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The objective of this paper is to compare the performance of Singular Value Decomposition (SVD), Expectation Maximization
(EM), and Modified Expectation Maximization (MEM) as the postclassifiers for classifications of the epilepsy risk levels obtained
from extracted features through wavelet transforms and morphological filters from EEG signals. The code converter acts as a level
one classifier. The seven features such as energy, variance, positive and negative peaks, spike and sharp waves, events, average
duration, and covariance are extracted from EEG signals, out of which four parameters like positive and negative peaks, spike
and sharp waves, events, and average duration are extracted using Haar, dB2, dB4, and Sym8 wavelet transforms with hard and
soft thresholding methods. The above said four features are also extracted through morphological filters. The performance of the
code converter and classifiers are compared based on the parameters such as Performance Index (PI) and Quality Value (QV). The
Performance Index and Quality Value of code converters are at low value of 33.26% and 12.74, respectively. The highest PI of 98.03%
and QV of 23.82 are attained at dB2 wavelet with hard thresholding method for SVD classifier. All the postclassifiers are settled at

PI value of more than 90% at QV of 20.

1. Introduction

The Electroencephalogram (EEG) is a measure of cumu-
lative firing of neurons in various parts of the brain [1].
It contains information regarding changes in the electri-
cal potential of the brain obtained from a given set of
recording electrodes. These data include the characteristic
waveforms with accompanying variations in amplitude, fre-
quency, phase, and so forth, as well as brief occurrence
of electrical patterns such as spindles, sharps, and spike
waveforms [2]. EEG patterns have shown to be modified by
a wide range of variables including biochemical, metabolic,
circulatory, hormonal, neuroelectric, and behavioral factors
[3]. In the past, the encephalographer, by visual inspection,
was able to qualitatively distinguish normal EEG activity
from localized or generalized abnormalities contained within
relatively long EEG records [4]. The most important activity
possibly detected from the EEG is the epilepsy [5]. Epilepsy is
characterized by uncontrolled excessive activity or potential

discharge by either a part or all of the central nervous
system [5]. The different types of epileptic seizures are
characterized by different EEG waveform patterns [6]. With
real-time monitoring to detect epileptic seizures gaining
widespread recognition, the advent of computers has made
it possible to effectively apply a host of methods to quantify
the changes occurring based on the EEG signals [4]. The EEG
is an important clinical tool for diagnosing, monitoring, and
managing neurological disorders related to epilepsy [7]. This
disorder is characterized by sudden recurrent and transient
disturbances of mental function and/or movements of body
that results in excessive discharge group of brain cells [8].
The presence of epileptiform activity in the EEG confirms
the diagnosis of epilepsy, which sometimes is confused with
other disorders producing similar seizure-like activity [9].
Between seizures, the EEG of a patient with epilepsy may
be characterized by occasional epileptic form transients-
spikes and sharp waves [10]. Seizures are featured by short
episodic neural synchronous discharges with considerably



enlarged amplitude. This uneven synchrony may happen
in the brain accordingly, that is, partial seizures visible
only in few channels of the EEG signal or generalized
seizures, which are seen in every channel of the EEG
signal involving the whole brain [11]. Epileptic seizure is
an abnormality in EEG gathering and is featured by short
and episodic neuronal synchronous discharges with severely
high amplitude. This anomalous synchrony may happen in
the brain locally (partial seizures) and is visible only in
fewer channels of the EEG signal, or including the entire
brain, that is, visible in all the channels of the EEG signal
(12].

L1 Related Works. In the last three decades the analysis
and classification of epilepsy from EEG signal have become
a fascinating research. A huge volume of research was
performed which includes spike detection, classification
epilepsy seizures, ictal and interictal analysis, nonlinear and
linear analysis, and soft computing methods. Gotman [9]
discussed the improvement of epileptic seizure detection
and evaluation. Pang et al. [10] summarized the history and
evaluation of various spike detecting algorithms. Reference
[13] discussed the different neural network as function
approximation and universal approximation for epilepsy
diagnosis. Sarang [14] encapsulates the performance of spike
detecting algorithms in terms of sensitivity, specificity, and
average detection. Reference [14] ordered the performance
of spike detecting algorithms in terms of good detection
ratio (GDR). McSharry et al. [8] discussed and enumerated
the nonlinear methods and its relevance to predict epilepsy
by considering EEG samples as time series. Majumdar [15]
reviews various soft computing approaches of EEG signals
which emphasize more on pattern recognition techniques.
Reference [15] mainly focuses on dimensionality reduction,
SNR problems, and linear and soft computing techniques for
EEG signal processing. Kaushik concludes that the neural
network and Bayesian approaches are two popular choices
even though linear statistical discriminants are easier to
implement. A large number of Support Vector Machines
(SVM) are also discussed in this paper for their classification
accuracy. Hence, the EEG signal occupies a great deal of data
regarding the working of the brain. However classification
and estimation of the signals are inadequate. As there is no
explicit category suggested by the experts, visual examination
of EEG signals in time domain may be deficient. Routine
clinical diagnosis necessitates the analysis of EEG signals
[13]. Hence, automation and computer methods have been
utilized for this reason. Current multicenter clinical analysis
indicates confirmation of premonitory symptoms in 6.2%
of 500 patients with epilepsy [16]. Another interview based
study found that 50% of 562 patients felt “auras” before
seizures. Those clinical data provide a motivation to search
for premonitoring alterations on EEG recordings from the
brain and to employ a device that can act without human
intervention to forewarn the patient [17]. On the other hand,
despite decades of research, existing techniques do not yield
to better performance. This paper addresses the application
and comparison of SVD, EM, and MEM classifiers towards
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optimization of code converter outputs in the classification
of epilepsy risk levels.

