influence degree on population sizes.

3.2.4. Adjustment of Population Sizes. In our mutualism
population growth model, assume

𝑟
1
=
𝐾
1
− 𝑥 (𝑡)

𝑠
1

, 𝑟
2
=
𝐾
2
− 𝑦 (𝑡)

𝑠
2

, (30)

where 𝑠
1
, 𝑠
2
are constants. Based on (26) and (27), at each

generation 𝑡, the population sizes of A and B will be modified
by Δ𝑥 and Δ𝑦, respectively, which are given as follows:

Δ𝑥 =
𝐾
1
− 𝑥

𝑠
1

(1 −
𝑥

𝐾
2

+
𝑎
1
𝑦

𝐾
1

)𝑥,

Δ𝑦 =
𝐾
2
− 𝑦

𝑠
2

(1 +
𝑎
2
𝑥

𝐾
2

−
𝑦

𝐾
1

)𝑦.

(31)

The newly added individuals are generated randomly, and the
deleted individuals are the ones with the smallest cooperative
degree values.

If the cooperative degree of a population is high, its
population size will increase.Thus the growth of a population
size mostly depends on its ability to coordinate. If the ability
is strong, the size will become bigger and bigger till the
maximum value. Otherwise, the size will become small and
eventually extinct. In order to survive, each population will
try its best to gain good genes and cooperate with others.
In this way, the quality of solution is improved and the
performance of algorithm is enhanced.

3.3. Framework of the Mutualism Strategy for Population
Growth. A description of the mutualism strategy for popu-
lation growth is given in Figure 2.
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Figure 5: The decoding process and the Gantt chart.

4. The Mutualism Quantum Genetic Algorithm

The genetic algorithm (GA) proposed by Holland has
achieved a great success for solving complex combinational
problem. To improve GA, Han and Kim [31] recently intro-
duced a quantum-inspired genetic algorithm,which attracted
many researchers’ attention. However, the experiment results
are still not satisfactory for large-scale problems. In this sec-
tion, amethod namedmutualism quantum genetic algorithm
(MQGA) is introduced to solve the integrated supply chain
problem including the pickup of materials, the flow shop
scheduling, and the delivery of finished jobs. The symbiosis
evolutionary strategy is embedded in the quantum genetic
algorithm (QGA).

4.1. Hybrid Q-Bit Coding. The encoding in [29] is adopted in
this paper, as it has obtained the success on the coordinated
scheduling problem with batching machine scheduling and
two-stage transportation. Their encoding divided a chromo-
some into two segments, the job sequence and the job-to-
batch assignment, which can represent all possible solutions.
Besides, the 𝑄-bit representation is combined in our algo-
rithm for its advantage of linear superposition of solutions
and increase of diversity of genes.The details of the encoding
are illustrated as follows.

Firstly, based on the concept and principles of quantum
computing, the smallest unit of information stored in a two-
state quantum computer is called a 𝑄-bit. A 𝑄-bit may be in
the “1” state, “0” state, or any superposition of the two. A 𝑄-
bit can be represented as |𝜓⟩ = 𝛼|0⟩+𝛽|1⟩, where 𝛼 and 𝛽 are
complex numbers that specify the probability amplitudes of
the corresponding states. |𝛼|2 gives the probability that the𝑄-
bit will be found in the “0” state and |𝛽|2 gives the probability
that the 𝑄-bit will be found in the “1” state. Normalization
of the state to unity guarantees |𝛼|2 + |𝛽|

2
= 1. Therefore,

in MQGA, a population 𝑃
𝑄
(𝑡) = {𝑃

𝑡

1
, . . . , 𝑃

𝑡

𝑁
} in 𝑄-bit repre-

sentation is initially randomly generated, and an individual

Table 3: Parameters of the conveyor and truck.

Problem Parameter
𝐶1 Tr1 𝑅1 𝐶2 Tr2 𝑅2

N(FT06) 6 10 3 10 20 10
N(FT10) 6 40 20 10 100 30
N(FT20) 6 20 10 10 60 30
N(ABZ3) 6 100 100 10 300 100
N(ABZ6) 6 100 100 10 300 100
N(ABZ7) 6 30 30 10 100 100
N(ABZ8) 6 30 30 10 100 100
N(ABZ9) 6 30 30 10 100 100
N(TA1) 6 30 30 10 100 100
N(TA2) 6 100 30 10 300 200
N(TA3) 6 100 30 10 300 200
Note: 𝐶1 and 𝐶2 are the capacities of conveyor and truck, respectively. Tr1
and Tr2 are the pickup and delivery times. 𝑅1 and 𝑅2 are the returning times
of conveyor and truck.

Table 4: Physical space of jobs.

