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The aim of this paper is to investigate the lattices of group fuzzy congruences and normal fuzzy subsemigroups on 𝐸-inversive
semigroups. We prove that group fuzzy congruences and normal fuzzy subsemigroups determined each other in 𝐸-inversive
semigroups. Moreover, we show that the set of group 𝑡-fuzzy congruences and the set of normal subsemigroups with tip 𝑡 in a
given 𝐸-inversive semigroup form two mutually isomorphic modular lattices for every 𝑡 ∈ [0, 1].

1. Introduction

The investigation of fuzzy sets is initiated by Zadeh in [1].
As special fuzzy sets, fuzzy congruences on groups and
semigroups have been extensively studied by many authors.
In 1992, Kuroki [2] introduced fuzzy congruences on a group
and characterized fuzzy congruences on a group in terms
of fuzzy normal subgroups. In 1993, Samhan [3] studied the
modularity condition in the fuzzy congruence lattice of a
semigroup and derived that the fuzzy congruence lattice of a
group is modular. In the same year, Al-Thukair [4] described
the fuzzy congruences of an inverse semigroup and obtained
a one-one correspondence between fuzzy congruence pairs
and fuzzy congruences on an inverse semigroup. Moreover,
Kuroki also studied the fuzzy congruences on inverse semi-
groups in [5] in which the notion of group congruences of
a semigroup is provided. Das [6] considered the lattice of
fuzzy congruences in an inverse semigroup by kernel-trace
approaches. In 1995, Ajmal andThomas considered the lattice
structures of fuzzy congruences on a group and the lattice
structures of fuzzy subgroups and fuzzy normal subgroups
in a group in [7] and proved that the lattice of fuzzy normal
subgroups of a group is modular in [8]. In 1997, Kim and Bae
[9] studied the fuzzy congruences of groups and obtained
several results which are analogs of some basic theorems of
group theory. Also, Xie [10] studied the so-called fuzzy Rees
congruences on semigroups in 1999.

Several authors investigated fuzzy congruences for some
special classes of semigroups. In 2000, Zhang [11] character-
ized the group fuzzy congruences on a regular semigroup
by some fuzzy subsemigroups. In 2001, Tan [12] investigated
fuzzy congruences of regular semigroups and proved that
the lattice of fuzzy congruences on a regular semigroup
is a disjoint union of some modular sublattices of the
lattice. Recently, Li and Liu [13] characterized fuzzy good
congruences of left semiperfect abundant semigroups and
obtained sufficient and necessary conditions for an abundant
semigroup to be left semiperfect.

The class of 𝐸-inversive semigroups is a very wide class
of semigroups which contains groups, inverse semigroups,
and regular semigroups as proper subclasses and some kinds
of crisp congruences on this class of semigroups have been
investigated extensively; see [14, 15] for example. In particular,
Gigoń [14] considered the lattice of group crisp congruences
on an 𝐸-inversive semigroup and proved that this lattice is
modular. Inspired by the above facts, it is natural to study the
fuzzy congruences on 𝐸-inversive semigroups. In fact, [16]
has done some works in this aspect.

In this paper, we shall investigate the lattices of group
fuzzy congruences and normal fuzzy subsemigroups on
an 𝐸-inversive semigroup. The notions of group 𝑡-fuzzy
congruences and normal fuzzy subsemigroups with tip 𝑡 on
𝐸-inversive semigroups are proposed and some properties
of them are given. In particular, for a given 𝐸-inversive
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semigroup 𝑆, we prove that for any 𝑡 ∈ [0, 1] the set of group
𝑡-fuzzy congruences and the set of normal fuzzy subsemi-
groupswith tip 𝑡 on 𝑆 form twomutually isomorphicmodular
lattices. Our results generalize and enrich several results
obtained in [2, 3, 8, 9, 11, 14]. Notations and terminologies
not given in this paper can be found in [17–19].

2. Preliminaries

A binary relation “≤” defined on a set 𝐴 is a partial order on
the set 𝐴 if the following conditions hold identically in 𝐴:
(1) 𝑎 ≤ 𝑎; (2) 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 imply 𝑎 = 𝑏; (3) 𝑎 ≤ 𝑏 and

𝑏 ≤ 𝑐 imply 𝑎 ≤ 𝑐.
Let 𝐴 be a subset of a poset (𝑃, ≤). An element 𝑝 in 𝑃 is

an upper bound for𝐴 if 𝑎 ≤ 𝑝 for every 𝑎 in𝐴. An element 𝑝
in 𝑃 is the supremum of 𝐴 if 𝑝 is an upper bound of 𝐴 and 𝑝
is the smallest among the upper bounds of 𝐴. Dually, we can
define the infimum of 𝐴. We denote the supremum and the
infimum of 𝐴 by⋁

𝑎∈𝐴
𝑎 and⋀

𝑎∈𝐴
𝑎, respectively.

A poset (𝐿, ≤) is called a lattice if for every 𝑎, 𝑏 in 𝐿 both
the supremum 𝑎∨𝑏 and the infimum 𝑎∧𝑏 of {𝑎, 𝑏} exist in 𝐿.
A modular lattice is any lattice 𝐿 which satisfies the modular
law: 𝑥 ≤ 𝑦 implies that 𝑥 ∨ (𝑦 ∧ 𝑧) = 𝑦 ∧ (𝑥 ∨ 𝑧) for all 𝑥, 𝑦, 𝑧
in 𝐿.

Two lattices 𝐿
1
and𝐿

2
are isomorphic if there is a bijection

𝛼 from 𝐿
1
to 𝐿
2
such that for every 𝑎, 𝑏 in 𝐿

1
the following

two equations hold: 𝛼(𝑎 ∨ 𝑏) = 𝛼(𝑎) ∨ 𝛼(𝑏) and 𝛼(𝑎 ∧ 𝑏) =
𝛼(𝑎) ∧ 𝛼(𝑏). If 𝑃

1
and 𝑃

2
are two posets and 𝛼 is a map from

𝑃
1
to 𝑃
2
, then we say 𝛼 is order-preserving if 𝛼(𝑎) ≤ 𝛼(𝑏) holds

in 𝑃
2
whenever 𝑎 ≤ 𝑏 holds in 𝑃

1
.

On the theory of lattices, we need the following results.

Lemma 1 (Theorem 2.3 of Chapter 1 in [17]). Two lattices 𝐿
1

and 𝐿
2
are isomorphic if and only if there is a bijection 𝛼 from

𝐿
1
to 𝐿
2
such that both 𝛼 and 𝛼−1 are order-preserving.

Lemma 2 (Theorem 4.2 of Chapter 1 in [17]). Let 𝑃 be a poset
such that it has the largest element and the infimum of every
nonempty subset exists. Then 𝑃 is a lattice.