Webber et al. [18] have proposed the three-stage design
of an EEG seizure detection system. The first stage of
the seizure detector compresses the raw data stream and
transforms the data into variables which represent the state
of the subject’s EEG. These state measures are referred to
as context parameters. The second stage of the system is
a neural network that transforms the state measures into
smaller number of parameters that are intended to represent
measures of recognized phenomena such as small seizure
in the EEG [9, 10]. The third stage consists of a few simple
rules that confirm the existence of the phenomena under
consideration. Similarly, this paper also presents a three-stage
design for epilepsy risk level classification. The first stage
extracts the required seven distinct features from raw EEG
data stream of the patient in time domain. The next stage
transforms these features into a code word through a code
converter with seven alphabets which represents the patient’s
state in five distinct risk levels for a two-second epoch of EEG
signal per channel. The last stage is a SVD, EM, or MEM
which optimizes the epilepsy risk level of the patient. The
organization of the paper is as follows. Section 1 introduces
the paper and materials and its methods are discussed in
Section 2. Section 3 describes the SVD, EM, and MEM as
postclassifiers for epilepsy risk level classification. Results
are discussed in Section 4 and the paper is concluded in
Section 5.

2. Materials and Methods

2.1. Data Acquisition of EEG Signals. For the comparative
study and to analyze the performance of the pre- and
postclassifiers we have obtained the raw EEG data of 20
epileptic patients in European Data Format (EDF) who
underwent treatment in the Neurology Department of Sri
Ramakrishna Hospital, Coimbatore. An issue that has been
given great attention is the preprocessing stage of the EEG
signals because it is important to use the best technique
to extract the useful information embedded in the nonsta-
tionary biomedical signals. The obtained EEG records were
continuous for about 30 seconds; each of them was divided
into epochs of two-second duration. A two-second epoch
is long enough to detect any significant changes in activity
and presence of artifacts and also short enough to avoid
any redundancy in the signal [19]. For a patient we have 16
channels over three epochs. Having a frequency of 50 Hz,
each epoch was sampled at a frequency of 200 Hz. Each
sample corresponds to the instantaneous amplitude values of
the signal, totaling to 400 values for an epoch. Figure 1 shows
the model of flow diagram of epilepsy risk level classification
system. Four types of artifacts were present in our data.
They included eye blink, electromyography (EMG) artifact,
chewing, and motion artifacts [20]. Approximately 1% of
the data was artifacts. We did not make any attempt to
select certain number of artifacts and of a specific nature.
The objective of including artifacts was to have spikes ver-
sus nonspike categories of waveforms. The latter could be
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FIGURE 1: Flow diagram for epilepsy risk level classification system.

a normal background EEG and/or artifacts [21]. In order
to train and test the feature extractor and classifiers, we
need to select a suitable segment of EEG data. In our
experiment, the training and testing were selected through
a short sampling window and all EEG signals were visually
examined by a qualified EEG technologist. A neurologist’s
decision regarding EEG features (or normal EEG segment)
was used as the gold standard. We choose a sample window of
400 points corresponding to 2 seconds of the EEG data. This
width can cover almost all types of transient epileptic patterns
in the EEG signal, even though seizure often lasts longer [22].
In order to classify the risk level of the patients, certain
parameters were chosen which are detailed below.

(1) For every epoch, the energy is calculated as [4]

E =

2
i
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-
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—

where x;—sample value of signal and n—number of
such samples.

(2) One of the simplest linear statistics that may be used
for investigating the dynamics underlying the EEG is
the variance of the signal calculated in consecutive
nonoverlapping windows. The variance (¢%) is given

by

2 _ Yoy (i — H)z’ (2)

n
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where y—average amplitude of the epoch.

(3) For the average variance, the covariance of duration is
determined by using the equation below:

2
f:l (D B ti)

D (3)

CD =

The following are the four parameters which are extracted
using morphological filters and wavelet transforms.

(1) The total number of positive and negative peaks is
found above the threshold.

(2) For a zero crossing function, if it lies between 20
milliseconds and 70 milliseconds, then the spikes can
be detected. If the zero crossing function lies between
70 milliseconds and 200 milliseconds then the sharp
waves are detected, when the zero crossing function
lies between 70 milliseconds and 200 milliseconds.

(3) The total number of spikes and sharp waves are
determined as the events.

(4) The duration for these waves is determined by the
relation:
P .
p-2mfi @
p

where t,—peak to peak duration and p—number of
such durations.

2.2. Wavelet Transforms for Feature Extraction. The brain
signals are nonstationary in nature. In order to capture the
transients and events of the waveforms we are in dire state
to visualize the time and frequency simultaneously. Hence,
the wavelet transforms are the better choice to extract the
transient features and events from the EEG signals. The
wavelet transform based feature extraction is discussed as
follows.

Let us consider a function f(t). The wavelet transform of
this function is defined as [23]

o0

wf (ab) = j FOw, ®d, 5)

where " (f)—complex conjugate of the wavelet function

y(t).
With the set of the analyzing function, the wavelet family
is deduced from the mother wavelet y(t) by [24]

Yap (1) = %w (%) (6)

where a—dilation parameter and b—translation parameter.

