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The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network
flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of
measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive
set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different
activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-
Marquardt algorithmwas superior compared to the remaining tested local optimizationmethods.When comparing the 11 nonlinear
transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation
functions.

1. Introduction

In recent three decades, the implementations of various
models based on artificial neural networks (ANN) were
intensively explored in hydrological engineering.The general
reviews of ANNs modeling strategies and applications with
the emphases on modeling of hydrological processes are
presented in [1–3]. They confirm that the class of multilayer
perceptron (MLP) [4, 5] belongs to the most frequently
studied ANN’s models in hydrological modeling [6–9].

TheMLP forms the nonlinear data drivenmodel. Accord-
ing to its architecture, it is a fully connected feed-forward
network, which organizes the processing units (neurons)
into the layers and allows the interconnections only between
neurons in two following layers. As it was proved by [10], the
MLP is the universal function approximator. This important
property has been widely confirmed by many hydrological
studies [11–14].

Despite the positive research results of a large number of
studies on MLP runoff forecasting, there is a need for clear
methodological recommendations of MLP transfer function

selection [15, 22–24] combined together with the training
method assessment and the implementation of new training
method [8, 18, 19, 25].

Main aims of presented paper are (1) to analyze the
hourly flood runoff forecast on small headwater catchment
with MLP-ANN models, which are based on 12 different
MLP’s transfer functions following the work of [15, 24], (2) to
compare the 7 local optimization algorithms [5, 17, 19], and
finally (3) to evaluate the MLP performance with 4 selected
model evaluation measures [26, 27].

2. Material and Methods

The tested runoff prediction using the MLP-ANN models
uses the set of rainfall runoff data. The MLP-ANN imple-
mentation for runoff forecast generally consists of data
preprocessing, model architecture selection, MLP training,
and model validation. In this section, we give a very brief
description of the MLP-ANN model architecture and tested
optimization schemes and datasets.
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Table 1: The implemented transfer functions [15]; 𝑎 is the neuron’s activation, 𝑦 is the neuron output.

Function name Transfer function Derivatives of transfer function

Logistic sigmoid (LSi) 𝑦(𝑎) =
1

1 + exp(−𝑎)
𝑦

(𝑎) = 𝑦(𝑎)(1 − 𝑦(𝑎))

Hyperbolic tangent (HT) 𝑦(𝑎) = tan ℎ(𝑎) 𝑦(𝑎) = 1 − 𝑦(𝑎)
2

Linear function (LF) 𝑦(𝑎) = 𝑎 𝑦

(𝑎) = 1

Gaussian function (GF) 𝑦(𝑎) = exp(−𝑎2) 𝑦

(𝑎) = −0.5𝑦(𝑎)𝑎

Inverse abs (IA) 𝑦(𝑎) =
𝑎

1 + |𝑎|
𝑦(𝑎) =

1

(1 + |𝑎|)
2

LogLog (LL) 𝑦(𝑎) = exp(− exp(−𝑎)) 𝑦(𝑎) = exp(−𝑎)𝑦(𝑎)
ClogLog (CL) 𝑦(𝑎) = 1 − exp(− exp(𝑎)) 𝑦(𝑎) = (1 − 𝑦(𝑎)) exp(𝑎)
ClogLogm (CLm) 𝑦(𝑎) = 1 − 2 exp(−0.7 exp(𝑎)) 𝑦


(𝑎) = 1.4 exp(𝑎) exp(−0.7 exp(𝑎))

RootSig (RS) 𝑦(𝑎) =
𝑎

1 + √1 + 𝑎2
𝑦

(𝑎) =

1

(1 + √1 + 𝑎2)√1 + 𝑎2

LogSig (LS) 𝑦(𝑎) = (
1

1 + exp(−𝑎)
)

2

𝑦(𝑎) =
2 exp(−𝑎)

(1 + exp(−𝑎))3

Sech (SF) 𝑦(𝑎) =
2

exp(𝑎) + exp(−𝑎)
𝑦

(𝑎) = −𝑦(𝑎) tan ℎ(𝑎)

Wave (WF) 𝑦(𝑎) = (1 − 𝑎2) exp(−𝑎2) 𝑦(𝑎) = 2𝑎 exp(−𝑎2)(−2 + 𝑎2)

Table 2: The implemented local training gradient based methods.