Zadeh [1] defined a fuzzy subset 𝜇 in a set 𝑆 as a mapping
from 𝑆 to the closed unit interval [0, 1]. A fuzzy set 𝜇 in a set
𝑆 is said to be contained in a fuzzy set 𝜂 if 𝜇(𝑥) ≤ 𝜂(𝑥) for
all 𝑥 in 𝑆 and this is denoted by 𝜇 ⊆ 𝜂. The union 𝜇 ∪ 𝜂 and
the intersection 𝜇 ∩ 𝜂 of two fuzzy sets 𝜇 and 𝜂 in a set 𝑆 are
defined by

𝜇 ∪ 𝜂 (𝑥) = max (𝜇 (𝑥) , 𝜂 (𝑥)) = 𝜇 (𝑥) ∨ 𝜂 (𝑥) ,

𝜇 ∩ 𝜂 (𝑥) = min (𝜇 (𝑥) , 𝜂 (𝑥)) = 𝜇 (𝑥) ∧ 𝜂 (𝑥)
(1)

for all 𝑥 in 𝑆. Further, if 𝜇
𝑖
is a fuzzy subset in 𝑆 for 𝑖 ∈ 𝐼where

𝐼 is an index set, then⋂
𝑖∈𝐼
𝜇
𝑖
is defined by

⋂

𝑖∈𝐼

𝜇
𝑖
(𝑥) = inf {𝜇

𝑖
(𝑥) | 𝑖 ∈ 𝐼} = ⋀

𝑖∈𝐼

𝜇
𝑖
(𝑥) (2)

for all 𝑥 ∈ 𝑆.

A semigroup is a nonempty set with an associative binary
operation. A semigroup 𝑆 is called E-inversive if for all
𝑎 ∈ 𝑆 there exists 𝑎󸀠 ∈ 𝑆 such that 𝑎󸀠𝑎𝑎󸀠 = 𝑎. In this case, we
denote𝑊(𝑎) = {𝑎󸀠 ∈ 𝑆 | 𝑎󸀠𝑎𝑎󸀠 = 𝑎󸀠} and call the elements in
𝑊(𝑎) the weak inverses of 𝑎 for any 𝑎 ∈ 𝑆. It is easy to see that
groups, regular semigroups, and semigroups with zeros are
all 𝐸-inversive semigroups. For more details on 𝐸-inversive
semigroups, see [14, 15] and their references.Throughout this
paper, we always assume that 𝑆 is an 𝐸-inversive semigroup
and let

𝐸 (𝑆) = {𝑒 ∈ 𝑆 | 𝑒
2

= 𝑒} . (3)

Now, we give the concept of 𝑡-fuzzy congruences.

Definition 3 (see [19]). Let 𝑡 ∈ [0, 1]. A 𝑡-fuzzy equivalence
on 𝑆 is a fuzzy subset in 𝑆 × 𝑆 which satisfies the following
conditions:

(1) (∀𝑎 ∈ 𝑆) 𝜌(𝑎, 𝑎) = 𝑡,
(2) (∀𝑎, 𝑏 ∈ 𝑆) 𝜌(𝑎, 𝑏) = 𝜌(𝑏, 𝑎) ≤ 𝑡,
(3) (∀𝑎, 𝑏, 𝑐 ∈ 𝑆) 𝜌(𝑎, 𝑏) ≥ 𝜌(𝑎, 𝑐) ∧ 𝜌(𝑐, 𝑏).

A 𝑡-fuzzy equivalence 𝜌 on 𝑆 is called a 𝑡-𝑓𝑢𝑧𝑧𝑦 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑒
if

(4) (∀𝑎, 𝑏, 𝑐 ∈ 𝑆) 𝜌(𝑎, 𝑏) ≤ 𝜌(𝑎𝑐, 𝑏𝑐) ∧ 𝜌(𝑐𝑎, 𝑐𝑏),

or, equivalently,

(4󸀠) (∀𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑆) 𝜌(𝑎𝑏, 𝑐𝑑) ≥ 𝜌(𝑎, 𝑐) ∧ 𝜌(𝑏, 𝑑).

Similar to the proofs of Lemmas 2.2 and 2.3 in Kuroki [5],
we have the following results.

Lemma 4. Let 𝜌 be a 𝑡-fuzzy congruence on 𝑆. For any 𝑎 ∈ 𝑆,
define a fuzzy subset 𝜌

𝑎
in 𝑆 as follows: 𝜌

𝑎
(𝑥) = 𝜌(𝑎, 𝑥) for all

𝑥 ∈ 𝑆.

(1) 𝜌
𝑎
= 𝜌
𝑏
if and only if 𝜌(𝑎, 𝑏) = 𝑡 for all 𝑎, 𝑏 ∈ 𝑆.

(2) 𝑆/𝜌 = {𝜌
𝑎
| 𝑎 ∈ 𝑆} is a semigroup with the

multiplication 𝜌
𝑎
𝜌
𝑏
= 𝜌
𝑎𝑏
for any 𝑎, 𝑏 ∈ 𝑆.

3. Group Fuzzy Congruences

In this section, we consider some basic properties of group
fuzzy congruences on 𝑆. In particular, we show that the set
of group 𝑡-fuzzy congruences on 𝑆 forms a modular lattice.
Firstly, we give the concept of group 𝑡-fuzzy congruences
which is parallel to that of usual group fuzzy congruences
defined in Kuroki [5].

Definition 5. A 𝑡-fuzzy congruence 𝜌 on 𝑆 is called a group
𝑡-fuzzy congruence if the semigroup 𝑆/𝜌 is a group. One
denotes the set of group 𝑡-fuzzy congruences on 𝑆 byGFC

𝑡
(𝑆)

and denotes GFC(𝑆) = ⋃
𝑡∈[0,1]

GFC
𝑡
(𝑆).

The following result provides a characterization of group
𝑡-fuzzy congruences on 𝑆.



The Scientific World Journal 3

Proposition 6. A 𝑡-fuzzy congruence 𝜌 on 𝑆 is a group 𝑡-fuzzy
congruence if and only if

(1) (∀𝑒, 𝑓 ∈ 𝐸(𝑆)) 𝜌(𝑒, 𝑓) = 𝑡;
(2) (∀𝑎 ∈ 𝑆)(∀𝑎󸀠 ∈ 𝑊(𝑎)) 𝜌(𝑎𝑎󸀠𝑎, 𝑎) = 𝑡.

Proof. If 𝜌 is a group 𝑡-fuzzy congruence, then 𝑆/𝜌 is a group
and so 𝜌

𝑒
is the identity of 𝑆/𝜌 for every 𝑒 ∈ 𝐸(𝑆).This implies

that 𝜌(𝑒, 𝑓) = 𝑡 for all 𝑒, 𝑓 ∈ 𝐸(𝑆) by Lemma 4. Furthermore,
since 𝑎󸀠𝑎 ∈ 𝐸(𝑆) for any 𝑎 ∈ 𝑆 and 𝑎󸀠 ∈ 𝑊(𝑎), it follows that
𝜌
𝑎
󸀠
𝑎
is the identity of 𝑆/𝜌 and so 𝜌

𝑎
= 𝜌
𝑎
𝜌
𝑎
󸀠
𝑎
= 𝜌
𝑎𝑎
󸀠
𝑎
. This

yields that 𝜌(𝑎𝑎󸀠𝑎, 𝑎) = 𝑡 by Lemma 4 again.
Conversely, let 𝑎 ∈ 𝑆, 𝑎󸀠 ∈ 𝑊(𝑎), and 𝑒 ∈ 𝐸(𝑆). Then by

condition (1) and Lemma 4, 𝜌
𝑎𝑎
󸀠 = 𝜌
𝑎
󸀠
𝑎
= 𝜌
𝑒
. By condition

(2) and Lemma 4, we have

𝜌
𝑎
= 𝜌
𝑎𝑎
󸀠
𝑎
= 𝜌
𝑎
𝜌
𝑎
󸀠
𝑎
= 𝜌
𝑎
𝜌
𝑒
, 𝜌

𝑎
𝜌
𝑎
󸀠 = 𝜌
𝑎𝑎
󸀠 = 𝜌
𝑒
, (4)

which implies that 𝑆/𝜌 is a group.