The feature extraction process is initialized by studying
the effect of simple Haar threshold. The Haar wavelet function
can be represented as [25]

1

1, 0<t<-=,

2

v(t) =1,

0, otherwise.

Loy, 7)
2
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TABLE 1: Parameter ranges for various risk levels.

Normalized parameters Risk levels
Normal Low Medium High Very high

Energy 0-1 0.7-3.6 2.9-8.2 7.6-11 9.2-30
Variance 0-0.3 0.15-0.45 0.4-2.2 1.6-4.3 3.8-10
Peaks 0-2 1-4 3-8 6-16 12-20
Events 0-2 1-5 4-10 7-16 15-28
Sharp waves 0-2 1-5 4-8 7-11 10-12
Average duration 0-0.3 0.15-0.45 0.4-24 1.8-4.6 3.6-10
Covariance 0-0.05 0.025-0.1 0.09-0.4 0.28-0.64 0.54-1

Wavelet thresholding is a signal estimation technique
that exploits the capabilities of wavelet transform for signal
denoising or smoothing. It depends on the choice of a
threshold parameter which determines to great extent the
efficacy of denoising:

x, if |x| > T,

8
0, if|x|<T, ®

pr(x) = {
where T is the threshold level.

Typical threshold operators for denoising include hard
threshold, soft threshold, and affine (firm) threshold. Hard
threshold is defined as [24]. Soft thresholding (wavelet
shrinkage) is given by

x-T, if(x=>T),
pr(x)=4x+T, if(x<T), 9
0, if |x| < -T.

Haar, Db2, Db4, and Sym8 wavelets with hard thresh-
olding and four types of soft thresholding methods such
as Heursure, Minimaxi, Rigrsure, and Sqtwolog are used to
extract the parameters from EEG signals. With the help of
expert’s knowledge and our experiences with [5, 20, 26],
we have identified the following parametric ranges for five
linguistic risk levels (very low, low, medium, high, and very
high) in the clinical description for the patients which is
shown in Table 1.

The output of code converter is encoded into the strings
of seven codes corresponding to each EEG signal parameter
based on the epilepsy risk levels threshold values as set in
Table 1. The expert defined threshold values as containing
noise in the form of overlapping ranges. Therefore we have
encoded the patient risk level into the next level of risk instead
of alower level. Likewise, if the input energy is at 3.4 then the
code converter output will be at medium risk level instead of
low level [26].

2.3. Code Converter as a Preclassifier. The encoding method
processes the sampled output values as individual code.
Since working on definite alphabets is easier than processing
numbers with large decimal accuracy, we encode the outputs
as a string of alphabets. The alphabetical representation of the
five classifications of the outputs is shown in Table 2.

The ease of operation in using characteristic representa-
tion is obviously evident than in performing Cumber some

TABLE 2: Representation of risk level classifications.

Risk level

Normal

Coded Representation

Low
Medium
High
Very high

N < X = C

TaBLE 3: Output of code converter for patient 2.

Epoch1 Epoch 2 Epoch 3

YYYYXXX ZYYWYYY YYYXYZZ
YYYXYYY 27ZY7777 YYYXYZZ
YYYYYYY 727Y7777 ZYYYZZZ
ZYYYZZZ ZZYZYYY YYYXXZZ
YYYYYYY YYYXYYY YYYYYZZ
YYYYYYY YYYXYYY YYYXYYX
YYYYYYY YYYYYYY YYYYYYZ
ZZYZNZ7Z 27NZ7777 2ZZNZ7777

operations of numbers. By encoding each risk level from one
of the five states, a string of seven characters is obtained for
each of the sixteen channels of each epoch. A sample output
with actual patient readings is shown in Table 3 for eight
channels over three epochs.

It can be seen that channel 1 shows low risk levels while
channel 7 shows high risk levels. Also, the risk level clas-
sification varies between adjacent epochs. There are sixteen
different channels for input to the system at three epochs. This
gives a total of forty-eight input and output pairs. Since we
deal with known cases of epileptic patients, it is necessary
to find the exact level of epilepsy risk in the patient. This
will also aid towards the development of automated systems
that can precisely classify the risk level of the epileptic patient
under observation. Hence an optimization is necessary. This
will improve the classification of the patient and can provide
the EEG with a clear picture [20]. The outputs from each
epoch are not identical and are varying in condition such as
[YYZXXXX] to [WYZYYYY] to [YYZZYYY]. In this case
energy factor is predominant and thus results in the high
risk level for two epochs and low risk level for middle epoch.
Channels five and six settle at high risk level. Due to this type
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of mixed state output we cannot come to proper conclusion;
therefore we group four adjacent channels and optimize the
risk level. The frequently repeated patterns show the average
risk level of the group channels. Same individual patterns
depict the constant risk level associated in a particular epoch.
Whether a group of channel is at the high risk level or not
is identified by the occurrences of at least one Z pattern in
an epoch. It is also true that the variation of the risk level
is abrupt across epochs and eventually in channels. Hence
we are in a dilemma and cannot come up with the final
verdict. The five risk levels are encodedas Z > Y > X >
W > U in binary strings of length five bits using weighted
positional representation as shown in Table 4. Encoding each
output risk level gives us a string of seven alphabets, the
fitness of which is calculated as the sum of probabilities of the
individual alphabets. For example, if the output of an epoch
is encoded as ZZYXWZZ, its fitness would be 0.419352.