Jobs 1–20
2 6 1 0.3 3 1.3 2 3.3 1.2 4 2.8 3.2 0.7 0.1 0.9 2 6 1 0.3 3
Jobs 21–40
1.3 2 3.3 1.2 4 2.8 3.2 0.7 0.1 0.9 2 6 1 0.3 3 1.3 2 3.3 1.2 4
Jobs 41–60
2.8 3.2 0.7 0.1 0.9 3 4 3 6 1 2 6 1 0.3 3 1.3 2 3.3 1.2 4
Jobs 61–80
2.8 3.2 0.7 0.1 0.9 2 6 1 0.3 3 1.3 2 3.3 1.2 4 2.8 3.2 0.7 0.1 0.9
Jobs 81–100
2 6 1 0.3 3 1.3 2 3.3 1.2 4 2.8 3.2 0.7 0.1 0.9 3 4 3 6 1

is defined as a string of 𝑚 𝑄-bits [ 𝛼1𝛽
1

󵄨󵄨󵄨󵄨󵄨

𝛼
2

𝛽
2

󵄨󵄨󵄨󵄨󵄨
...

...

󵄨󵄨󵄨󵄨󵄨

𝛼
𝑚

𝛽
𝑚
], where

|𝛼
𝑖
|
2
+ |𝛽
𝑖
|
2
= 1, 𝑖 = 1, 2, . . . , 𝑚.
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Table 5: AOV results for the experiment on tuning the parameters.

Source Sum of squares Df Mean square 𝐹 value
A: 𝑃
𝑐

0.0083 4 0.0021 3.3334
B: 𝑃
𝑚

0.0072 4 0.0018 4.3732
Interactions AB 0.0438 16 0.0029 7.3679

Secondly, the individual is converted into binary repre-
sentation in the following way. For each 𝑄-bit, let 𝜂

𝑖
be a

random number generated in [0, 1]. If |𝛼
𝑖
|
2
> 𝜂
𝑖
, the 𝑄-bit

is converted to be 1; otherwise it is 0.
Thirdly, the 𝑄-bit representation needs to be changed

into two segments, the job sequence and the job-to-batch
assignment, which include the comprehensive information of
production and delivery. Thus we give a converting rule to
form three parts, flow shop part (the code size is (⌈log𝑛

2
⌉+1)×

𝑛), material pickup part (the code size is 1 × 𝑛), and product
delivery part (the code size is 1 × 𝑛), in which we set the last
𝑄-bit of part 2 and part 3 as “1” to ensure the last job belongs
to the last batch.

For example, given a 3-job, 3-machine problem, let 15
𝑄-bits represent a code, and every three 𝑄-bits form one
group. So a code contains five groups, which are then
separated into 3 parts. The first three groups are defined
as Part 1, the fourth group is Part 2, and the fifth group is
Part 3.

For Part 1, suppose the binary representation is [0 1 1 |

1 0 1 | 1 1 0], which is already converted from 𝑄-
bit representation; then get [3 5 6]. This job permutation
is regarded as a random key representation. If values of
two elements in the representation are different, let the
smaller one denote the job with smaller index; otherwise,
let the first one denote the job with smaller index. So, the
above random key representation is corresponding to job
permutation [1 2 3].

For Part 2 and Part 3, suppose the binary representations
are [1 0 1] and [0 0 1], which represent the job-to-batch
assignment of the conveyor and the truck, respectively. The
final code is the combination of Part 1, Part 2, and Part 3. An
example is given in Figure 3.

The final code for another problem with 8 jobs and
2 machines is presented in (32) which is the individ-
ual structure of the MQGA, where the first line rep-
resents a permutation of 8 jobs and the second (third)
line denotes the job-to-batch assignment in the conveyor
(truck):

(

5 8 2 1 3 6 4 7

1 0 1 0 0 0 1 1

0 0 1 0 1 0 0 1

) . (32)

The rule is that the jobs in the positions after each “1” to
the next “1” belong to a new batch. Therefore, in the pickup
transportation, job 5 is in the first batch, job 8 and job 2
belong to the second batch, job 1, job 3, job 6, and job 4 are
in the third batch, and job 7 is in the last batch. The third
line is the delivery batch of truck. Similarly, in the delivery
transportation, job 5, job 8, and job 2 are in the same batch,

job 1 and job 3 belong to the next batch, and job 6, job 4, and
job 7 are in the last batch. Figure 4 illustrates the job sequence
and the job-to-batch assignment.

Assume the processing times of the 8 jobs on the two
machines are given in Table 2.The pickup time and returning
time of the conveyor are 4 time units and 2 time units,
respectively. The delivery time and returning time of truck
are 8 time units and 4 time units, respectively. Figure 5 gives
the visual assignment of jobs to be transported and produced.

4.2. Further Processing Mechanisms Solutions

4.2.1. The Speeding-Up Method of Inserting Neighborhood.
When applying local search techniques to search better solu-
tions, the neighborhood structure is very important, since it
will directly affect the results. For the flow shop problem, the
results in [32–34] show that the inserting operation is better
than exchanging when searching in the local neighborhood.
Therefore, this paper employs the inserting operation during
the process of search in the neighborhood. The inserting
neighborhood of a permutation is a set of solutions, that
is, the permutations generated by deleting a job from the
original position and inserting the job into a new position.