Proposition 7. Let 𝜌 ∈ GFC
𝑡
(𝑆), 𝑎, 𝑏 ∈ 𝑆, and 𝑒 ∈ 𝐸(𝑆). Then

𝜌 (𝑎, 𝑏) = 𝜌 (𝑎, 𝑏𝑒) = 𝜌 (𝑎𝑒, 𝑏) = 𝜌 (𝑎, 𝑒𝑏) = 𝜌 (𝑒𝑎, 𝑏) . (5)

Proof. Since 𝜌 ∈ GFC
𝑡
(𝑆), by Proposition 6, we have

𝜌 (𝑏, 𝑏𝑏
󸀠

𝑏) = 𝜌 (𝑎, 𝑎𝑎
󸀠

𝑎) = 𝑡 = 𝜌 (𝑎𝑎
󸀠

, 𝑒) = 𝜌 (𝑒, 𝑏
󸀠

𝑏) (6)

for all 𝑎󸀠 ∈ 𝑊(𝑎) and 𝑏󸀠 ∈ 𝑊(𝑏). This implies that

𝜌 (𝑎, 𝑏𝑒) ≥ 𝜌 (𝑎, 𝑎𝑎
󸀠

𝑎) ∧ 𝜌 (𝑎𝑎
󸀠

𝑎, 𝑏𝑒) = 𝜌 (𝑎𝑎
󸀠

𝑎, 𝑏𝑒)

≥ 𝜌 (𝑎, 𝑏) ∧ 𝜌 (𝑎𝑎
󸀠

, 𝑒) = 𝜌 (𝑎, 𝑏) .

(7)

On the other hand,

𝜌 (𝑎, 𝑏) ≥ 𝜌 (𝑎, 𝑏𝑒) ∧ 𝜌 (𝑏𝑒, 𝑏𝑏
󸀠

𝑏) ∧ 𝜌 (𝑏𝑏
󸀠

𝑏, 𝑏)

≥ 𝜌 (𝑎, 𝑏𝑒) ∧ 𝜌 (𝑏𝑒, 𝑏𝑏
󸀠

𝑏)

≥ 𝜌 (𝑎, 𝑏𝑒) ∧ 𝜌 (𝑏, 𝑏) ∧ 𝜌 (𝑒, 𝑏
󸀠

𝑏)

= 𝜌 (𝑎, 𝑏𝑒) .

(8)

Therefore, 𝜌(𝑎, 𝑏) = 𝜌(𝑎, 𝑏𝑒). By similar arguments, we can
show

𝜌 (𝑎, 𝑏) = 𝜌 (𝑎𝑒, 𝑏) = 𝜌 (𝑎, 𝑒𝑏) = 𝜌 (𝑒𝑎, 𝑏) (9)

for all 𝑎, 𝑏 ∈ 𝑆 and 𝑒 ∈ 𝐸(𝑆).

As usual, for 𝜎, 𝜏 ∈ GFC
𝑡
(𝑆), we define 𝜎 ∘ 𝜏 as follows:

𝜎 ∘ 𝜏 (𝑎, 𝑏) = ⋁

𝑥∈𝑆

(𝜎 (𝑎, 𝑥) ∧ 𝜏 (𝑥, 𝑏)) (10)

for all 𝑎, 𝑏 ∈ 𝑆. Then we have the following.

Proposition 8. Let 𝜎, 𝜏 ∈ GFC
𝑡
(𝑆).

(1) 𝜎 ∘ 𝜏 = 𝜏 ∘ 𝜎.

(2) 𝜎 ∘ 𝜏 is the least group 𝑡-fuzzy congruence of 𝑆
containing 𝜎 and 𝜏.

(3) 𝜎 ∩ 𝜏 is the greatest group 𝑡-fuzzy congruence of 𝑆
contained in 𝜎 and 𝜏.

Proof. (1) For all 𝑎, 𝑏 ∈ 𝑆 and 𝑐󸀠 ∈ 𝑊(𝑐), by Proposition 7, we
have

𝜎 ∘ 𝜏 (𝑎, 𝑏) = ⋁

𝑥∈𝑆

(𝜎 (𝑎, 𝑥) ∧ 𝜏 (𝑥, 𝑏))

≥ ⋁

𝑐∈𝑆

(𝜎 (𝑎, 𝑏𝑐
󸀠

𝑎) ∧ 𝜏 (𝑏𝑐
󸀠

𝑎, 𝑏))

= ⋁

𝑐∈𝑆

(𝜏 (𝑏𝑐
󸀠

𝑎, 𝑏) ∧ 𝜎 (𝑎, 𝑏𝑐
󸀠

𝑎))

= ⋁

𝑐∈𝑆

(𝜏 (𝑏𝑐
󸀠

𝑎, 𝑏𝑐
󸀠

𝑐) ∧ 𝜎 (𝑐𝑐
󸀠

𝑎, 𝑏𝑐
󸀠

𝑎))

≥ ⋁

𝑐∈𝑆

(𝜏 (𝑎, 𝑐) ∧ 𝜎 (𝑐, 𝑏))

= 𝜏 ∘ 𝜎 (𝑎, 𝑏) .

(11)

By symmetry, we have 𝜎 ∘ 𝜏(𝑎, 𝑏) = 𝜏 ∘ 𝜎(𝑎, 𝑏) for all 𝑎, 𝑏 ∈ 𝑆.
(2) Let 𝑎, 𝑏, 𝑐 ∈ 𝑆. Since

𝑡 = 𝜎 (𝑎, 𝑎) ∧ 𝜏 (𝑎, 𝑎) ≤ ⋁

𝑥∈𝑆

(𝜎 (𝑎, 𝑥) ∧ 𝜏 (𝑥, 𝑎))

≤ ⋁

𝑥∈𝑆

(𝑡 ∧ 𝑡) = 𝑡,

(12)

we have 𝜎 ∘ 𝜏(𝑎, 𝑎) = 𝑡. Similarly, we have

𝜎 ∘ 𝜏 (𝑎, 𝑏) = ⋁

𝑥∈𝑆

(𝜎 (𝑎, 𝑥) ∧ 𝜏 (𝑥, 𝑏))

≤ ⋁

𝑥∈𝑆

(𝑡 ∧ 𝑡) = 𝑡.