The Sensitivity Se and Specificity Sp are represented as
[19]

PI = w x 100, (10)
PC
where PI—Performance Index, PC—perfect classification,
MC—missed classification, and FA—false alarm.

The performance of code converter is 44.81%. The perfect
classification represents when both the physician and code
converter agrees with the same epilepsy risk level. Missed
classification represents a high level as low level. False alarm
represents a low level as high level with respect to physician’s
diagnosis. The other performance measures are also defined
as below.

The sensitivity Se and specificity Sp are represented as [19]

Sez[ PC

—] * 100,
(PC+ FA)

(% 100 = 83.33%,
0.6

] * 100,
(PC+ MC)

* 100 = 71.42%,

):
Sy
57)

(Sensitivity + Specificity)

Average Detection (AD) = 3 >
AD = 78.875,
S itivit
Relative Risk = M,
Specificity

Relative Risk = 1.166.
(11)

The relative risk factor indicates the stability and sen-
sitivity of the classifier. For an ideal classifier the relative
risk will be unity. More sensitive classifier will have this
factor slightly above unity, whereas slow response classifier

5
TABLE 4: Binary representation of risk levels.
Risk level Code Binary string Weight Probability
Very high Z 10000 16/31 = 0.51612 0.086021
High Y 01000 8/31=0.25806 0.043011
Medium X 00100 4/31 = 0.12903 0.021505
Low W 00010 2/31=0.06451 0.010752
Normal U 00001 1/31 = 0.03225 0.005376
11111 = 31 Y=1

TABLE 5: Performance of code converter output based on wavelet
transform along hard thresholding.

Wavelets Perfect Missed False Performance
classification classification  alarm Index
Haar 61.45 15.625 22.91 37.58
Db2 61.18 16.14 22.65 36.44
Db4 64.57 12.49 22.91 44.72
Sym8 63.52 11.44 23.95 44 .81

makes this factor lower than unity. We have obtained a
low value of just 40% for Performance Index and 83.33%,
71.42%, 78.87%, and 1.166 for sensitivity, specificity, average
detection, and relative risk for the code converter. Due to
the low performance measures it is essential to optimize the
output of the code converter. Performance Index of code
converters output using different wavelet transforms for hard
thresholding methods is tabulated in Table 5.

2.4. Rhythmicity of Code Converter. Now we are about to
identify the rhythmicity of code converter techniques which
is associated with nonlinearities of the epilepsy risk levels. Let
the rhythmicity be defined as [10]

C
R=—, 12
5 (12)

where C = number of categories of patterns and D =
total number of patterns which is 960 in our case. For an
ideal classifier C is to be one and R = 0.001042. Table 6
shows the rhythmicity of the code converter classifier for
hard thresholding of each wavelet. Table 6 shows that the
value of R is highly deviated from its ideal value. Hence, it is
necessary to optimize the code converters outputs to endure
a singleton risk level. In the following section we discuss the
morphological filtering of EEG signals.

2.5. Morphological Filtering for Feature Extraction of EEG Sig-
nals. Morphological filtering was chosen over other methods
such as the temporal approach of the EEG signal and wavelet
based approach due to the fact that morphological filtering
can precisely determine the spikes with a very high accuracy
rate [14]. Let us call it as a function f(t). Let us also take into
account a structuring element g(t) which together with f(¢)
is the subsets of Euclidean space E.



TABLE 6: Rhythmicity of code converter for wavelets with hard
thresholding.

Wavelets Number of categories Rhythmicity
of patterns R=C/D
Haar 31 0.032292
Db2 41 0.042708
Db4 30 0.03125
Sym8 45 0.046875

Accordingly, the Minkowski addition and subtraction [6]
for the function f(t) is given by the relation

(fog) )= max {f (t-u) + g W)},

t—ucF
ueG

(fOg) (t) = min {f (t -u) - g W)}

t=uecF
ueG

Addition:
Subtraction:

(13)

The opening and closing functions of the morphological
filter are given as

Opening:  (fog)(t) = [(f@gs) eBg] (1)

Closing: (f-g)(t) = [(f@gs) ®g] (t).

The abovementioned equations help us in determining
the peaks and valleys in the original recording [7]. The
opening function (erosion-dilation) is used in smoothing of
the convex peak of the original signal and the closing function
(dilation-erosion) is used in smoothing the concave peak of
the signal. Combinations of opening and closing function
lead to the formation of a new filter which when fed with
the original signal can divide it into two, the first signal being
defined by a structuring element and the second signal being
the residue of f(¢). This type of filtering is done in order
to detect the spikes with high accuracy. For two structuring
elements, say g, (t) and g,(t), the open-close (OC) and close-
open (CO) functions are defined as

OC(f®)=f®)egi(®) g, (1),

CcO (f (t)) =f{t)-g,(t)og, ().

When considered separately, the OC and CO functions
result in a variation in amplitude; that is, while OC results
in lower amplitude, the CO function yields higher amplitude.
For easier interpretation and calculation, we go for the aver-
age of the two defined as opening-closing-closing-opening
(OCCO) function. The same is depicted below as

[OC(fF W) +COF W] )
- ,

(15)

0CCO(f 1) =

where f(¢) is the original signal represented as
f () =x()+OCCO(f (1)), (17)
where x(t)—spiky part of the signal.
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Performance Index, sensitivity, and specificity of code
converter outputs through morphological filter based feature
extraction arrived at the low value of 33.46%, 76.23%, and
77.42%, respectively. This scenario impacts the optimization
of code converter outputs using postclassifier to accomplish a
singleton result. The following section describes the outcome
of SVD, EM, and MEM techniques as postclassifier.