Training method References
Batch propagation (BP) [4, 5, 16]
Batch backpropagation with regularization (BP regul) [4, 5, 16]
Levenberg-Marquardt (LM) [4, 17, 18]
Scaled conjugate gradient, Perry (PER) [19–21]
Scaled conjugate gradient, Polak (POL) [19–21]
Scaled conjugate gradient, Hestenes (HEST) [19–21]
Scaled conjugate gradient, Fletcher (FLET) [19–21]

2.1. MLP-ANN Model. We analyzed the MLP model with
one hidden layer. The similar ANN architecture was used in
a large number of hydrologically oriented studies [18, 28–
31]. The studied MLP models had in total three layers of
neurons, the input layer, the hidden layer, and the output
layer. As proved by Hornik et al. [10], this type of artificial
neural network with sufficiently a large number of neurons
in the second layer can approximate with desired precision
any measurable functional relationship.

The implemented MLP-ANNmodels had a general form

𝑅
𝑓
= V
0
+

𝑁hd

∑
𝑗=1

V
𝑗
𝑓(𝑤
0𝑗
+

𝑁in

∑
𝑖=1

𝑤
𝑗𝑖
𝑥
𝑖
) , (1)

where the𝑅
𝑓
is a network output, that is, flood runoff forecast

for given time interval, 𝑥
𝑖
is network input for input layer

neuron 𝑖, 𝑁in is the number of MLP inputs, the 𝑤
𝑗𝑖
is the

weight of 𝑖 input to 𝑗hidden layer neuron,𝑓() is the activation
function constant for all hidden layer neurons, 𝑁hd is the
number of hidden neurons, V

𝑗
is the weight for output from

hidden neuron 𝑗, and 𝑤
0𝑗
, V
0
are neuron biases [2–4, 18, 25,

31].

2.1.1. MLP-ANN Transfer Functions. The type of activation
function together with network architecture influences the
generalization of neural network. Imrie et al. [32] empirically
confirmed that the transfer function bounding influences the
ANN generalization and hydrological extreme simulations
during runoff forecast. Following the work of [15], we imple-
mented the 12 different types of transfer functions, and 11 of
them were tested in hidden neuron layer of analyzed MLP-
ANNmodels. Table 1 provides their list.

The activation functions type combinedwith specific type
of training methods influences the average performance of
leaning algorithm and computing time [15, 24]. For example,
the Bishop [4] pointed out that the implementation of
hyperbolic function speeds up the training process compared
to the use of logistic sigmoid.

2.1.2. MLP-ANN Local Optimization Methods. We selected
7 gradient based local optimization methods. Table 2 shows
their list together with their references. All MLP-ANN opti-
mization was performed using the batch learning mode [4].

All tested gradient local search methods (except
BP regul) minimized the error function represented as a the
sum of square of residuals

𝐸
𝑟
=
1

2

𝑁

∑
𝑖=1

𝑟
2

𝑖
, (2)

and the residuals 𝑟
𝑖
= 𝑅
𝑜
[𝑖]−𝑅

𝑓
[𝑖]were defined as differences

between observed 𝑅
𝑜
and computed 𝑅

𝑓
[𝑖] flood runoff.

The two first order local trainingmethods are represented
by the standard backpropagation and backpropagation with
regularization term. Both backpropagation methods imple-
ment the following modification: constant learning rate and
momentum parameter. The BP regul used the regularization
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term, which penalizes the size of estimated weights, and the
error function is defined as

𝐸 = 𝛽𝐸
𝑟
+ 𝛼
1

2

𝑁𝑤

∑
𝑙=1

𝑤
2

𝑙
, (3)

where the𝑁𝑤 is a total number ofMLP-ANNweights𝑤
𝑙
.The

hyperparameters 𝛼 and 𝛽 were constant within the standard
backpropagation with the regularization term [4, 16].

The scaled conjugate gradient methods are built together
with safe line search based on golden section search com-
bined with bracketing the minima [33, 34]. The imple-
mentation enables the restarting during the iteration search
based on the recommendations of [21, 35]. The restarting
controls the prescribed number of iterations or gradient
norm. The implementation of scaled conjugate gradient uses
four different updating schemes in detail described by [19,
36].

All gradient basedmethods apply the standard backprop-
agation algorithm for the estimation derivatives of the objec-
tive function with respect to weights [37]. The Levenberg-
Marquardt methods approximate the Hessian matrix using
first order derivatives neglecting the terms with the second
order derivatives [4, 17].