Denote by 𝜋(𝑖) the job in the 𝑖th position in the permuta-
tion 𝜋, and define 𝜔

𝜋(𝑖)
as the subpermutation after removing

job 𝜋(𝑖). Assuming job 𝜋(𝑖) is inserted in the ℎth position of
𝜔
𝑖
, let 𝜔

𝜋(𝑖)
(ℎ) be the new permutation and 𝜎 the position

where job 𝜋(𝑖) is inserted to achieve the minimal makespan;
that is,

𝜔
𝜋(𝑖)

(𝜎) = min
1≤ℎ≤𝑛

𝜔
𝜋(𝑖)

(ℎ) . (33)

Take the two-machine flow shop problem as an example.
Let 𝐶max(𝜋;𝑀1,𝑀2) be the makespan for a given permuta-
tion 𝜋, and let 𝑇

𝑀
1

(𝜋(𝑗)) and 𝑇
𝑀
2

(𝜋(𝑗)), respectively, be the
earliest possible completion times of job 𝜋(𝑗) on machines
𝑀
1
and 𝑀

2
in the forward channel. In addition, define

𝑇
󸀠

𝑀
1

(𝜋(𝑗)), 𝑇󸀠
𝑀
2

(𝜋(𝑗)), respectively, denoting the earliest pos-
sible completion times of job 𝜋(𝑗) on machines 𝑀

1
and 𝑀

2

in the backward channel. The iterative formulas are given as
follows:

𝑇
𝑀
1

(𝜋 (𝑗)) = 𝑇
𝑀
1

(𝜋 (𝑗 − 1)) + 𝑝
1𝜋(𝑗)

, 𝑗 = 1, 2, . . . , 𝑛,

𝑇
𝑀
2

(𝜋 (𝑗)) = max [𝑇
𝑀
1

(𝜋 (𝑗)) , 𝑇
𝑀
2

(𝜋 (𝑗 − 1))] + 𝑝
2𝜋(𝑗)

,

𝑗 = 1, 2, . . . , 𝑛,

𝑇
𝑀
1
(𝜋 (0)) = 𝑇

𝑀
2
(𝜋 (0)) = 0,

𝑇
󸀠

𝑀
2

(𝜋 (𝑗)) = 𝑇
󸀠

𝑀
2

(𝜋 (𝑗 + 1)) + 𝑝
2𝜋(𝑗)

,

𝑗 = 𝑛 − 1, 𝑛 − 2, . . . , 1,

𝑇
󸀠

𝑀
1

(𝜋 (𝑗)) = max [𝑇󸀠
𝑀
2

(𝜋 (𝑗)) , 𝑇
󸀠

𝑀
1

(𝜋 (𝑗 + 1))] + 𝑝
1𝜋(𝑗)

,

𝑗 = 𝑛 − 1, 𝑛 − 2, . . . , 1,
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Begin
𝑖 ← 1

While (𝑖 ≤ 𝑛) do
Begin
Obtain the subpermutation 𝜔

𝜋(𝑖)
by removing job 𝜋(𝑖) in the original permutation 𝜋.

For 𝑘 = 1, 2, . . . , 𝑚 − 1

Calculate 𝑇
𝑀𝑘

(𝜔
𝜋(𝑖)

(𝑗)), 𝑇
𝑀𝑘+1

(𝜔
𝜋(𝑖)

(𝑗)), 𝑇󸀠
𝑀𝑘+1

(𝜔
𝜋(𝑖)

(𝑗)) and 𝑇󸀠
𝑀𝑘

(𝜔
𝜋(𝑖)

(𝑗)).
End
For ℎ = 1, 2, . . . , 𝑛 and ℎ ̸= 𝑖

For 𝑘 = 1, 2, . . . , 𝑚 − 1

Calculate 𝐶max (𝜔𝜋(𝑖) (ℎ) ;𝑀𝑘,𝑀𝑘+1).
End
Calculate 𝐶max (𝜔𝜋(𝑖) (ℎ)) = 𝐶max (𝜔𝜋(𝑖) (ℎ) ;𝑀𝑚−1,𝑀𝑚).

End
Denote by 𝜎 the position where job 𝜋(𝑖) is inserted to get the minimal objective value.
𝑖 = 𝑖 + 1;

End
End
Output the local optimal individual.

Procedure 1: The speeding-up method of inserting neighborhood.

𝑖 = 1

For batch 𝐵
𝑗

If Vol(𝐵
𝑗
) > TVol,

Find the job 𝐽
𝑗,𝑏

in 𝐵
𝑗
such that

Vol(𝐽
𝑗,1
+ 𝐽
𝑗,2
+ ⋅ ⋅ ⋅ + 𝐽

𝑗,𝑏
) ≤ TVol and Vol(𝐽

𝑗,1
+ 𝐽
𝑗,2
+ ⋅ ⋅ ⋅ + 𝐽

𝑗,𝑠
+ 𝐽
𝑗,𝑏+1

) > TVol.
Let 𝐵
𝑗
= {𝐽
𝑗,1
, . . . , 𝐽

𝑗,𝑏
} and 𝐵

𝑗+1
= 𝐵
𝑗+1

∪ {𝐽
𝑗,𝑏+1

, . . . , 𝐽
𝑗,𝑏𝑗
}. Update the index of jobs in 𝐵

𝑗+1
.

𝑖 = 𝑖 + 1.
End

Procedure 2: The modified mechanism of a solution.