3. Singular Value Decomposition,
Expectation Maximization, and Modified
EM as Postclassifier for Classification of
Epilepsy Risk Levels

In this section, we discuss the possible usage of SVD, EM,
and MEM as a postclassifier for classification of epilepsy
risk levels. The Singular Value Decomposition (SVD) was
established in the 1870s by Beltrami and Jordan for real square
matrices [27]. It is used mainly for dimensionality reduction
and determining the modes of a complex linear dynamical
system [27]. Since then, SVD is regarded as one of the most
important tools of modern numerical analysis and numerical
linear algebra.

3.1. SVD Theorem. Let us have an m X n matrix A =
[a,,a,,a5,...,4a,]. The SVD theorem states that [28]

A=UsV’, (18)

where A € Rm xn (withm > n),U € Rmxn,V € Ruxn,
and § is a diagonal matrix of size Rn X n.
Equation (18) can be further realized as

A= Z PUkukVZ. (19)

The columns of U are called the left singular vectors of
matrix A and the columns of V" are called the right singular
vectors of A. P = min(m,n); ) is called the singular value
matrix along with the diagonal.

We have taken the EEG records of twenty patients for our
study. Each patient’s sample is composed of a 16 x 3 matrix
as code converter outputs depicted in Table 3. Considering
this to be as matrix A, SVD is computed. The so-obtained
Eigen value is eventually regarded as the patient’s epilepsy risk
level. The similar procedure is carried out in finding out the
remaining Eigen values of other patients as well.

3.2. Expectation Maximization as a Postclassifier. The Expec-
tation Maximization (EM) is often defined as a statistical
technique for maximizing complex likelihoods and handling
incomplete data problem. EM algorithm consists of two steps,
namely, the following.

Expectation Step (E Step): say for data x, having an
estimate of the parameter and the observed data; the expected
value is initially computed [29]. For a given measurement
y, and based on the current estimate of the parameter, the
expected value of x; is computed as given below:

xEkH] =E [xl | yl,pk] . (20)
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This implies

[k+1] _ 1/4
1 }’1—(1/4) N (p[k]/z)'

Maximization Step (M Step): from the Expectation Step,
we use the data which was actually measured to determine
the ML estimate of the parameter.

Considering the code converter outputs, let us take a set of
unit vectors to be as X. We will have to find out the parameters
p and x of the distribution Md(y, k). Accordingly, we can
form the equation as [30]

(21)

X ={X; | X; ~Md(p, k) for 1 <i<n}. (22)
Considering x; € X, the likelihood of X is
P(X | uk)=P(x;....x, | k)

n n . 23
T G =[Tawes™ 2
i=1 i=1

The log likelihood of (19) can be written as

L(X| k) =InP(X | k) =nlnc, (k) +ku'r, (24)
where

r= Z ix;. (25)

In order to obtain the likelihood parameters y and x, we
will have to maximize (22) with the help of Lagrange operator
A. The equation can be written as

L(u A% X)=nlng, (k)+k‘uTr+)t(l —yTy). (26)

Derivating (23) with respect to p, A, and k and equating
these to zero will yield the parameter constraints as

- Er
Py
T ~
pgp=1 (27)
' (k)
= —‘Ll r.

a (k)

In the Expectation Step, the threshold data are estimated,
given the observed data and current estimate of the model
parameters [31]. This is achieved using the conditional expec-
tation, explaining the choice of terminology. In the M-Step,
the likelihood function is maximized under the assumption
that the threshold data are known. The estimate of the missing
data from the E-Step is used in lieu of the actual threshold
data.

3.3. Modified Expectation Maximization Algorithm. A Modi-
fied Expectation Maximization (EM) algorithm which uses
maximum likelihood (ML) approach is discussed in this
paper for pattern optimization. Similar to the conventional

EM algorithm, this algorithm alternated between the estima-
tion of the complete log-likelihood function (E-Step) and the
maximization of this estimate over values of the unknown
parameters (M-Step) [32]. Because of the difficulties in the
evaluation of the ML function [33], modifications are made
to the EM algorithm as follows.

The method of maximum likelihood corresponds to
many well-known estimation methods in statistics. For exam-
ple, one may be interested in the heights of adult female
giraffes but be unable due to cost or time constraints to
measure the height of every single giraffe in a population.
Assuming that the heights are normally (Gaussian) dis-
tributed with some unknown mean and variance, the mean
and variance can be estimated with MLE while only knowing
the heights of some samples of the overall population.

Given a set of samples X = {x,,x,,...,x,}, the complete
data set S = (X,Y) consists of the sample set X and a
set Y of variable indicating from which component of the
mixtures the samples came. The description is given below
of how to estimate the parameters of the Gaussian mixtures
with the maximization algorithm. After optimization of
the patterns, maximum likelihood is adopted to redesign
the intracranial area into two clusters. Basically, maximum
likelihood algorithm is a statistical estimation algorithm
used for finding log-likelihood estimates of parameters in
probabilistic models [30].

(1) Find the initial values of the maximum likelihood
parameters which are means covariance and mixing
weights.