2.1.3. The MLP-ANN Performance. We based the evaluation
of MLP-ANN model simulations of training, testing, and
validation datasets on the following statistics [26, 27, 38]:

mean absolute error (MAE)

MAE = 1
𝑛

𝑛

∑
𝑖=1


𝑅
𝑜
[𝑖] − 𝑅

𝑓
[𝑖]

, (4)

Nash Sutcliffe efficiency (NS)

NS = 1 −
∑
𝑛

𝑖=1
(𝑅
𝑜
[𝑖] − 𝑅

𝑓
[𝑖])
2

∑
𝑛

𝑖=1
(𝑅
𝑜
[𝑖] − 𝑅

𝑜
)
2
, (5)

fourth root mean quadrupled error (R4MS4E)

R4MS4E = 4√ 1
𝑛

𝑛

∑
𝑖=1

(𝑅
𝑜
[𝑖] − 𝑅

𝑓
[𝑖])
4

, (6)

persistency index (PI)

PI = 1 −
∑
𝑛

𝑖=1
(𝑅
𝑜
[𝑖] − 𝑅

𝑓
[𝑖])
2

∑
𝑛

𝑖=1
(𝑅
𝑜
[𝑖] − 𝑅

𝑜
[𝑖 − LAG])2

, (7)

where the 𝑛 represents the total number of time intervals to
be predicted, the 𝑅

𝑜
is the average of observed flood runoff

𝑅
𝑜
, and LAG is the time shift describing last observed flood

runoff 𝑅
𝑜
[𝑖 − LAG].

2.1.4. The PONS2train. The tested MLP-ANN models were
implemented using the PONS2train software application.The
PONS2train is softwarewritten inC++ programing language,
whose main goal is to test MLP models with different
architectures. The software application uses the LAPACK,
BLAS, and ARMADILLO C++ linear algebra libraries [39–
41]. The application is freely distributed upon a request to
authors.

The PONS2train has additional features: the weight ini-
tialization can be performed using two methods. The first
one follows the work of Nguyen and Widrow [42], while
the second one uses random initialization coming from the
uniform distribution.

Giustolisi and Laucelli [25] extensively studied the eight
methods for improving the MLP performance and gener-
alization. One of them the early stopping is incorporated
in designed application. Following the recommendations of
Stäger and Agarwal [43], the PONS2train also controls the
avoiding of the neuron’s saturation.

The important PONS2train implementation feature is the
multirun and ensemble simulation. Its software design also
enables further multimodel or hybrid MLP extensions [29,
44].

The software design also allows the comparative analysis
of MLP’s architectures with or without bias neurons in
layers. The PONS2train also enables the comparison of MLP
trained on shuffled and unshuffled dataset. The shuffling of
data patterns follows the random permutation algorithm of
Durstenfeld [45].

The MLP datasets are scaled using two methods. Both
methods scale the analyses datasets into the interval (0, 𝑘)
with arbitrary chosen upper bound 𝑘 ≤ 1. The nonlinear
scaling provides the transformed data 𝐷trans obtained from
original data𝐷orig using exponential transformation

𝐷trans = (1 − exp (−𝛾𝐷orig)) , (8)

where the 𝛾 is a control parameter. The second scaling
methods is a linear one.

2.2. The Dataset Description. We explored the MLP-ANN
models using the rainfall and runoff time series data obtained
from 10-yearmonitoring in theModrava catchment 0.17 km2.
The experimental watershed was established in 1998 in upper
parts of Bohemian Forest National Park. The basin belongs
to the set of testbeds designed to monitor the hydrological
behavior of headwater forested catchments. The watershed
description shows that of Pavlasek et al. [46].

The forest cover is a clearing with young artificially
planted forest combined with an undergrowth of herbs
(mainly Calamagrostis villosa, Avenella flexuosa, Scirpus
sylvaticus, and Vaccinium myrtillus) and bryophyte (Poly-
trichastrum formosum, Dicranum scoparium, and Sphagnum
girgensohnii). A small part of the catchment (less than 10%)
is covered by 40-year-old forest. The bark beetle calamity
removed the original forest cover. Catchment bedrock is
formed by granite, migmatite, and paragneiss covered by
Haplic Podzols with depths of up to 0.9m. The mean runoff
coefficient is 0.2, mean daily runoff 1.2mm.
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Table 3: The rainfall runoff events characteristics: 𝑇
𝑜
outflow duration, 𝑄

𝑝
flood peak,𝐻

𝑜
runoff depth, 𝑇

𝑟
rainfall duration, 𝐼

𝑝
peak rainfall

intensity,𝐻
𝑟
rainfall depth, RC runoff coefficient,𝐻

𝑟-5D antecedent rainfall depth 5 days before event, RET
𝑒
basin retention during R-R event,

and RET basin retention of the whole catchment before event.