(13)

In view of the proofs of Propositions 1.8 and 1.9 in Kim and
Bae [9], 𝜎 ∘ 𝜏 is the least 𝑡-fuzzy congruence on 𝑆 containing
𝜎 and 𝜏. Finally, we can easily show that 𝜎 ∘ 𝜏 ∈ GFC

𝑡
(𝑆) by

Proposition 6.This implies that 𝜎∘𝜏 is the least group 𝑡-fuzzy
congruence of 𝑆 containing 𝜎 and 𝜏.
(3)This is clear.

By Proposition 8 and the proof of Theorem 1.12 in Kim
and Bae [9], we have the following result.

Theorem 9. (GFC
𝑡
(𝑆), ⊆) forms a modular lattice for any 𝑡 in

[0, 1].

In the end of this section, we give some properties of
group 𝑡-fuzzy congruences on 𝑆whichwill be used in the final
section.

Proposition 10. Let 𝜌 ∈ GFC
𝑡
(𝑆) and 𝑎, 𝑏 ∈ 𝑆.

(1) 𝜌(𝑎𝑎󸀠, 𝑎) = 𝜌(𝑎𝑎∗, 𝑎) for all 𝑎󸀠, 𝑎∗ ∈ 𝑊(𝑎).

(2) 𝜌(𝑎󸀠𝑏(𝑎󸀠𝑏)󸀠, 𝑎󸀠𝑏) = 𝜌(𝑎, 𝑏) for all 𝑎󸀠 ∈ 𝑊(𝑎) and
(𝑎
󸀠

𝑏)
󸀠

∈ 𝑊(𝑎
󸀠

𝑏).
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Proof. (1) Since 𝜌 ∈ GFC
𝑡
(𝑆), by Proposition 6, we have

𝜌 (𝑎𝑎
󸀠

𝑎, 𝑎) = 𝜌 (𝑎𝑎
∗

𝑎, 𝑎) = 𝑡 = 𝜌 (𝑎𝑎
∗

, 𝑎𝑎
󸀠

) = 𝜌 (𝑎
󸀠

𝑎, 𝑎
∗

𝑎) .

(14)

This yields that 𝜌(𝑎𝑎󸀠𝑎𝑎∗, 𝑎𝑎∗) ≥ 𝜌(𝑎𝑎󸀠𝑎, 𝑎) = 𝑡 whence
𝜌(𝑎𝑎
󸀠

𝑎𝑎
∗

, 𝑎𝑎
∗

) = 𝑡. Thus,

𝜌 (𝑎𝑎
∗

, 𝑎) ≤ 𝜌 (𝑎𝑎
󸀠

𝑎𝑎
∗

, 𝑎𝑎
󸀠

𝑎)

= 𝜌 (𝑎𝑎
󸀠

𝑎, 𝑎𝑎
󸀠

𝑎𝑎
∗

) ∧ 𝜌 (𝑎𝑎
󸀠

𝑎𝑎
∗

, 𝑎𝑎
∗

)

≤ 𝜌 (𝑎𝑎
󸀠

𝑎, 𝑎𝑎
∗

) ∧ 𝜌 (𝑎𝑎
∗

, 𝑎𝑎
󸀠

)

≤ 𝜌 (𝑎𝑎
󸀠

𝑎, 𝑎𝑎
󸀠

) = 𝜌 (𝑎𝑎
󸀠

, 𝑎𝑎
󸀠

𝑎) ∧ 𝜌 (𝑎𝑎
󸀠

𝑎, 𝑎)

≤ 𝜌 (𝑎𝑎
󸀠

, 𝑎) .

(15)

By dual arguments, we can obtain that 𝜌(𝑎𝑎󸀠, 𝑎) = 𝜌(𝑎𝑎∗, 𝑎).
(2) In view of the fact that 𝑎󸀠𝑏(𝑎󸀠𝑏)󸀠, 𝑎𝑎󸀠 ∈ 𝐸(𝑆), by

Proposition 7, we have

𝜌 (𝑎
󸀠

𝑏(𝑎
󸀠

𝑏)
󸀠

, 𝑎
󸀠

𝑏) ≤ 𝜌 (𝑎𝑎
󸀠

𝑏(𝑎
󸀠

𝑏)
󸀠

, 𝑎𝑎
󸀠

𝑏) = 𝜌 (𝑎, 𝑎𝑎
󸀠

𝑏)

= 𝜌 (𝑎, 𝑏) = 𝜌 (𝑎𝑎
󸀠

𝑏(𝑎
󸀠

𝑏)
󸀠

, 𝑏)

≤ 𝜌 (𝑎
󸀠

𝑎𝑎
󸀠

𝑏(𝑎
󸀠

𝑏)
󸀠

, 𝑎
󸀠

𝑏)

= 𝜌 (𝑎
󸀠

𝑏(𝑎
󸀠

𝑏)
󸀠

, 𝑎
󸀠

𝑏) .

(16)

Thus, 𝜌(𝑎󸀠𝑏(𝑎󸀠𝑏)󸀠, 𝑎󸀠𝑏) = 𝜌(𝑎, 𝑏).

4. Normal Fuzzy Subsemigroups

In this section, we consider some basic properties of normal
fuzzy subsemigroups of 𝐸-inverse semigroups.

Definition 11. Let 𝑡 ∈ [0, 1]. A fuzzy subset 𝜇 in 𝑆 is called a
normal fuzzy subsemigroup with tip 𝑡 in 𝑆 if

(1) (∀𝑥, 𝑦 ∈ 𝑆) 𝜇(𝑥𝑦) ≥ 𝜇(𝑥) ∧ 𝜇(𝑦),

(2) (∀𝑎, 𝑥, 𝑦 ∈ 𝑆) 𝑡 ≥ 𝜇(𝑎) ≥ 𝜇(𝑥𝑎𝑦) ∧ 𝜇(𝑥𝑦),

(3) (∀𝑒 ∈ 𝐸(𝑆)) 𝜇(𝑒) = 𝑡.

We denote the set of normal fuzzy subsemigroups with tip 𝑡
in 𝑆 by NFS

𝑡
(𝑆) and let NFS(𝑆) = ⋃

𝑡∈[0,1]
NFS
𝑡
(𝑆).

Remark 12. In fact, normal fuzzy subsemigroups with tip 1
are introduced in Zhang [11] where this class of fuzzy sub-
semigroups is called complete inner-unitary subsemigroups.

Let 𝐺 be a group with identity 𝑒, 𝑡 ∈ [0, 1] and let 𝜇 be
a fuzzy set in 𝐺. From Ajmal and Thomas [8], 𝜇 is called

a normal fuzzy subgroup of 𝐺 with tip 𝑡 if for all 𝑥, 𝑦 ∈ 𝐺
the following conditions hold:

𝜇 (𝑥𝑦) ≥ 𝜇 (𝑥) ∧ 𝜇 (𝑦) , 𝜇 (𝑥
−1

) = 𝜇 (𝑥) ,

𝜇 (𝑥𝑦) = 𝜇 (𝑦𝑥) , 𝜇 (𝑒) = 𝑡.