(2) Assign each x; to its nearest cluster centre ¢ by
Euclidean Distance (d)

(3) In maximization step, use Maximization Q(6,0'). The
likelihood function is written as:

Q ((9i+16i) = maxQ (9’0) , 6= arg max Q (9, Gi) ,

d(p.d)=d(pa) = \|¥ (@ p)"

(28)

(4) Repeat iterations, until 161 = 6| becomes small
enough.

The algorithm terminates when the difference between
the log likelihood for the previous iteration and current
iteration fulfills the tolerance. For ¢ = 0 and 0 = 1, the
likelihood function was applied to the 16 x 3 matrix of the
code converter output by having truncated to the known
endpoints.

4. Results and Discussion

To study the relative performance of these code converters
and SVD, EM, and MEM, we measure two parameters, the
Performance Index and the Quality Value. These parameters
are calculated for each set of twenty patients and are com-
pared.
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TABLE 7: Performance Index for morphological based feature extraction.

Classifiers Morphological operators based feature extraction

Perfect classification Missed classification False alarm Performance Index
Code converter 62.6 18.25 19.13 33.26
With SVD optimization 91.22 7.31 1.42 89.48
With EM optimization 82.68 12.93 4.38 80.1
With MEM optimization 85.32 10.95 3.72 83.35

TABLE 8: Performance analysis of wavelet transforms with hard thresholding.

Classifiers Perfect classification Missed classification False alarm Performance Index

Haar wavelet

Code converter 61.45 15.625 2291 37.58
With SVD optimization 96.58 3.42 0 96.4
With EM optimization 82.68 12.93 4.38 80.1
With MEM optimization 85.32 10.95 3.72 83.35
DB2 wavelet
Code converter 61.18 16.14 22.65 36.44
With SVD optimization 98.13 0.9465 0.946 98.03
With EM optimization 87.29 8.1 4.59 85.42
With MEM optimization 89.58 5.81 4.61 87.81
DB4 wavelet
Code converter 64.57 12.49 2291 44.72
With SVD optimization 97.54 0.378 2.08 97.45
With EM optimization 92.33 4.31 3.29 91.35
With MEM optimization 93.86 2.3 3.84 93.17
Sym8 wavelet
Code converter 63.52 11.44 23.95 44.81
With SVD optimization 97.35 1.512 1.135 9723
With EM optimization 87.27 7.78 5.48 85.03
With MEM optimization 88.71 6.9 5.67 86.95

4.1. Performance Index. A sample of Performance Index
of morphological filter based feature extraction with code
converters, Singular Value Decomposition, EM, and MEM
for an average of twenty known epilepsy data sets is shown in
Table 7. As shown in Table 7 the morphological filter based
feature extraction along with SVD optimization is ranked at
first with high PI of 89.48% against the 80.1% and 83.35% of
EM and MEM methods. But the morphological filter plugged
into more missed classification rather than less false alarm
which is a dangerous trend. Therefore, this method will be
considered as a lazy and high threshold classifier.

Table 8 depicts the performance analysis of wavelet trans-
form with hard thresholding method. In case of hard thresh-
olding, while code converter has got an average classification
rate and false alarm of 62.68% and 18.105%, EM optimizer
has 87.39% of perfect classification with a false alarm rate of
4.43%. Not much of deviations, MEM have 89.36% and 4.46%
of average perfect classification and false alarm, respectively.
SVD optimization has got the highest value of perfect
classification rate of 96.58% with zero false alarms. Hence
SVD optimizer can be regarded as the best postclassifier. In
all the four wavelet transforms SVD postclassifier is the best
suited one to achieve the high classification rate. EM and

MEM techniques fail miserably to achieve better classification
accuracy when compared with SVD classifier.

Table 9 represents the performance analysis of wavelet
transforms with soft thresholding with code converter, SVD,
EM, and MEM, respectively. It can be found that, in soft
thresholding, the code converter has got an average perfect
classification of 65.6 and false alarm of 11.94. SVD has got
a classification rate of over 85% with comparatively higher
values of false alarms. MEM optimizer claims to be the best
optimizer as it has a classification rate of 93.97% with a false
alarm rate of 3.5 only. This is obtained when Haar wavelet is
used with mini max soft thresholding.

4.2. Quality Value. This parameter determines the overall
quality of the classifiers used. The relation for Quality Value
is given by [19]

C

Qv = ,
(Rey +0.2) # (Tyyy # Pyey +6 % Py

(29)

where C—scaling constant, R, —false alarm per set, Ty, —
average delay of on-set classification, Py ,—percentage of
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TABLE 9: Performance analysis of Haar wavelet transforms with soft thresholding.

Classifiers Perfect classification Missed classification False alarm Performance Index

Heursure soft thresholding

Code converter 66.1 19.18 11.93 52.82
With SVD optimization 8721 2.84 9.94 82.64
With EM optimization 89.03 6.79 4.16 87.88
With MEM optimization 90.46 4.6 4.93 89.82
Mini max soft thresholding
Code converter 64.63 20.59 15.1 44.52
With SVD optimization 85.22 0 14.77 79.43
With EM optimization 89.48 5.92 4.6 88.15
With MEM optimization 93.97 2.74 3.5 93.4
Rig sure soft thresholding
Code converter 66.34 19.88 13.78 49.11
With SVD optimization 88.49 0 11.5 84.18
With EM optimization 90.9 3.84 5.48 89.93
With MEM optimization 92.22 3.62 4.16 91.25
Sqtwolog soft thresholding
Code converter 65.34 27.69 6.96 46.89
With SVD optimization 77.69 20.88 1.42 66.58
With EM optimization 84.65 10.85 4.49 82.12
With MEM optimization 88.38 8.88 2.74 86.87

TaBLE 10: Quality Value of wavelet transforms with hard thresholding.