5 8 2 1 3 6 4 7

1 1 1 0 0 0 1 1

1 0 1 1 1 0 0 1

5 8 3 2 1 7 6 4

1 1 1 0 1 0 0 1

1 0 0 0 1 1 0 1

3 2 5 8 1 6 4 7

0 0 1 0 0 0 1 1

0 1 1 1 1 0 0 1

3 2 1 8 5 7 6 4

0 0 1 0 1 0 0 1

0 1 0 0 1 1 0 1

Crossover position

Parent 1

Parent 2

Before

Children 1

Children 2

After

Figure 6: Crossover operation of MQGA.
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Table 6: Detailed comparison results of MQGA, QGA, and MGA on N(TA1) problem.

RUN 500 × 10 1000 × 10 2000 × 20
MQGA MGA QGA MQGA MGA QGA MQGA MGA QGA

1 3166 3329 3199 3139 3326 3194 3152 3308 3183
2 3182 3336 3204 3166 3328 3193 3147 3327 3184
3 3165 3382 3229 3154 3351 3209 3154 3345 3206
4 3172 3277 3218 3162 3266 3210 3147 3210 3195
5 3164 3307 3220 3151 3323 3208 3148 3285 3187
6 3179 3330 3215 3165 3319 3170 3155 3324 3131
7 3164 3267 3222 3144 3253 3222 3128 3253 3220
8 3145 3371 3221 3138 3218 3191 3167 3313 3185
9 3154 3297 3226 3163 3293 3221 3140 3305 3226
10 3163 3298 3206 3140 3285 3145 3135 3276 3146

Begin
𝑡 ← 0

Step 1. Set parameters: crossover probability 𝑃
𝑐
, mutation probability 𝑃

𝑚
, iterative

generation GN, two sub-populations sizes PS
1
, PS
2
.

Step 2. Initialize subpopulations in hybrid 𝑄-bit representation.
While (𝑡 ̸= GN) do
Begin
Step 3. If (subpopulation is not empty)

Apply mutualism strategy, rescale the size of sub-populations according to population growth model.
End.

Step 4. Perform selection, crossover, mutation operations in each subpopulation;
Step 5. If (catastrophe condition is satisfied)

Perform catastrophe operation.
Else

Apply quantum rotation operation.
End

Step 6. Calculate objective value and fitness value of each individual in the current generation,
and update the best solution if possible.

𝑡 ← 𝑡 + 1

End
End
Output the global best result.

Algorithm 1: MQGA (mutualism quantum genetic algorithm).

𝑇
󸀠

𝑀
1

(𝜋 (𝑛)) = 𝑇
󸀠

𝑀
2

(𝜋 (𝑛)) = 0,

𝐶max (𝜋) = 𝑇
𝑀
2
(𝜋 (𝑛)) = 𝑇

󸀠

𝑀
1

(𝜋 (1)) ,

𝐶max (𝜔𝜋(𝑖) (ℎ) ;𝑀1,𝑀2)

= max [𝑇
𝑀
1
(𝜔 (ℎ − 1)) + 𝑝

1𝜋(𝑖)
+ 𝑇
󸀠

𝑀
1

(𝜔 (ℎ)) ,

𝑇
𝑀
2
(𝜔 (ℎ − 1)) + 𝑝

2𝜋(𝑖)
+ 𝑇
󸀠

𝑀
2

(𝜔 (ℎ)) ,

𝑇
𝑀
1
(𝜔 (ℎ − 1)) + 𝑝

1𝜋(𝑖)
+ 𝑝
2𝜋(𝑖)

+ 𝑇
󸀠

𝑀
2

(𝜔 (ℎ))] .

(34)

For the flow shop problemwithmore than twomachines,
the details of obtaining the local optimal solution are given in
Procedure 1.

4.2.2. A Modified Mechanism of the Solution. Because the
total physical space of all jobs in a batch may exceed the
capacity of the vehicle, our encoding could not ensure a
feasible solution, and a modified mechanism is needed to
update the solution, which is an important step, not only
in encoding process, but also in the steps of crossover and
mutation, as an unfeasible solution may affect the search
process in local neighborhood.

Let TVol be the capacity of the vehicle and Vol(𝐵
𝑗
) the

total space of all jobs in batch 𝐵
𝑗
. For simplicity, denote by

𝐽
𝑗,1
, 𝐽
𝑗,2
, . . . 𝐽
𝑗,𝑏
𝑗

the jobs in batch 𝐵
𝑗
, where 𝑏

𝑗
is the number

of jobs in 𝐵
𝑗
. The modified mechanism is described in

Procedure 2.

4.3. Other Operations. The operations introduced below
are performed at each generation of the quantum genetic
algorithm (QGA). The fitness of each individual can be
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Table 7: Comparison results of MQGA, QGA, and MGA on N(TA1) problem.