(17)

We assert that normal fuzzy subsemigroups with tip 𝑡 are
generalizations of normal fuzzy subgroups with tip 𝑡 in the
range of 𝐸-inversive semigroups. To see this, we need the
following result.

Proposition 13. Let 𝜇 ∈ NFS
𝑡
(𝑆), 𝑎, 𝑏 ∈ 𝑆, and 𝑎󸀠 ∈ 𝑊(𝑎).

(1) 𝜇(𝑎) = 𝜇(𝑎󸀠).
(2) 𝜇(𝑎) = 𝜇(𝑎𝑎󸀠𝑎).
(3) 𝜇(𝑎𝑏) = 𝜇(𝑏𝑎).

Proof. (1) On the one hand, we have 𝑎𝑎󸀠 ∈ 𝐸(𝑆) and

𝜇 (𝑎) ≥ 𝜇 (𝑎
󸀠

𝑎𝑎
󸀠

) ∧ 𝜇 ((𝑎
󸀠

)
2

)

= 𝜇 (𝑎
󸀠

) ∧ 𝜇 ((𝑎
󸀠

)
2

) = 𝜇 (𝑎
󸀠

) .

(18)

On the other hand, since 𝑎󸀠𝑎 ∈ 𝐸(𝑆), we have 𝜇(𝑎󸀠𝑎) = 𝑡 ≥
𝜇(𝑎). This implies that

𝜇 (𝑎
󸀠

) ≥ 𝜇 (𝑎𝑎
󸀠

𝑎) ∧ 𝜇 (𝑎
2

)

≥ (𝜇 (𝑎) ∧ 𝜇 (𝑎
󸀠

𝑎)) ∧ 𝜇 (𝑎
2

) = 𝜇 (𝑎) .

(19)

Therefore, 𝜇(𝑎) = 𝜇(𝑎󸀠).
(2) This follows from item (1) and the fact that 𝑎𝑎󸀠𝑎 ∈

𝑊(𝑎
󸀠

).
(3)The result follows from Proposition 2.6 in Zhang [11].

The following result justifies the name of normal fuzzy
subsemigroups.

Theorem 14. Let𝐺 be a group with identity 𝑒, 𝑡 ∈ [0, 1] and let
𝜇 be a fuzzy subset in𝐺.Then𝜇 is a normal fuzzy subsemigroup
with tip 𝑡 of 𝐺 if and only if 𝜇 is a normal fuzzy subgroup of 𝐺
with tip 𝑡.

Proof. Observe that 𝑒 is the unique idempotent in 𝐺 and the
inverse 𝑎−1 of 𝑎 is certainly the unique weak inverse of 𝑎 for
all 𝑎 ∈ 𝐺. If 𝜇 is a normal fuzzy subsemigroup with tip 𝑡 of
𝐺, then by Proposition 13, 𝜇 is a normal fuzzy subgroup of 𝐺
with tip 𝑡. Conversely, let 𝜇 be a normal fuzzy subgroup of 𝐺
with tip 𝑡 and 𝑎, 𝑥, 𝑦 ∈ 𝑆. Then

𝜇 (𝑎) = 𝜇 (𝑥
−1

𝑥𝑎𝑦𝑦
−1

) = 𝜇 (𝑥𝑎𝑦𝑦
−1

𝑥
−1

)

≥ 𝜇 (𝑥𝑎𝑦) ∧ 𝜇 (𝑦
−1

𝑥
−1

)

(20)

by condition (17). This implies that

𝜇 (𝑎) ≥ 𝜇 (𝑥𝑎𝑦) ∧ 𝜇 (𝑦
−1

𝑥
−1

) = 𝜇 (𝑥𝑎𝑦) ∧ 𝜇 ((𝑥𝑦)
−1

)

= 𝜇 (𝑥𝑎𝑦) ∧ 𝜇 (𝑥𝑦) .

(21)
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Moreover, we have

𝑡 = 𝜇 (𝑒) = 𝜇 (𝑎𝑎
−1

) ≥ 𝜇 (𝑎) ∧ 𝜇 (𝑎
−1

)

= 𝜇 (𝑎) ∧ 𝜇 (𝑎) = 𝜇 (𝑎) .

(22)

Thus, 𝜇 is a normal fuzzy subsemigroup of 𝐺 with tip 𝑡.

Since ⋂
𝑖∈𝐼
𝜎
𝑖
∈ NFS

𝑡
(𝑆) for 𝜎

𝑖
∈ NFS

𝑡
(𝑆), 𝑖 ∈ 𝐼, and the

element

𝑆 󳨀→ [0, 1] , 𝑎 󳨃󳨀→ 𝑡 (23)

is the greatest one inNFS
𝑡
(𝑆), we have the following theorem

by Lemma 2.

Theorem 15. (NFS
𝑡
(𝑆), ⊆) forms a lattice.

On normal fuzzy subsemigroups with tip 𝑡 of 𝐸-inverse
semigroups, we also have the following basic properties
which will be used in the final section.

Proposition 16. Let 𝜇 ∈ NFS
𝑡
(𝑆), 𝑒, 𝑓 ∈ 𝐸(𝑆), 𝑎, 𝑏 ∈ 𝑆, and

𝑎
󸀠

, 𝑎
∗

∈ 𝑊(𝑎), 𝑏
󸀠

∈ 𝑊(𝑏).

(1) 𝜇(𝑒𝑓) = 𝑡.
(2) 𝜇(𝑎󸀠𝑏) = 𝜇(𝑏󸀠𝑎).
(3) 𝜇(𝑎󸀠𝑏) = 𝜇(𝑎∗𝑏).

Proof. (1) Since 𝑒, 𝑓 ∈ 𝐸(𝑆), we have 𝜇(𝑒) = 𝜇(𝑓) = 𝑡. This
implies that 𝜇(𝑒𝑓) ≥ 𝜇(𝑒) ∧ 𝜇(𝑓) = 𝑡 whence 𝜇(𝑒𝑓) = 𝑡.

(2) The result follows from the facts that

𝜇 (𝑎
󸀠

𝑏) ≥ 𝜇 (𝑎𝑎
󸀠

𝑏𝑏
󸀠

) ∧ 𝜇 (𝑎𝑏
󸀠

) = 𝑡 ∧ 𝜇 (𝑎𝑏
󸀠

)

= 𝜇 (𝑎𝑏
󸀠

) = 𝜇 (𝑏
󸀠

𝑎) ,

𝜇 (𝑏
󸀠

𝑎) = 𝜇 (𝑎𝑏
󸀠

) ≥ 𝜇 (𝑎
󸀠

𝑎𝑏
󸀠

𝑏) ∧ 𝜇 (𝑎
󸀠

𝑏)

= 𝑡 ∧ 𝜇 (𝑎
󸀠

𝑏) = 𝜇 (𝑎
󸀠

𝑏) .