R-R event 𝑇
𝑜

𝑄
𝑝

𝐻
𝑜

𝑇
𝑟

𝐼
𝑝

𝐻
𝑟

RC 𝐻
𝑟-5D RET

𝑒
RET

[hour] [m3
⋅s−1⋅km−2] [mm] [hour] [mm⋅hour−1] [mm] [—] [mm] [mm] [mm]

M2 19980915-11 125 0.559 43.8 102 8.2 164 0.27 31 120.2 151.2
M2 19981027-23 100 0.902 51.8 52 9.0 128 0.4 29 76.6 105.6
M2 20010908-15 158 0.322 29.9 123 4.6 105.2 0.28 19.6 75.3 94.9
M2 20011108-11 90 0.405 22.1 45 5.8 73.6 0.3 3.2 51.5 54.7
M2 20040923-22 68 0.448 14.8 55 7.4 110.8 0.13 7.0 96.0 103.0
M2 20060527-03 77 1.093 67.2 47 12.4 156.0 0.43 21.8 88.8 110.6
M2 20070119-03 99 0.788 35.0 73 8.8 73.4 0.48 14.4 38.4 52.8
M2 20070906-18 52 0.369 14.1 52 5.6 68.6 0.21 39.6 54.5 94.1
M2 20080808-01 18 1.14 11.7 2 73.6 85.6 0.14 8.2 73.9 82.1
Mean 87.4 0.667 32.3 61.2 15.04 107.24 0.29 19.3 75.0 94.3
St. dev. 40.7 0.318 19.1 35.0 22.08 35.86 0.12 12.3 25.0 29.9

Table 4:The selected quantiles of empirical distribution functions on runoff and rainfall depths for training, testing, and validation data sets.

Minimum 1st Quartile Median Mean 2nd Quartile Maximum St. dev.
Runoff depth [mm⋅hour−1]

Training runoff 0.000 0.0154 0.0194 0.1031 0.0592 3.828 0.326
Testing runoff 0.00380 0.00760 0.0231 0.09395 0.0622 4.107 0.249
Validation runoff 0.000 0.0040 0.0270 0.1008 0.0591 3.250 0.307

Rainfall depth [mm⋅hour−1]
Training rainfall 0.2 0.4 0.8 1.365 1.700 12.400 1.658
Testing rainfall 0.2 0.2 0.6 1.439 1.400 73.9 4.485
Validation rainfall 0.2 0.2 0.8 1.575 2.200 15.800 1.900

Table 5:The values of statistical measures for the benchmark SLMB
model.

Calibration
dataset

Testing
dataset

Validation
dataset

PI [—] 0.36 0.20 0.00
NS [—] 0.96 0.82 0.96
MAE [mm⋅hour−1] 0.03 0.03 0.02
R4MS4E [mm⋅hour−1] 0.17 0.41 0.16

The most significant nine rainfall runoff events observed
in hourly time step were selected from 10-year measurement.
The flood runoff prediction was analyzed via proposed
MLP-ANN models. The characteristics of flood events are
described in Table 3. All floods events were complemented
with the periods of 5 preceding days. The rainfall runoff
events were divided into the nonoverlapping training, testing,
and validation dataset.

The division of flood events into the datasets was made
with respect to the similarity of empirical distribution func-
tions of training, testing, and validation datasets and to their
independence. The empirical distribution functions were
estimated using the quantile estimation method, which was
specifically developed for the description of hydrological
time series (for detailed information see [47]). The selected

quantiles of all datasets are shown in Table 4. The quantiles
show that the distinctions of the information in training,
testing, and validation datasets are not significant.

3. Results and Discussion

We tested MLP-ANNmodels with 4 MLP architectures; they
are different according to the number of hidden layer neurons
𝑁hd = 3, 4, 5, 6. For each MLP architecture, we prepared 11
types of MLP-ANN models according to the type of hidden
layer activation function (AF) (see Table 1). Each of themwas
trained with 7 training algorithms (TA) (see Table 2).

All MLP-ANN datasets consisted of all available pairs of
four inputs and one output. The inputs 𝑥

𝑖
were one runoff

interval𝑄[𝑡 − 1] and three rainfall intervals 𝑃[𝑡 − 1], 𝑃[𝑡 − 2],
and𝑃[𝑡−3] and output𝑅

𝑓
was formed fromone runoffoutput

𝑄[𝑡] for all available time intervals [𝑡]. The total number of
training pairs was 1270, the testing input-output datasets were
1221, and validation datasets were 1423.