Size MQGA MGA QGA
BV WV AV BV WV AV BV WV AV

500 × 10 3155 3192 3165.4 3267 3382 3325.7 3199 3229 3216
1000 × 10 3138 3166 3150.2 3218 3351 3296.2 3145 3222 3196.3
2000 × 20 3128 3167 3147.3 3210 3345 3294.6 3131 3226 3186.3
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Figure 7: The convergence curves of MQGA, QGA, and MGA.

calculated by the mutualism strategy in Section 3.2. In order
to ensure the individual with good genes can be chosen in the
offspring, the roulette selection is applied here, which could
maintain the diversity of genes. In the crossover operation,
two decoded individuals are selected as parents to operate

single-point crossover. See Figure 6 for the illustration of this
operation, in which the corresponding genes of𝑄-bit parents
are swapped to produce two new offspring.

In the mutation operation, a NOT Gate is used as the
mutation operator. Firstly, select individuals with mutation
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Figure 8: Distributions of solutions of MQGA, QGA, and MGA.

probability 𝑃
𝑚
; then randomly generate a mutation position.

Quantum rotation gate is used to maintain diversity of
genes, which could change the probability amplitude of
quantum states. See more details in our previous work [35].
Besides, a catastrophe operator is used to avoid premature
convergence. If the solution does not change in two con-
secutive generations, it could be regarded to be trapped in
local optimal solution, and the local best solution will be
reserved while others will be replaced by solutions generated
randomly.

4.4. The Main Procedure of MQGA. In this subsection, the
details of the MQGA are introduced in Algorithm 1.

5. Experiment

In this paper, all algorithms are programmed with MATLAB
language, and all the computations are conducted on a
Pentium PC 1.66GHZ with 512MB memory. In order to
evaluate the performance of MQGA, an extensive set of
instanceswith different characteristics are generated based on
the flow shop benchmark problems, including FT benchmark
and ABZ benchmark. In order to test the relative large-scale
problem, three test instances are designed, where there are
50 jobs and 5 machines, 50 jobs and 10 machines, and 100
jobs and 5 machines, seen in the Appendix. Table 3 shows
the transporting times of conveyor and truck in different
problems. Table 4 shows the physical spaces of the 100 jobs.
These test instances are named N(FT06), N(FT10), N(FT20),
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Table 8: Computational results of MQGA and QGA, MGA.

Problem Approach Ob Improved% AG AT

N(FT06)
(6 ∗ 6)

MGA 103.3 — 73.3 13
QGA 103.3 0 33.6 30
MQGA 103 0.48% 9.8 113

N(FT10)
(10 ∗ 10)

MGA 1282.2 — 300.8 29
QGA 1280.7 0.12% 97.3 98
MQGA 1273.6 0.31% 76.2 163

N(FT20)
(20 ∗ 5)

MGA 1330 — 26.7 23
QGA 1328.6 0.09% 18.3 36
MQGA 1323.1 0.32% 36.7 133

N(ABZ3)
(10 ∗ 10)

MGA 2088.6 — 430.8 29
QGA 2079.4 0.44% 146.6 101
MQGA 2071.3 0.83% 83.4 164

N(ABZ6)
(10 ∗ 10)

MGA 1883.2 — 363.6 29
QGA 1874.4 0.47% 111.3 101
MQGA 1861.4 1.16% 123.3 164

N(ABZ7)
(15 ∗ 20)

MGA 1276.2 — 140.3 68
QGA 1233.8 3.32% 104.3 172
MQGA 1228.2 3.76% 86.8 310

N(ABZ8)
(15 ∗ 20)

MGA 1290.3 — 114.4 68
QGA 1277.2 1.03% 17.7 172
MQGA 1268.4 1.71% 19.8 310

N(ABZ9)
(15 ∗ 20)

MGA 1273.3 — 143.9 68
QGA 1238.3 1.18% 29.7 171
MQGA 1241.3 2.3% 11.3 310

N(TA1)
(50 ∗ 5)

MGA 3286.2 — 71.7 84
QGA 3173.3 3.37% 17 426
MQGA 3134.2 4.02% 21.1 778

N(TA2)
(50 ∗ 10)

MGA 3346.6 — 91.2 130
QGA 4917 11.33% 9.1 480
MQGA 4803 13.4% 19.3 814

N(TA3)
(100 ∗ 5)

MGA 10706.3 — 63.3 171
QGA 9289.33 13.23% 16.2 632
MQGA 9126.4 14.76% 17.8 963

Note: AG represents the converged generation andAT represents the average
computation time.

N(ABZ3),N(ABZ6),N(ABZ7),N(ABZ8),N(ABZ9),N(TA1),
N(TA2), and N(TA3).

5.1. Parameter Settings. Two parameters including crossover
rate 𝑃

𝑐
and mutation rate 𝑃

𝑚
are discussed in this section.

Assume the two rates are set with the following levels:

𝑃
𝑚
: 0.2, 0.4, 0.6, 0.8, 1;

𝑃
𝑐
: 0.2, 0.4, 0.6, 0.8, 1.

(35)

In this way, there are a total of 25 combinations. For each
combination, MGA [13] is used to test the 11 testing instances
in Table 3. After the experiment, the data is transformed to be

the relative percentage deviation (RPD), which is calculated
as follows:

RPD =
WTA −WTref

WTref
× 100%, (36)

where WTA is the corresponding objective value of the
solution achieved by proposed algorithm and WTref is the
minimum objective value under multiple simulation of the
same test problem. In addition, for a combination of 𝑃

𝑐

and 𝑃
𝑚

values, the analysis of variance (AOV) model is
employed to eliminate the different RPD values caused by the
block (each test problem is regarded as a block). The main
experiment results of the AOV are shown in Table 5.