(24)

(3) This follows from the proof ofTheorem 2.12 in Zhang
[11].

5. The Relationship of GFC
𝑡
(𝑆) and NFS

𝑡
(𝑆)

In this section, we show that GFC
𝑡
(𝑆) is isomorphic to

NFS
𝑡
(𝑆) as lattices whence NFS

𝑡
(𝑆) is modular for all 𝑡 in

[0, 1]. We first give some useful propositions.

Proposition 17. Let 𝜇 ∈ NFS
𝑡
(𝑆) and

𝜌
𝜇
: 𝑆 × 𝑆 󳨀→ [0, 1] , (𝑎, 𝑏) 󳨃󳨀→ 𝜇 (𝑎

󸀠

𝑏) . (25)

Then 𝜌
𝜇
∈ GFC

𝑡
(𝑆), where 𝑎󸀠 ∈ 𝑊(𝑎).

Proof. In view of Proposition 16(3), the above 𝜌
𝜇
is well

defined. Now, let 𝑎, 𝑏, 𝑐 ∈ 𝑆 and 𝑎󸀠 ∈ 𝑊(𝑎), 𝑏󸀠 ∈ 𝑊(𝑏),
𝑐
󸀠

∈ 𝑊(𝑐). Then we have the following facts:

(1) Since 𝑎󸀠𝑎 ∈ 𝐸(𝑆), 𝜌
𝜇
(𝑎, 𝑎) = 𝜇(𝑎

󸀠

𝑎) = 𝑡.
(2) By Proposition 16(2), we have

𝜌
𝜇
(𝑎, 𝑏) = 𝜇 (𝑎

󸀠

𝑏) = 𝜇 (𝑏
󸀠

𝑎) = 𝜌
𝜇
(𝑏, 𝑎) ≤ 𝑡. (26)

(3) Since 𝑏󸀠𝑏 ∈ 𝐸(𝑆), it follows that 𝜇(𝑏󸀠𝑏) = 𝑡 and

𝜇 (𝑎
󸀠

𝑏) ≥ 𝜇 (𝑐𝑎
󸀠

𝑏𝑏
󸀠

) ∧ 𝜇 (𝑐𝑏
󸀠

)

≥ 𝜇 (𝑐𝑎
󸀠

) ∧ 𝜇 (𝑏𝑏
󸀠

) ∧ 𝜇 (𝑐𝑏
󸀠

) = 𝜇 (𝑐𝑎
󸀠

) ∧ 𝜇 (𝑐𝑏
󸀠

)

= 𝜇 (𝑎
󸀠

𝑐) ∧ 𝜇 (𝑏
󸀠

𝑐) = 𝜇 (𝑎
󸀠

𝑐) ∧ 𝜇 (𝑐
󸀠

𝑏)

(27)

by Proposition 13(3) and Proposition 16(2). This implies that

𝜌
𝜇
(𝑎, 𝑏) ≥ 𝜌

𝜇
(𝑎, 𝑐) ∧ 𝜌

𝜇
(𝑐, 𝑏) . (28)

(4) For any (𝑎𝑐)󸀠 ∈ 𝑊(𝑎𝑐), we have 𝑎𝑐(𝑎𝑐)󸀠 ∈ 𝐸(𝑆) and

𝜇 ((𝑎𝑐)
󸀠

𝑏𝑐) ≥ 𝜇 (𝑎𝑐(𝑎𝑐)
󸀠

𝑏𝑐𝑐
󸀠

𝑏
󸀠

) ∧ 𝜇 (𝑎𝑐𝑐
󸀠

𝑏
󸀠

)

≥ 𝜇 (𝑎𝑐(𝑎𝑐)
󸀠

) ∧ 𝜇 (𝑏𝑐𝑐
󸀠

𝑏
󸀠

) ∧ 𝜇 (𝑎𝑐𝑐
󸀠

𝑏
󸀠

)

= 𝑡 ∧ 𝜇 (𝑐𝑐
󸀠

𝑏
󸀠

𝑏) ∧ 𝜇 (𝑐𝑐
󸀠

𝑏
󸀠

𝑎) = 𝜇 (𝑐𝑐
󸀠

𝑏
󸀠

𝑎)

≥ 𝜇 (𝑐𝑐
󸀠

) ∧ 𝜇 (𝑏
󸀠

𝑎) = 𝑡 ∧ 𝜇 (𝑏
󸀠

𝑎)

= 𝜇 (𝑏
󸀠

𝑎) = 𝜇 (𝑎
󸀠

𝑏)

(29)

by Proposition 13(3) and Proposition 16(1), (2). This implies
that 𝜇(𝑎󸀠𝑏) ≤ 𝜇((𝑎𝑐)󸀠𝑏𝑐). Dually, we have 𝜇(𝑎󸀠𝑏) ≤ 𝜇((𝑐𝑎)󸀠𝑐𝑏).
This implies that

𝜇 (𝑎
󸀠

𝑏) ≤ 𝜇 ((𝑎𝑐)
󸀠

𝑏𝑐) ∧ 𝜇 ((𝑐𝑎)
󸀠

𝑐𝑏) . (30)

Thus, 𝜌
𝜇
(𝑎, 𝑏) ≤ 𝜌

𝜇
(𝑎𝑐, 𝑏𝑐) ∧ 𝜌

𝜇
(𝑐𝑎, 𝑐𝑏).

(5) By Proposition 16 and the fact that 𝑒 ∈ 𝑊(𝑒), we have
𝜌
𝜇
(𝑒, 𝑓) = 𝜇(𝑒𝑓) = 𝑡.

(6) 𝜌
𝜇
(𝑎, 𝑎𝑎

󸀠

𝑎) = 𝜇(𝑎
󸀠

𝑎𝑎
󸀠

𝑎) = 𝜇(𝑎𝑎
󸀠

) = 𝑡.

From the above six items, we can see that 𝜌
𝜇
∈ GFC

𝑡
(𝑆) by

Proposition 6.

Proposition 18. Let 𝜌 ∈ GFC
𝑡
(𝑆) and define

𝜇
𝜌
: 𝑆 󳨀→ [0, 1] : 𝑎 󳨃󳨀→ 𝜌 (𝑎𝑎

󸀠

, 𝑎) . (31)

Then 𝜇
𝜌
∈ NFS

𝑡
(𝑆), where 𝑎󸀠 ∈ 𝑊(𝑎).

Proof. By Proposition 10(1), 𝜇
𝜌
is well defined. Now, let

𝑥, 𝑎, 𝑦 ∈ 𝑆, 𝑥
󸀠

∈ 𝑊 (𝑥) , 𝑦
󸀠

∈ 𝑊(𝑦) ,

(𝑥𝑦)
󸀠

∈ 𝑊(𝑥𝑦) , (𝑥𝑎𝑦)
󸀠

∈ 𝑊(𝑥𝑎𝑦) .