Although there are suitable methodologies for selection
of the proper input vector forMLPmodel, that is, [48–50], we
based our flood forecast on small number of previous rainfall
intervals and one previous runoff mainly due to fast hydro-
logical response of analyzed watershed. The datasets were
transformed using the nonlinear exponential transformation.
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Table 6: The results of persistency index on analyzed optimization algorithms, the best models are marked with bold fonts. The MLP
architecture with𝑁hd = 𝐾 labeled as 4-K-1, the best models are marked with bold font.

ntrain ntest nval PI train PI test PI val mPI train mPI test mPI val
4-3-1

FLET 298 225 111 0.67 0.52 0.14 0.33 0.24 0.07
HEST 114 91 26 0.64 0.57 0.14 0.26 0.23 0.07
PER 1045 716 408 0.72 0.56 0.32 0.40 0.26 0.08
POL 89 63 16 0.52 0.49 0.26 0.24 0.20 0.08
LM 816 511 130 0.84 0.61 0.25 0.48 0.27 0.09
BP 505 371 171 0.63 0.53 0.23 0.34 0.25 0.07
BP regul 486 229 99 0.63 0.54 0.26 0.26 0.24 0.09

4-4-1
FLET 395 292 151 0.63 0.54 0.28 0.33 0.25 0.08
HEST 186 130 21 0.64 0.49 0.16 0.25 0.21 0.06
PER 1107 755 416 0.75 0.60 0.22 0.43 0.27 0.09
POL 112 92 22 0.66 0.52 0.21 0.27 0.20 0.08
LM 819 550 119 0.88 0.61 0.25 0.54 0.29 0.09
BP 579 417 216 0.66 0.57 0.21 0.38 0.27 0.08
BP regul 578 251 99 0.72 0.55 0.25 0.30 0.24 0.08

4-5-1
FLET 413 288 157 0.77 0.52 0.18 0.33 0.25 0.08
HEST 217 165 39 0.62 0.47 0.16 0.28 0.22 0.07
PER 1168 787 453 0.77 0.56 0.31 0.43 0.27 0.09
POL 117 86 15 0.63 0.47 0.12 0.25 0.24 0.07
LM 859 570 91 0.89 0.61 0.32 0.55 0.28 0.09
BP 606 451 225 0.68 0.55 0.21 0.37 0.25 0.08
BP regul 643 291 143 0.71 0.61 0.29 0.31 0.24 0.10

4-6-1
FLET 451 342 180 0.68 0.56 0.21 0.33 0.25 0.07
HEST 218 178 42 0.66 0.51 0.14 0.26 0.21 0.06
PER 1181 838 468 0.82 0.59 0.23 0.43 0.28 0.08
POL 153 114 31 0.68 0.53 0.19 0.28 0.20 0.09
LM 839 579 86 0.89 0.61 0.19 0.55 0.29 0.06
BP 621 484 256 0.67 0.59 0.23 0.39 0.26 0.07
BP regul 679 306 126 0.66 0.59 0.24 0.32 0.25 0.09

Each training algorithm was repeated 150 times. The
random initialization of network weights was performed
by the method of [42]. Each optimization multirun used
the same values of 150 mutually different initial random
vectors of weights, in order to ensure that the comparison
of performances of optimization algorithms was based on
similar random weights initializations.

3.1. The Benchmark Model. The flood forecast was simulated
using the benchmark model based on simple linear model—
SLMB. The SLMB parameters were calculated using the
ordinary least squares. Table 5 shows results obtained from
the simulation of SLMB benchmark model.

Since the benchmark model provides the single simula-
tion and one value for all tested model comparisonmeasures,
we compared the results of SLMB with results of the best
selected single MLP-ANN models. In model ensemble, we

found MLP-ANN models, which were superior compared
SLMB.

For example, the model performance based on the PI
index shows all MLP-ANN provided models, which were
superior compared to SLMB (see the results of Table 6). The
highest differences between the best PI values of ANN and
PI of SLMB were obtained on MLP-ANN trained using LM
algorithm on training dataset (PIANN − PISLMB = 0.53).
The LM and PER training algorithms provided models with
the highest values of PI on testing and validation datasets
(PIANN − PISLMB = 0.41, resp., PIANN − PISLMB = 0.32).

These conclusions are in agreement with the values of
remaining model performance measures—MAE, NS, and
R4MS4E (see Table 7). The LM and BP regul were superior
in terms of differences with SLBM according to theMAE and
R4MS4E.The LM and PERwere superior compared to SLMB
for NS values on training, testing, and validation datasets.
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Table 7: The MAE, NS, and R4M4E—trainings algorithms.