According to the theory of statistical analysis, the greater
the 𝐹 value is, the more significantly the corresponding
factors affect. Table 5 shows the interaction between the two
parameters has a significant effect on the performance of the
algorithm. Based on the experiment, we find the best value of
𝑃
𝑐
is 0.8 and the best value of 𝑃

𝑚
is 0.2, since they could find

the most times of optimal objective value.

5.2. Simulation Work

5.2.1. The Detailed Simulation Result of N(TA1) Problem. In
order to validate the performance of MQGA, MGA [13] and
QGA [36] are compared. Firstly problem N(TA1) is chosen
as the representative instance to analyze the performance of
algorithms. Three combinations of iterative generations and
population sizes are 500 × 10 (i.e., the maximum number of
iterations is 500, population size is 10, and subpopulation size
is 5), 1000 × 10, and 2000 × 20. For each combination, the
results are presented in Table 6, and more results are given in
Table 7, where “BV” and “WV,” respectively, denote the best
and worst objective values in the 10 run times. “AV” is the
average objective value.

Known from the results in Table 6, for each calculation,
MQGA always obtains a better solution than that obtained
by MGA and QGA. When the iteration is 500, the range of
objective values ofMQGA is (3155, 3192) and (3267, 3382) and
(3199, 3229) for MGA and QGA. When the iteration is 2000,
the ranges of objective values are, respectively, (3128, 3167),
(3210, 3345), and (3131, 3226). Therefore, the search ability
of MQGA increases faster than that of MGA and QGA as
the iteration increases, and MGA and QGA are more likely
to be trapped in local optimal solutions.

The convergence curves of MQGA, MGA, and QGA
obtained for each combination are depicted in Figure 7,
which indicates the convergence speed of MQGA is faster
than that of MGA and QGA, especially for the combination
with larger iteration.

The solutions distributions of MQGA, QGA, and MGA
are given in Figure 8, which shows that there is no overlap in
the solution space of each algorithm.Moreover, the change in
the solutions achieved byMQGA is smaller than that ofMGA
andQGA, which implies that the quality of solution obtained
by MQGA is better than that of MGA and QGA.

5.2.2.The Comparison Results ofMQGAwithMGA andQGA.
The maximum number of iterations is 1000, and the size of
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Table 9: (a) N(TA1): 50 jobs ∗ 5 machines. (b) N(TA2): 50 jobs ∗ 10 machines. (c) TA3: 100 jobs ∗ 5 machines.

(a)

Machines Processing times

𝑀
1

73 87 13 11 41 43 93 69 80 13 24 72 38 81 83 88 26 6 89 67 70 30 89 30 68 21 78 46 99 10 17 23 83 47 86 18 67 46 4 14
4 20 88 30 84 38 93 76 30 30

𝑀
2

26 37 23 93 49 12 39 17 46 20 32 44 92 73 93 33 10 43 2 62 62 82 29 29 94 20 42 80 94 33 8 41 63 4 71 30 14 32 30 30
27 98 39 84 63 12 38 43 49 13

𝑀
3

48 4 92 92 72 43 3 98 93 17 79 11 16 89 81 92 43 61 39 28 94 87 23 1 33 91 67 91 4 60 38 23 90 93 13 63 23 34 47 98 91
11 46 30 77 3 14 47 80 43

𝑀
4

26 67 4 14 93 34 21 20 6 18 73 23 16 77 28 24 13 77 36 16 32 46 21 81 28 70 89 34 96 62 46 60 19 97 13 7 44 7 73 13 66
70 97 33 97 64 73 28 4 87

𝑀
5

77 94 9 37 29 79 33 73 63 86 23 39 76 24 38 3 91 29 22 27 39 31 46 18 93 38 83 38 97 10 79 93 2 87 17 18 10 30 8 26 14
21 13 10 83 46 42 18 36 2

(b)

Machines Processing times

𝑀
1

46 32 79 43 97 10 44 24 83 73 66 49 93 61 19 47 84 13 11 19 98 2 83 44 7 73 19 69 12 73 83 23 33 16 88 8 26 42 38 63 7
2 44 38 24 76 83 61 32 90

𝑀
2

61 87 31 23 73 93 28 90 94 39 64 2 16 33 33 40 81 26 83 4 4 10 63 96 33 71 66 94 7 13 11 99 37 30 36 69 22 36 67 63 96
74 4 42 40 30 93 36 23 87

𝑀
3

31 38 83 33 71 38 36 64 43 48 69 96 33 82 33 64 11 61 36 33 87 88 10 32 38 23 24 90 7 11 49 2 76 17 32 39 9 83 69 67
28 88 23 91 71 3 26 41 96

𝑀
4

31 24 21 37 69 31 30 31 21 19 63 91 11 6 31 63 36 39 37 47 36 63 39 4 10 12 62 43 49 34 87 29 2 18 73 39 77 69 13 78 68
37 22 41 92 67 24 87 91 31