Wavelets Quality Value
Without optimization With SVD optimization With EM optimization With MEM optimization
Haar 11.56 23.5 18.32 19.24
Db2 12.57 23.82 19.72 20.49
Db4 12.49 23.15 21.32 22.11
Sym8 12.84 23.37 19.52 20.3

TABLE 11: Performance analysis of twenty patients using dB2 wavelet hard thresholding with SVD, EM, and MEM postclassifiers.

Code converter

Parameters method before SVD optimization Wit}.l EM Wi.th .ME.M
optimization optimization optimization
Risk level classification rate (%) 61.45 98.13 87.29 89.58
Weighted delay (s) 2.189 2.017 2.233 2.14
False alarm rate/set 22.65 0.9463 4.59 4.6
Performance Index % 36.45 98.03 85.42 87.81
Sensitivity 75.43 99.05 95.4 95.4
Specificity 81.94 99.1 91.89 94.19
Average detection 78.875 99.075 93.645 94.795
Relative risk 1.166 0.9999 1.038 1.0128
Quality Value 12.57 23.82 19.72 20.49

TABLE 12: Quality Value of Haar wavelet transforms with soft thresholding.

Haar wavelet with soft thresholding Quality Value
Code converter ~ With SVD optimization =~ With EM optimization =~ With MEM optimization
Heursure 13.54 20.16 20.12 20.85
Mini max 1211 19.38 20.09 22.54
Rig sure 12.91 20.44 20.32 21.42

Sqtwolog 13.22 17.82 18.77 20.22
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TABLE 13: Performance analysis of twenty patients using Haar wavelet in soft thresholding with SVD, EM, and MEM postclassifiers.
Parameters (I:r?ec':fl(fgrll;eff)t:er SVD optimization Wit}.l EM Wi.th M E.M
optimization optimization optimization
Heursure soft thresholding
Risk level classification rate (%) 66.1 87.21 89.03 90.46
Weighted delay (s) 2.47 191 2.19 2.08
False alarm rate/set 11.93 9.94 4.16 4.93
Performance Index % 52.82 82.64 87.88 89.82
Sensitivity 85.39 90.05 96.27 95.07
Specificity 78.28 97.16 92.76 95.4
Average detection 78.875 93.61 94.51 95.23
Relative risk 1.166 0.926 1.037 0.996
Quality Value 13.54 20.16 20.12 20.85
Mini max soft thresholding
Risk level classification rate (%) 64.63 85.22 89.48 93.97
Weighted delay (s) 2.53 1.7 2.15 2.06
False alarm rate/set 15.1 14.77 4.6 35
Performance Index % 44.52 79.43 88.15 93.4
Sensitivity 82.31 85.25 95.4 96.71
Specificity 76.81 100 94.08 97.26
Average detection 78.875 92.625 94.74 96.98
Relative risk 1.166 0.85 1.014 0.994
Quality Value 12.11 19.36 20.09 22.54
Rig sure soft thresholding
Risk level classification rate (%) 66.34 88.49 90.9 92.22
Weighted delay (s) 2.52 1.77 2.01 2.1
False alarm rate/set 13.78 11.5 5.48 4.16
Performance Index % 49.11 84.18 89.93 91.25
Sensitivity 84.35 88.49 94.74 95.83
Specificity 78.23 100 96.16 96.83
Average detection 78.875 94.45 95.45 96.33
Relative risk 1.166 0.88 0.992 0.989
Quality Value 12.91 20.44 20.32 21.42
Sqtwolog soft thresholding
Risk level classification rate (%) 65.34 77.69 84.65 88.38
Weighted delay (s) 2.96 2.806 2.34 23
False alarm rate/set 6.96 1.42 4.49 2.74
Performance Index % 46.89 66.58 82.12 86.87
Sensitivity 91.34 98.57 95.5 97.26
Specificity 70.82 79.11 89.15 91.12
Average detection 78.875 88.84 92.325 94.19
Relative risk 1.166 1.245 1.07 1.06
Quality Value 13.22 17.82 18.77 20.22

perfect classification, and P, 4—percentage of perfect risk
level missed.

By setting the value of “C” to a constant value, consider
as 10. The classifier with the highest Quality Value is the
better one. Table 10 depicts the Quality Value of wavelet
transforms with hard thresholding and SVD, EM, and MEM

optimization methods. It was observed that SVD with dB2
wavelet in hard thresholding attained the maximum value of
QV at 23.82 and EM with Haar wavelet has the low value of
QV at 18.32.