(32)
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Then

𝑥
󸀠

𝑥, 𝑦
󸀠

𝑦, 𝑥𝑥
󸀠

, 𝑦𝑦
󸀠

, (𝑥𝑦) (𝑥𝑦)
󸀠

∈ 𝐸 (𝑆) . (33)

By Proposition 7, we have

𝜌 ((𝑥𝑦) (𝑥𝑦)
󸀠

, 𝑥𝑦) = 𝜌 (𝑦𝑦
󸀠

(𝑥𝑦) (𝑥𝑦)
󸀠

, 𝑥𝑦)

= 𝜌 (𝑥𝑥
󸀠

𝑦𝑦
󸀠

(𝑥𝑦) (𝑥𝑦)
󸀠

, 𝑥𝑦)

≥ 𝜌 (𝑥𝑥
󸀠

, 𝑥) ∧ 𝜌 (𝑦𝑦
󸀠

(𝑥𝑦) (𝑥𝑦)
󸀠

, 𝑦)

= 𝜌 (𝑥𝑥
󸀠

, 𝑥) ∧ 𝜌 (𝑦𝑦
󸀠

, 𝑦) .

(34)

This implies that 𝜇
𝜌
(𝑥𝑦) ≥ 𝜇

𝜌
(𝑥) ∧ 𝜇

𝜌
(𝑦). On the other hand,

also by Proposition 7, we have

𝜌 (𝑥𝑎𝑦(𝑥𝑎𝑦)
󸀠

, 𝑥𝑎𝑦) ∧ 𝜌 (𝑥𝑦(𝑥𝑦)
󸀠

, 𝑥𝑦)

= 𝜌 (𝑥𝑎𝑦, 𝑥𝑎𝑦(𝑥𝑎𝑦)
󸀠

𝑥𝑦(𝑥𝑦)
󸀠

)

∧ 𝜌 (𝑥𝑎𝑦(𝑥𝑎𝑦)
󸀠

𝑥𝑦(𝑥𝑦)
󸀠

, 𝑥𝑦)

≤ 𝜌 (𝑥𝑎𝑦, 𝑥𝑦) .

(35)

Observe that

𝜌 (𝑥𝑎𝑦, 𝑥𝑦) ≤ 𝜌 (𝑥
󸀠

𝑥𝑎𝑦𝑦
󸀠

, 𝑥
󸀠

𝑥𝑦𝑦
󸀠

)

= 𝜌 (𝑥
󸀠

𝑥𝑎𝑦𝑦
󸀠

, 𝑥
󸀠

𝑥𝑦𝑦
󸀠

𝑎𝑎
󸀠

) = 𝜌 (𝑎, 𝑎𝑎
󸀠

)

= 𝜌 (𝑎𝑎
󸀠

, 𝑎)

(36)

by Proposition 7. Thus, 𝑡 ≥ 𝜌(𝑎𝑎󸀠, 𝑎) = 𝜇
𝜌
(𝑎) ≥ 𝜇

𝜌
(𝑥𝑎𝑦) ∧

𝜇
𝜌
(𝑥𝑦). Finally, since 𝑒 ∈ 𝑊(𝑒) for all 𝑒 ∈ 𝐸(𝑆), we have
𝜇
𝜌
(𝑒) = 𝜌(𝑒𝑒, 𝑒) = 𝜌(𝑒, 𝑒) = 𝑡 for all 𝑒 ∈ 𝐸(𝑆). Therefore,
𝜇
𝜌
∈ NFS

𝑡
(𝑆).

At this stage, we can give the main result of this paper.

Theorem 19. The mappings

Ψ
𝑡
: GFC

𝑡
(𝑆) 󳨀→ NFS

𝑡
(𝑆) , 𝜌 󳨃󳨀→ 𝜇

𝜌
;

Φ
𝑡
: NFS

𝑡
(𝑆) 󳨀→ GFC

𝑡
(𝑆) , 𝜇 󳨃󳨀→ 𝜌

𝜇

(37)

are mutually inverse bijections preserving the inclusion rela-
tions, where 𝜇

𝜌
and 𝜌

𝜇
are defined as in Propositions 17 and

18, respectively.

Proof. From Propositions 17 and 18, the above mappings are
well defined. Now, let 𝜇 ∈ NFS

𝑡
(𝑆), 𝑎 ∈ 𝑆, and 𝑎󸀠 ∈ 𝑊(𝑎).

Then 𝑎𝑎󸀠 ∈ 𝑊(𝑎𝑎󸀠). This implies that

Ψ
𝑡
Φ
𝑡
(𝜇) (𝑎) = Ψ

𝑡
(𝜌
𝜇
) (𝑎) = 𝜌

𝜇
(𝑎𝑎
󸀠

, 𝑎)

= 𝜇 (𝑎𝑎
󸀠

𝑎) = 𝜇 (𝑎)

(38)

by Proposition 13(2). On the other hand, for any 𝑎, 𝑏 ∈ 𝑆 and
𝑎
󸀠

∈ 𝑊(𝑎), (𝑎
󸀠

𝑏)
󸀠

∈ 𝑊(𝑎
󸀠

𝑏), we have

Φ
𝑡
Ψ
𝑡
(𝜌) (𝑎, 𝑏) = Φ

𝑡
(𝜇
𝜌
) (𝑎, 𝑏) = 𝜇

𝜌
(𝑎
󸀠

𝑏)

= 𝜌 (𝑎
󸀠

𝑏(𝑎
󸀠

𝑏)
󸀠

, 𝑎
󸀠

𝑏) = 𝜌 (𝑎, 𝑏)

(39)

by Proposition 10(2).This implies thatΨ
𝑡
andΦ

𝑡
aremutually

inverse bijections. Obviously, Ψ
𝑡
and Φ

𝑡
preserve the inclu-

sion relations.

Corollary 20. The lattices (GFC
𝑡
(𝑆), ⊆) and (NFS

𝑡
(𝑆), ⊆) are

isomorphic. As a consequence, the lattice (NFS
𝑡
(𝑆), ⊆) is also

modular.

Proof. By Lemma 1 and Theorem 19, the lattice (GFC
𝑡
(𝑆), ⊆)

is isomorphic to the lattice (NFS
𝑡
(𝑆), ⊆). Thus, the lattice

(NFS
𝑡
(𝑆), ≤) is also modular byTheorem 9.

Corollary 21. (GFC(𝑆), ⊆) and (NFS(𝑆), ⊆) are two mutually
isomorphic lattices.