MAEtrain MAEtest MAEval NStrain NStest NSval R4MS4Etrain R4MS4Etest R4MS4Eval

4-3-1
FLET 0.017 0.018 0.016 0.98 0.89 0.97 0.131 0.35 0.14
HEST 0.015 0.020 0.017 0.98 0.90 0.97 0.142 0.34 0.14
PER 0.012 0.017 0.015 0.98 0.90 0.98 0.124 0.34 0.12
POL 0.016 0.017 0.015 0.97 0.88 0.97 0.149 0.35 0.13
LM 0.010 0.015 0.015 0.99 0.91 0.97 0.093 0.33 0.12
BP 0.014 0.017 0.016 0.98 0.89 0.97 0.133 0.35 0.13
BP regul 0.015 0.014 0.015 0.98 0.89 0.97 0.129 0.35 0.11

4-4-1
FLET 0.0172 0.018 0.016 0.98 0.89 0.97 0.14 0.35 0.13
HEST 0.0154 0.020 0.016 0.98 0.88 0.97 0.15 0.35 0.14
PER 0.0125 0.017 0.015 0.98 0.91 0.97 0.13 0.34 0.13
POL 0.0138 0.019 0.015 0.98 0.89 0.97 0.15 0.35 0.13
LM 0.0077 0.014 0.014 0.99 0.91 0.97 0.09 0.33 0.12
BP 0.0140 0.018 0.016 0.98 0.90 0.97 0.13 0.35 0.13
BP regul 0.0145 0.016 0.015 0.98 0.90 0.97 0.12 0.34 0.12

4-5-1
FLET 0.0121 0.016 0.016 0.99 0.89 0.97 0.117 0.35 0.13
HEST 0.0159 0.020 0.017 0.98 0.88 0.97 0.137 0.35 0.12
PER 0.0129 0.015 0.015 0.99 0.90 0.98 0.115 0.34 0.12
POL 0.0159 0.022 0.018 0.98 0.88 0.97 0.143 0.35 0.14
LM 0.0072 0.015 0.013 0.99 0.91 0.98 0.086 0.33 0.12
BP 0.0139 0.016 0.016 0.98 0.90 0.97 0.122 0.35 0.13
BP regul 0.0132 0.014 0.014 0.98 0.91 0.97 0.132 0.34 0.12

4-6-1
FLET 0.0150 0.016 0.016 0.98 0.90 0.97 0.132 0.35 0.13
HEST 0.0139 0.018 0.017 0.98 0.89 0.97 0.134 0.35 0.14
PER 0.0117 0.016 0.014 0.99 0.91 0.97 0.104 0.34 0.13
POL 0.0162 0.018 0.018 0.98 0.89 0.97 0.136 0.35 0.14
LM 0.0076 0.015 0.014 0.99 0.91 0.97 0.087 0.32 0.14
BP 0.0139 0.017 0.015 0.98 0.90 0.97 0.131 0.35 0.14
BP regul 0.0130 0.015 0.014 0.98 0.90 0.97 0.130 0.34 0.12

The similar results can be found, when comparing the
results of SLMBwith the bestMLP-ANNmodels organized in
terms of different transfer functions. The highest differences
of PI values were on training dataset for MLP-ANN with
LL transfer function (PIANN − PISLMB = 0.48), for testing
dataset on RS transfer function (PIANN − PISLMB = 0.41)
and for validation dataset on LL transfer function (PIANN −
PISLMB = 0.31). These were calculated for MLP-ANN with
transfer functions, which were successful in more than 10%
of simulations on validation dataset.

Those results were confirmed by the values of MAE,
NS, and R4MS4E obtained for the best model of a sim-
ulation ensemble. The RS transfer function provided the
best results in terms of differences betweenMAEANN −

MAESLMB = (−0.019, −0.015, −0.005), NSANN − NSSLMB =
(0.02, 0.09, 0.01), and R4MS4EANN − R4MS4ESLMB =

(−0.111, −0.06, −0.03) on training, testing, and validation
datasets.

3.2. The Optimization Algorithms. The results of MLP-ANN
models were explained through the values of model per-
formance measures, which are shown in Tables 6 and 7.
All training computations controlled the neuron’s saturation
using themethod of Stäger and Agarwal [43].The parameters
of TA (i.e., number of epochs, learning rate, etc.) were selected
in such a way that the number of MLP-ANN evaluations was
similar in all tested TA.

Table 6 shows the results of persistency index, which
was used as a main reference index, since the PI compares
the model with last observed information [38]. The best TA
according to the number of successful models with PI > 0
was the PER (the scaled conjugate gradient method with
Perry updating formula). The highest number of successfully
trained models was found on MLP with 𝑁hd = 6 (see the
ntrained = 1181, ntest = 838, and nval = 468 in Table 6).