Table 11 shows the performance analysis of twenty
patients using dB2 wavelet hard thresholding with SVD,
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TABLE 14: Performance analysis of twenty patients using morphological filters with SVD, EM, and MEM postclassifiers.
Parameters Code converter method ~ SVD optimization ~ With EM optimization =~ With MEM optimization
Risk level classification rate (%) 62.6 91.22 87.27 88.71
Weighted delay (s) 2.34 2.26 2.2 218
False alarm rate/set 19.13 1.42 5.47 5.67
Performance Index % 33.26 89.48 85.03 86.95
Sensitivity 77.84 98.57 95.59 98.97
Specificity 78.91 92.65 98.11 97.67
Average detection 78.875 95.61 96.85 98.32
Relative risk 1.166 1.063 0.974 1.013
Quality Value 12.74 20.62 19.52 20.3
TaBLE 15: Performance analysis of postclassifiers in terms of weighted delay and quality value.
SVD optimization EM optimization MEM optimization
Methods/wavelets (;Nelealf}(lstz(ci) Quality Value 3271?}%}(1::3) Quality Value c;flzlf}(l;:(ci) Quality Value
Haar 2.14 23.5 2.431 18.32 2.36 19.24
Hard threshold dB2 2.017 23.82 2.23 19.72 2.14 20.49
dB4 1.974 23.15 2.11 21.32 2.01 2211
Sym8 2.038 23.37 2.2 19.52 2.18 20.3
Haar 1.94 20.16 2.19 20.12 2.08 20.85
Soft threshold dB2 2.82 16.01 2.37 20.24 2.27 20.54
heursure dB4 2.41 19.99 231 19.79 2.27 20.57
Syms8 2.16 18.95 2.26 20.44 213 22
Haar 1.7 19.36 2.15 20.09 2.06 22.54
Soft threshold dB2 2.23 19.39 2.3 18.87 2.16 20.41
mini max dB4 1.97 2013 2.17 19.97 2.14 20.66
Sym8 2.51 19.51 2.27 20.2 2.22 20.73
Haar 1.77 20.44 2.01 20.32 21 21.42
Soft threshold dB2 1.62 18.77 2.07 19.4 2.04 19.95
rig sure dB4 153 16.74 2.08 20.42 2.08 22.04
Syms8 1.65 19.51 2.18 20.02 2.09 21.06
Haar 2.08 17.82 2.34 18.77 2.3 20.22
Soft threshold dB2 3.25 16.73 2.42 19.17 2.36 20.1
sqtwolog dB4 2.76 19.1 2.37 19.62 2.36 19.35
Sym8 2.97 17.52 2.41 18.74 2.39 19.97
Morphological filters 2.26 20.62 2.2 19.52 2.18 20.3

EM, and MEM as postclassifiers. The evaluation parameters
achieved an appreciable value in the case of SVD postclassifier
when compared to the other two classifiers. Hence, we can
choose SVD as a good postclassifier for epilepsy risk level
classification. All the three postclassifiers are bestowed with
the best sensitivity and specificity measures. EM and MEM
classifiers are plugged into the higher false alarm rate and this
leads to the lower QV and PI for the system.

Since the Haar wavelet is a predominant wavelet we had
chosen this wavelet for the four types of soft thresholding
methods and the same is depicted in Table 12. As seen in
Table 12 the highest QV of 22.54 is attained in the mini max
soft thresholding with MEM as a postclassifier.

Table 13 exhibits the performance analysis of twenty
patients using Haar wavelet in soft thresholding with SVD,
EM, and MEM postclassifiers. MEM postclassifier with mini
max soft thresholding reached the better QV and PI when
compared to SVD and EM classifiers. A slight incremental
tradeoft in the weighted delay for MEM is responsible for this
performance when compared with SVD and EM classifiers.
SVD fails to achieve a good performance in this methodology
due to more false alarm rate. EM is struck in the middle path
as far as Performance Index is concerned.

Table 14 shows the performance analysis of twenty
patients using morphological filters with SVD, EM, and
MEM postclassifiers. In this method SVD outperforms other
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classifiers in terms of QV and PI. This morphological filtering
is inherited with slow response and is considered to be a
high threshold classifier. SVD classifier is summed with low
false alarm and weighted delays. All these methods in average
positioned at more than 90% of Performance Index and
around Quality Value of 18. Since for all these classifiers the
fact that the obtained weighted delay is more than 2 seconds
leads to larger threshold and slow response system.

We wish to analyse the time complexity of the postclas-
sifiers in terms of weighted delay and quality value. Table 15
shows the performance analysis of postclassifiers in terms
of weighted delay and Quality Value. It is observed that the
four types of wavelet transforms in hard thresholding method
along with SVD postclassifier attained low weighted delay
and high value of QV.

In the case of Table 15 the EM and MEM classifiers are
either plugged into more missed classification or false alarms
and subsequently lead to lower value of QV less than 20 in
most of the wavelet transforms. In case of soft thresholding
dB2 wavelet in rig sure thresholding for MEM postclassifier
outperforms other fifteen methods. Morphological filters are
stacked at higher delay with QV set at near 20.

5. Conclusion

The objective of this paper is to classify the risk level of
the epileptic patients from the EEG signals. The aim is to
obtain high classification rate, Performance Index, Quality
Value with low false alarm, and missed classification. Due
to the nonlinearity obtained and also a poor performance
found in the code converters, an optimization was vital for
the effective classification of the signals. We went for SVD,
EM, and MEM as postclassifiers. Morphological filters were
also used for the feature extraction of the EEG signals. After
having computed the values of PI and QV discussed under
the results column, we found that SVD was working perfectly
with a high classification rate of 91.22% and a false alarm
as low as 1.42. Therefore, SVD was chosen to be the best
postclassifier. The accuracy of the results obtained can be
made even better by using extreme learning machine as
a postclassifier and further research will be in this direc-
tion.
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