𝑀
5

37 16 42 47 94 14 94 34 72 36 88 31 41 71 94 99 11 97 44 77 69 91 38 23 87 7 66 34 86 49 3 48 44 93 37 82 31 39 78 33
36 3 38 10 98 6 44 62 24 94

𝑀
6

79 93 68 73 37 44 34 39 76 62 74 28 78 43 98 83 91 27 6 82 60 44 43 76 99 66 11 33 32 8 40 62 23 24 30 1 73 27 16 91
33 11 99 2 60 90 36 62 13 3

𝑀
7

83 87 38 38 86 67 23 19 97 78 66 67 7 23 67 8 77 71 83 29 49 3 94 76 93 48 4 37 82 37 61 6 97 3 27 93 46 92 46 32 8
11 7 34 72 37 83 22 87 63

𝑀
8

22 29 99 23 98 33 80 82 33 68 47 74 26 61 93 33 11 42 72 14 8 98 90 36 73 69 26 24 33 98 86 30 92 94 66 47 3 41 41
47 89 28 39 80 47 37 74 38 39 3

𝑀
9

27 92 73 94 18 41 37 38 36 20 2 39 91 81 33 14 88 22 36 63 79 23 66 3 13 31 2 81 12 40 39 32 16 87 78 41 43 94 1 93 22
93 62 33 30 34 27 30 34 77

𝑀
10

24 47 39 66 41 46 24 23 68 30 93 22 64 81 94 97 34 82 11 91 23 32 26 22 12 23 34 87 39 2 38 84 62 10 11 93 37 81 10 40
62 49 90 34 11 81 31 21 39 27

(c)

Machines Processing times

𝑀
1

84.6317 68.0327 97.8144 20.8223 22.0642 31.3817 40.4331
32.3333 4.4926 9.2277 31.4611 18.0836 83.0344 63.7339
83.9330 27.7676 37.3838 30.3118 33.6348 32.3347 22.3726
17.1233 22.6226 6.0628 74.2341 33.4834 39.4332 46.8303
83.6232 12.0133 9.4702 27.0917 37.0777 36.4394 61.8333
70.0938 30.8900 30.2302 43.1238 41.1160 31.3372 39.7248
64.9842 21.4270 93.8391 42.2748 27.2131 37.3729 39.4439
18.3346 31.9796 79.8378 11.1263 39.2043 28.3831 82.1932
93.3273 27.8467 63.8107 48.3132 67.9713 30.4670 47.9016
41.2603 34.3209 42.7133 4.6217 63.8433 23.6188 76.6038
77.1361 60.7312 7.4211 13.2976 66.3300 4.0213 31.2134
30.9947 33.1613 77.0320 42.0403 7.9610 74.3028 99.9878
93.4269 19.8363 30.6913 83.1429 10.3026 89.1798 93.6973
96.6370 67.6072 1.3964 30.3368 62.9276 29.0398 60.9821
66.8269 44.3931
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(c) Continued.

Machines Processing times

𝑀
2

3.8077 68.7184 67.7863 31.3860 4.0038 92.7664 82.9002
33.9639 32.9803 63.0667 88.7886 72.8946 80.2037 60.6660
43.8637 26.0218 93.0429 64.2378 93.1670 44.7731 47.8723
29.7237 24.9201 19.3493 17.8681 33.8913 8.7417 28.9312
63.8303 89.6336 11.3332 40.3292 74.7622 86.1109 90.3164
64.3916 74.1080 8.2019 90.6283 94.3113 92.2433 42.3333
32.9836 37.3679 87.3114 71.4010 93.0243 39.3819 42.0138
36.9339 31.2930 46.0303 2.3923 43.4493 22.6322 18.8634
3.2671 88.2232 17.1819 19.3328 31.4467 6.9719 33.8983
79.9701 33.3020 79.0346 73.3813 21.1483 68.0938 22.2373
31.0398 37.3793 31.1383 38.7069 36.4293 33.9889 2.4179
37.6434 21.2294 23.1638 39.8660 88.1233 18.2311 34.4082
39.3800 34.1221 42.7137 86.3060 97.8039 23.4139 40.0631
34.7736 73.7374 38.2443 73.9441 79.1348 31.9843 93.7063
11.4333 43.9139

𝑀
3

37.0079 47.6363 86.7381 36.0169 23.9910 9.3497 91.3933
19.0191 92.3208 78.0443 77.9396 74.4131 9.1036 3.1612
69.8134 32.7903 10.2037 63.0130 43.4309 62.3464 49.9032
76.9814 23.6630 68.1342 24.8938 74.0296 77.4290 73.3663
94.1423 91.3789 22.3412 34.2217 18.2232 99.8933 63.0020
33.6438 89.0716 22.0123 10.2334 97.3328 32.2667 88.2888
94.8882 22.4733 61.8833 80.0331 30.4777 2.3938 86.1700
3.4326 24.9428 33.2202 76.1338 43.0818 91.6040 66.1194
79.3679 48.9789 12.8067 94.3034 86.6166 13.3706 93.9793
6.0822 37.3802 18.7386 21.6410 11.0119 83.0266 49.0443
83.1172 27.6230 33.3916 92.4096 33.0112 39.0013 30.3430
3.9994 74.3970 32.0863 77.0834 33.4703 29.9367 87.0861
36.1939 38.6870 2.3033 41.1629 31.4037 18.4714 60.3132
61.0278 23.8668 31.3109 16.4060 93.9227 30.7267 98.7219
31.2407 13.8634