When comparing the performance of TA according to
the best single value of PI (see columns PI train, PI test,
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Table 8: The results of persistency index on tested transfer functions, the best models are marked with bold font.

ntrain ntest nval PI train PI test PI val mPI train mPI test mPI val
4-3-1

CL 275 225 110 0.80 0.46 0.24 0.35 0.24 0.08
CLm 555 381 207 0.70 0.56 0.26 0.37 0.25 0.08
HT 489 283 148 0.72 0.56 0.27 0.42 0.26 0.08
LL 355 273 139 0.84 0.55 0.21 0.35 0.25 0.08
RS 566 417 198 0.73 0.56 0.22 0.40 0.27 0.08

4-4-1
CL 290 241 129 0.74 0.52 0.17 0.35 0.27 0.08
CLm 615 402 237 0.75 0.56 0.24 0.38 0.27 0.08
HT 578 351 152 0.75 0.56 0.25 0.44 0.27 0.08
LL 384 300 157 0.83 0.57 0.28 0.35 0.26 0.09
RS 608 475 209 0.75 0.61 0.25 0.42 0.28 0.08

4-5-1
CL 311 256 144 0.77 0.53 0.24 0.35 0.26 0.09
CLm 632 437 245 0.70 0.58 0.21 0.39 0.26 0.08
HT 574 321 147 0.75 0.61 0.31 0.45 0.27 0.09
LL 432 337 187 0.79 0.56 0.31 0.35 0.25 0.08
LS 377 291 115 0.74 0.57 0.21 0.35 0.25 0.08
RS 659 517 242 0.74 0.61 0.29 0.42 0.27 0.09

4-6-1
CL 319 269 145 0.77 0.56 0.21 0.34 0.27 0.08
CLm 654 471 259 0.69 0.59 0.24 0.39 0.27 0.07
HT 601 361 162 0.71 0.59 0.20 0.45 0.27 0.08
LL 437 358 185 0.75 0.53 0.17 0.35 0.27 0.08
LS 391 324 114 0.71 0.55 0.20 0.35 0.22 0.07
RS 651 539 263 0.72 0.61 0.22 0.42 0.28 0.08

and PI val in Table 6) and the average performance of best
MLP-ANN models on PI (see columns mPI train, mPI test,
andmPI val in Table 6), the Levenberg-Marquardt algorithm
was mostly superior compared to all remaining TA, except
for three cases, when the PER and BP regul were better on
validation datasets for MLP with 𝑁hd = 3, 6 on best single
value of PI and for average of mPI val for𝑁hd = 6.

Table 7 displays the results of best models for remaining
statistical measures of MLP-ANN models trained on tested
TA. Only three algorithms were superior at least for one
architecture of MLP and on one dataset. They are LM, PER,
and BP regul. Again, the LM was mostly superior compared
to the other tested TA.The differences between results of LM
and PER and BP regul were very small.

The best values of NS were in agreement with values of
PI (see, e.g., the PER on MLP with 𝑁hd = 3). The BP regul
was better in terms of the length of residuals for MAE test
onMLP ANNmodels with𝑁hd = 3, 5. Also when comparing
the simulation of peak flow in terms of R4MS4E, the BP regul
was better on MLP with𝑁hd = 3, 6 for validation dataset.

Our finding are in agreement with results on runoff
forecast of Piotrowski and Napiorkowski [18], who compared
the Levenberg-Marquardt approach even with more robust
global optimization schemes, and found that the LMprovides

comparable results with MLP trained using the selected
evolutionary computation methods.

3.3. The Transfer Functions. The results of PI, MAE, NS, and
R4MS4E are shown in Tables 8 and 9. The PI has again
served as a reference. We trained the MLP with all AF listed
in Table 1. Tables 8 and 9 show the results of AF for MLP-
ANN models, which were successful in more than 10% of
simulations on validation dataset.

When comparing the absolute values of number of MLP-
ANN models with PI > 0, the models with two AF (RS
and CLm) were superior compared to MLP models with
remaining 9 AFs. The MLP with RS provided the larger
number of better models in terms of PI value on 8 datasets,
while the MLP with CLm transfer function was successful on
4 datasets.

RS was also the most successful TA on training dataset at
MLPs with𝑁hd = 4, 5, 6 (note that for𝑁hd = 3 the differences
in PI between RS and CLm are almost insignificant). The LL
also provided good results on training dataset (for all tested
values of𝑁hd) and on validation data for𝑁hd = 4, 5.