Proof. It is routine to check that

(⋂

𝑖∈𝐼

𝜌
𝑖
) ∈ GFC

∧
𝑖∈𝐼
𝑡
𝑖

(𝑆) , (⋂

𝑗∈𝐽

𝜎
𝑗
) ∈ NFS

∧
𝑗∈𝐽
𝑡
𝑗

(𝑆)

(40)

for 𝜌
𝑖
∈ GFC

𝑡
𝑖

(𝑆), 𝑖 ∈ 𝐼, and 𝜎
𝑗
∈ NFS

𝑡
𝑗

(𝑆), 𝑗 ∈ 𝐽, where 𝐼 and
𝐽 are index sets. Moreover,

𝜌
1
: 𝑆 × 𝑆 󳨀→ [0, 1] , (𝑎, 𝑏) 󳨃󳨀→ 1,

𝜎
1
: 𝑆 󳨀→ [0, 1] , 𝑥 󳨃󳨀→ 1

(41)

are the greatest elements in (GFC(𝑆), ⊆) and (NFS(𝑆), ⊆),
respectively. By Lemma 2, (GFC(𝑆), ⊆) and (NFS(𝑆), ⊆) are
two lattices. Moreover, if we let

Ψ : GFC (𝑆) 󳨀→ NFS (𝑆) , 𝜌 󳨃󳨀→ Ψ
𝑡
(𝜌) , 𝜌 ∈ GFC

𝑡
(𝑆) ,

Φ : NFS (𝑆) 󳨀→ GFC (𝑆) , 𝜌 󳨃󳨀→ Φ
𝑡
(𝜎) , 𝜎 ∈ NFS

𝑡
(𝑆) ,

(42)

then byTheorem 19, Ψ andΦ are mutually inverse bijections
which preserve the inclusion relations and thus (GFC(𝑆), ⊆)
and (NFS(𝑆), ⊆) are isomorphic from Lemma 1.

We end this section by giving an example to illustrate our
previous results.

Example 22. Let 𝑆 be a semigroup with the following multi-
plication table:

𝑆 𝑎 𝑒 𝑓 𝑏

𝑎 𝑒 𝑎 𝑎 𝑒

𝑒 𝑎 𝑒 𝑒 𝑎

𝑓 𝑎 𝑒 𝑓 𝑎

𝑏 𝑒 𝑎 𝑏 𝑒

(43)
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Then 𝑆 is an 𝐸-inversive semigroup which is nonregular.
Moreover,

𝐸 (𝑆) = {𝑒, 𝑓} , 𝑊 (𝑎) = {𝑎} , 𝑊 (𝑒) = {𝑒, 𝑓} ,

𝑊 (𝑓) = {𝑓} , 𝑊 (𝑏) = {𝑎} .

(44)

Fix an element 𝑡 in the interval [0, 1]. For every 𝑠 ∈ [0, 1]with
𝑠 ≤ 𝑡, define a fuzzy set 𝜇

𝑠
in 𝑆 as follows:

𝜇
𝑠
: 𝑆 → [0, 1] , 𝑒 󳨃󳨀→ 𝑡, 𝑓 󳨃󳨀→ 𝑡, 𝑎 󳨃󳨀→ 𝑠, 𝑏 󳨃󳨀→ 𝑠.

(45)

It is routine to check that 𝜇
𝑠
is a normal fuzzy subsemigroup

with tip 𝑡 in 𝑆. Furthermore, in view of the fact that

𝐸 (𝑆) = {𝑒, 𝑓} , 𝑊 (𝑎) = {𝑎} , 𝑊 (𝑒) = {𝑒, 𝑓} ,

𝑊 (𝑓) = {𝑓} , 𝑊 (𝑏) = {𝑎}

(46)

and Proposition 13, we have

NFS
𝑡
(𝑆) = {𝜇

𝑠
| 𝑠 ≤ 𝑡, 𝑠 ∈ [0, 1]} . (47)

Let 𝜇
𝑠
∈ NFS

𝑡
(𝑆). By Proposition 17, we can define

𝜌
𝜇
𝑠

: 𝑆 × 𝑆 󳨀→ [0, 1] , (𝑥, 𝑦) 󳨃󳨀→ 𝜇 (𝑥
󸀠

𝑦) , 𝑥
󸀠

∈ 𝑊 (𝑥) .

(48)

More precisely, 𝜌
𝜇
𝑠

satisfies that

𝜌
𝜇
𝑠

(𝑎, 𝑎) = 𝜌
𝜇
𝑠

(𝑒, 𝑒) = 𝜌
𝜇
𝑠

(𝑓, 𝑓) = 𝜌
𝜇
𝑠

(𝑏, 𝑏)

= 𝜌
𝜇
𝑠

(𝑎, 𝑏) = 𝜌
𝜇
𝑠

(𝑏, 𝑎) = 𝜌
𝜇
𝑠

(𝑒, 𝑓)

= 𝜌
𝜇
𝑠

(𝑓, 𝑒) = 𝑡,

𝜌
𝜇
𝑠

(𝑎, 𝑒) = 𝜌
𝜇
𝑠

(𝑒, 𝑎) = 𝜌
𝜇
𝑠

(𝑓, 𝑎) = 𝜌
𝜇
𝑠

(𝑎, 𝑓)

= 𝜌
𝜇
𝑠

(𝑒, 𝑏) = 𝜌
𝜇
𝑠

(𝑏, 𝑒) = 𝜌
𝜇
𝑠

(𝑏, 𝑓)

= 𝜌
𝜇
𝑠

(𝑓, 𝑏) = 𝑠.

(49)

Then 𝜌
𝜇
𝑠

∈ GFC
𝑡
(𝑆). By Theorem 19, GFC

𝑡
(𝑆) = {𝜌

𝜇
𝑠

| 𝑠 ≤

𝑡, 𝑠 ∈ [0, 1]}. By virtue of Corollary 20, (GFC
𝑡
(𝑆), ⊆) and

(NFS
𝑡
(𝑆), ⊆) are isomorphically modular lattices.

6. Conclusion

In this paper, we have introduced and investigated the lattices
of group fuzzy congruences and normal fuzzy subsemigroups
on 𝐸-inversive semigroups. Our results generalize the cor-
responding results of groups and regular semigroups. From
the results presented in the paper, the lattices of group fuzzy
congruences andnormal fuzzy subsemigroups on𝐸-inversive
semigroups can be regarded as a source of possibly new
modular lattices. On the other hand, this paper also leaves
some questions which can be considered as future works. For
example, from Ajmal and Thomas [8], if 𝑆 is a group, then
(NFS(𝑆), ⊆) is a modular lattice. Thus, the following question
would be interesting: is (NFS(𝑆), ⊆) also modular for an 𝐸-
inversive semigroup 𝑆?
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[14] R. S. Gigoń, “Congruences and group congruences on a semi-
group,” Semigroup Forum, vol. 86, no. 2, pp. 431–450, 2013.

[15] Y. Luo, X. Fan, and X. Li, “Regular congruences on an 𝐸-
inversive semigroup,” Semigroup Forum, vol. 76, no. 1, pp. 107–
123, 2008.

[16] Y. Shi, Z. Tian, and T. Zhang, “Fuzzy strong regular congruence
triples for an 𝐸-inversive semigroup,” International Mathemati-
cal Forum: Journal forTheory and Applications, vol. 8, no. 13–16,
pp. 675–684, 2013.

[17] S. Burris and H. P. Sankappanavar, A Course in Universal
Algebra, vol. 78 ofGraduate Texts inMathematics, Springer, 1981.

[18] J. M. Howie, An Introduction to Semigroup Theory, Academic
Press, New York, NY, USA, 1976.

[19] J. N. Mordeson, K. R. Bhutani, and A. Rosenfeld, Fuzzy Group
Theory, Springer, Berlin, Germany, 2005.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