𝑀
4

79.3039 32.9897 47.6910 43.9032 36.0006 82.3696 66.3923
13.4142 93.8438 30.0931 20.0777 14.9284 8.6927 43.8123
37.7344 9.7682 18.3971 7.6113 76.3946 63.8904 94.7271
47.9722 47.8333 93.3017 48.3228 83.3002 71.6867 39.6977
37.0047 94.8397 44.0043 28.4989 73.2636 70.9429 31.1982
31.7673 67.9373 43.9669 90.9212 27.1023 33.3360 76.3692
37.1149 13.7774 99.9414 72.7029 69.0932 18.7311 32.1909
99.8103 93.3610 84.7230 97.3806 10.7734 78.1100 44.3464
10.0022 44.4773 16.0306 46.4031 20.4337 93.7849 1.8234
81.3674 43.6923 38.7263 37.3334 96.4237 18.6704 11.2710
81.2803 27.3601 39.3646 22.3763 92.6382 43.3897 38.6866
36.8882 99.7779 12.2373 16.3636 30.3478 89.7477 33.2003
4.2014 4.7337 74.4997 17.4811 60.4477 38.0942 63.8836
93.1060 93.7823 68.7374 78.9328 16.2863 31.7426 7.9919
9.7908 63.7969

𝑀
5

46.0182 70.8827 42.3334 23.9494 78.7140 11.2288 87.7309
1.1682 73.2947 74.3247 33.3868 80.9084 30.3979 29.9039
10.0888 83.4943 8.1367 31.3683 93.0997 38.3136 64.6483
70.0836 73.4314 86.4972 34.8031 18.2930 30.8623 20.3774
23.2021 20.4869 93.3820 74.4314 82.4732 34.6946 94.8308
13.8809 36.4386 43.4073 32.8384 68.6438 99.1667 6.2637
33.4487 29.1977 42.6223 39.6733 19.3706 13.3877 64.6711
63.4906 63.7133 41.8206 93.1286 73.4143 87.1880 31.7227
43.9343 63.0724 39.6809 33.3300 99.3787 21.3336 92.2013
76.3623 23.4309 24.2814 81.0009 34.4622 46.7340 8.9193
23.3668 99.9983 11.6722 92.1918 37.6619 93.3813 36.9370
43.4437 40.4863 90.1080 90.7238 33.8413 39.7471 47.7907
18.2683 44.6693 10.9124 22.2803 23.8896 72.8488 74.6871
63.8373 44.3997 79.0272 34.2089 18.3843 13.0348 14.6130
47.6381 9.2464
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population is 100 (in MQGA, there are two subpopulations,
and the size of each subpopulation is 50). To be fair, each
algorithm runs 10 times for each instance. The experiment
results are shown in Table 8, in which each item is an average
value. The “Improved%” column represents the percentage
difference between the average objective values obtained by
the current algorithm with MGA and is calculated by the
following formula:

Improved% =
(Ob −MGA)

MGA
× 100%, (37)

where Ob represents the objective value achieved by the
current algorithm and MGA represents the objective value
achieved byMGA. Boldface and italic indicate the best results
for each problem.

In the performance of solution, from Table 8, MQGA is
superior to MGA and QGA for all the test instances, and
QGA always outperforms MGA. The improvement becomes
more obvious as the scale of the problem increases. For
example, for medium-scale problem N(FT20), the optimal
ability ofMQGA improves 0.32%. For the large-scale problem
N(TA3), the MQGA improves 14.76%. The reason is that
when the number of jobs increases the transportation of vehi-
cle will become the bottleneck forMGA andQGA.Therefore,
MGA and QGA are not applicable to the relative large-
scale problem instances. In addition, in the performance of
convergence, MQGA can obtain a better solution than MGA
and QGA with less iterative generations. For the relative
large-scale problems like N(TA1), N(TA2), and N(TA3),
MGA and QGA converge faster to the local optimal solution.
However, MQGA could jump out of the local optimum with
more iterative generations. Finally, in the performance of
time, MQGA needs more computation time than MGA and
QGA but obtains an improved solution.

6. Conclusions and Future Research

This paper studies an integrated schedulingwith thematerials
pickup, flow shop scheduling, and the finished products
delivery. The objective is to find a coordinated schedule to
minimize the arrival time of the last completed product to
the customer. In order to solve the problem, a biologically
inspired quantum genetic algorithm is proposed with a new
mutualism strategy. The experiment results demonstrate that
MQGA can find a satisfactory solution with an acceptable
amount of computation time.

Future research could address problems with multiple
customers or multiple transport vehicles or different shop
environments, including flexible scheduling and job-shop.
Problems with other performance measures, including min-
imum mean tardiness, and multimeasures should also be
studied.

Appendix

See Table 9.
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