The mean performances based on arithmetical means of
PI values of best models showed that three AFs were superior
compared to remaining 8 AFs (see mPI train, mPI test, and
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Table 9: The MAE, NS, and R4MS4E on activation functions, the best models are marked with bold font.

MAEtrain MAEtest MAEval NStrain NStest NSval R4MS4Etrain R4MS4Etest R4MS4Eval

4-3-1
CL 0.10 0.10 0.10 0.72 0.52 0.68 0.40 0.63 0.42
CLm 0.06 0.06 0.06 0.82 0.65 0.81 0.34 0.71 0.36
HT 0.06 0.06 0.06 0.81 0.60 0.79 0.34 0.74 0.37
LL 0.08 0.08 0.08 0.76 0.57 0.73 0.34 0.64 0.37
RS 0.06 0.06 0.05 0.82 0.65 0.80 0.31 0.61 0.34

4-4-1
CL 0.10 0.10 0.10 0.71 0.53 0.68 0.40 0.62 0.41
CLm 0.06 0.06 0.05 0.83 0.66 0.82 0.30 0.67 0.33
HT 0.06 0.06 0.06 0.83 0.63 0.81 0.32 0.71 0.36
LL 0.08 0.08 0.07 0.79 0.59 0.75 0.31 0.62 0.35
RS 0.05 0.05 0.05 0.82 0.67 0.81 0.29 0.59 0.32

4-5-1
CL 0.10 0.10 0.10 0.72 0.56 0.68 0.41 0.62 0.42
CLm 0.05 0.05 0.05 0.84 0.68 0.84 0.29 0.69 0.32
HT 0.05 0.05 0.05 0.84 0.64 0.83 0.29 0.70 0.33
LL 0.07 0.07 0.07 0.82 0.61 0.78 0.30 0.59 0.33
LS 0.07 0.07 0.06 0.82 0.60 0.79 0.28 0.56 0.31
RS 0.05 0.05 0.05 0.84 0.69 0.83 0.28 0.58 0.30

4-6-1
CL 0.10 0.10 0.10 0.75 0.59 0.69 0.42 0.60 0.42
CLm 0.05 0.05 0.05 0.84 0.69 0.83 0.28 0.65 0.31
HT 0.05 0.05 0.05 0.85 0.65 0.83 0.28 0.65 0.32
LL 0.07 0.07 0.07 0.81 0.62 0.78 0.29 0.57 0.32
LS 0.07 0.07 0.06 0.82 0.60 0.78 0.28 0.55 0.31
RS 0.05 0.05 0.05 0.84 0.70 0.82 0.28 0.55 0.30

mPI val in Table 8). They were CL, HT, and RS MLP ANN
models. Their differences of PI were again very small.

Table 9 shows the averages of MAE, NS, and R4MS4E on
set of tested models.The results point out that the RS transfer
function provided in summary superior values compared to
rest of tested AF. The CLm, HT, and LS activation functions
were on some datasets better in terms ofmean values of tested
statistical measures but the differences between the RS MLP
ANNmodels were again negligible.

When reflecting the results of da S. Gomes et al. [15], who
recommended the CL, CLm, and LL functions onMLP ANN
models, we point out the ability of the MLP models with RS
to improve the flood runoff forecast.

Our findings on the selection of suitableAFonMLPANN
models recommend that different AF should be tested during
the implementation of MLPmodels for flood runoff forecast.

4. Conclusions

During the extensive computational test, we trained in total
the 46200 models of multilayer perceptron with one hidden
layer. The main aim of computational exercise was the
evaluation of the impacts of the transfer function selection

and the test of selected local optimization schemes on flood
runoff forecast.

Using the rainfall runoff data of nine of the most sig-
nificant flood events, we analyzed the short term runoff
forecast on small watershed with fast hydrological response.
The developed MLP ANN models were able to predict flood
runoff using the records of past rainfall and runoff from the
basin.

When comparing the tested MLP ANN models with
benchmark simple linear model, the developed MLP models
were superior in terms of values of model performance
measures compared to the SLMB.

The PONS2Train software application was developed for
the purposes of the evaluation of MLP-ANN models with
different architectures and for providing the simulations of
neural network flood forecast.

When analyzing the 7 different gradient oriented opti-
mization schemes we found that the Levenberg-Marquardt
algorithm was superior compared to the tested set of scaled
conjugate gradient methods and two first order local opti-
mization schemes.

When analyzing the 11 different transfer functions used
in hidden neurons we found that the RootSig function was
according to the values of four model performance measures
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most promising activation function in terms of flood runoff
forecast.
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