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Communication infrastructure planning is a critical design task that typically requires handling complex concepts on networking
aimed at optimizing performance and resources, thus demanding high analytical and problem-solving skills to engineers. To
reduce this gap, this paper describes an optimization algorithm—based on evolutionary strategy—created as an aid for decision-
making prior to the real deployment of wireless LANs. The developed algorithm allows automating the design process, traditionally
handmade by network technicians, in order to save time and cost by improving the WLAN arrangement. To this end, we
implemented a multiobjective genetic algorithm (MOGA) with the purpose of meeting two simultaneous design objectives, namely,
to minimize the number of APs while maximizing the coverage signal over a whole planning area. Such approach provides efficient
and scalable solutions closer to the best network design, so that we integrated the developed algorithm into an engineering
tool with the goal of modelling the behavior of WLANSs in ICT infrastructures. Called WiFiSim, it allows the investigation of
various complex issues concerning the design of IEEE 802.11-based WLANS, thereby facilitating design of the study and design
and optimal deployment of wireless LANs through complete modelling software. As a result, we comparatively evaluated three
target applications considering small, medium, and large scenarios with a previous approach developed, a monoobjective genetic

algorithm.

1. Introduction

Implementing Wi-Fi networks with the best use of resources
while offering the best service to users requires a careful plan-
ning. WLANS can range from relatively simple installations
to very complex and intricate designs so a well-documented
plan must be outlined before a wireless infrastructure can be
deployed [1]. In practice, network technicians must survey
the space towards deciding on the WLAN arrangement,
whose process involves gauging the location of APs, clients,
and obstacles. This is traditionally reduced to achieve the
maximum Wi-Fi coverage as decision criterion, which is
traduced into varying the AP placements based on signal
strength measurements. Nevertheless, it is not merely draw-
ing coverage circles on a plane and the difficulty increases
when requiring a realistic view of the whole problem [2]. This
indeed includes several factors such as the area morphology

(i.e., verticality and horizontality of planes), number of clients
populating the WLAN (i.e., distribution, density), type of
IEEE 802.11 technology (i.e., modulation scheme and frame
management), effective isotropic radiated power (EIRP), and
physical distance and obstacle materials (i.e., water, glass,
plastic, metal, wood, and concrete). The traditional deploy-
ment is consequently no effective for practitioners due to
requirements in time and cost, which may drastically reduce
the WLAN performance and usability due to operability
problems concerning design (e.g., interferences and frame
collisions due to home devices, hidden node problem) [3].
To help reduce this gap, this paper presents WiFiSim, an
engineering modelling software being developed as part of an
ongoing research project for the study and design of WLANSs
[4-6]. The purpose of this software is to model the behavior
and performance of communication networks based on the
IEEE 802.11 standard. The interest lies in the realism of the
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WiFiSim simulations, which provide a high level of interac-
tivity and visual information with easy-to-interpret results
through a configurable and intuitive GUIL In this paper we
propose a further development beyond the study and design
of WLAN:S: the problem of optimally deploying APs to cover
Wi-Fi clients within a complex space. So this manuscript
intended three significant contributions: (1) to present a new
intelligent modelling approach for WLAN deployment based
on a multiobjective genetic algorithm; (2) to examine its
applicability into small, medium, and large scenarios; and (3)
to integrate the algorithm with the previous developments
and provide a complete decision-making software for ICT
technicians. To achieve this goal, we propose an evolutionary
genetic strategy based on nondominated sorting genetic
algorithm IT (NSGA-II) where the optimization approach is
applied into a demanding WLAN infrastructure.

To this end, the paper is organized as follows. Section 2
introduces the tools and approaches for WLAN deployment
existing in literature. Section 3 is devoted to describing the
evolutionary genetic strategy followed to develop the opti-
mization algorithm. Section 4 presents the experimentation
conducted in three representative case studies. Finally, the
paper provides the results and future works.

2. State of the ART

Typically, the location of APs in Wi-Fi networks is manually
estimated from their power transmission. From this param-
eter, APs are placed at regular intervals throughout the space
with a predefined distance between adjacent APs. However,
this approach idealizes the signal coverage that, in reality,
often finds complex environments with a wide variety of
obstacles and materials. This implies designs that may result
in a deficient configuration of APs due to poor or excessive
coverages. When applied to large scenarios, this approach
may bring a significant cost overrun. To address these
shortcomings, site surveys must be combined with software
modelling tools that help improve and simplify the human
process [7]. However, these tools need to have a high degree
of realism and simulation capabilities to be really helpful (e.g.,
modeling of physical spaces and network behavior in Layer 1
and Layer 2 of the OSI model). For this reason, choosing a
modelling software to study and design optimal WLANSs can
become hard due to the large number of existing tools [8].

2.1. Modelling Software for WLAN Deployment. At present,
there is a large number of applications for designing and/or
planning Wi-Fi networks. Examples of research in scientific
literature using these applications include NetStumbler®,
a survey-site tool that facilitates the detection of WLANSs
using the IEEE 802.11 protocol [9]; Wi-Fi Analytics Tool™,
a software that provides advanced signal strength graphs
and analyzes Wi-Fi channels to optimize the Wi-Fi network
setup [10]; Wi-Spy DBx, a RF spectrum analyzer designed for
troubleshooting Wi-Fi issues with nearby interfering devices
in the 2.4 and 5GHz bands [11]; Ekahau HeatMapper™, an
auditory tool and Wi-Fi site-survey software for home use
[12]; NetSpot, a site-survey and analyzing tool that helps
improve the Wi-Fi signal strength and to boost the network
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speed [13]; Acrylic® WiFi Heatmaps, a site-survey and audit
software aimed at generating awesome Wi-Fi heatmaps and
editable reports on the RF spectrum coverage [14]; Wolf
WiFi Pro®, a Wi-Fi device management software and pre-
deployment toolkit for wireless professionals able to detect
failure scenarios [15]; Bat-Planner, a basic planning suite
for IEEE 802.11-based wireless networks [16]; TamoGraph?®,
a site-survey tool for collecting, visualizing, analyzing, and
reporting Wi-Fi data [17]; VisualRF Plan, a wireless man-
agement suite that helps to model the RF environment and
the underlying wired topology in a visual way [18]; RE3D
Wifiplanner2, a modelling tool for planning and upgrading
WLANSs based on the study of RF signals [19]; AirMagnet
Survey®, an accurate and flexible solution for planning indoor
and outdoor WLANs [20]; WiTuners™, a Wi-Fi tool for
site survey, automated deployment, and auditing [21]; and
Ekahau Site Survey™, a professional software toolkit for site
survey, spectrum analysis, and Wi-Fi planning [22], to name
a few tools.

In general, all the above tools exemplify design and in-
spection software for wardriving, site survey, data collecting,
and planning. Among the drawbacks, these applications (i)
are mostly commercial software with a pay-per-use license
agreement, (ii) are often natively available only for Windows
platforms, (iii) do not always include structures or materials
for obstacle modelling, (iv) only allow multifloor design
through 2D maps, (v) do not integrate habitually algorithms
for optimal WLAN deployment, and (vi) support their
designs in a two-step process (i.e., definition of site require-
ments and planning based on RF propagation). Among them,
AirMagnet Survey, WiTuners, and Ekahau Site Survey are
remarkable exceptions. On the one hand, they automatically
plan the AP positions and quantity needed to ensure a
minimum coverage. On the other hand, they validate their
designs with data collecting by auditing the real environment.

As a main disadvantage, these tools use proprietary algo-
rithms for WLAN deployment based on RF planning (i.e.,
patent protected). This implies charging a licensing fee that
can be fairly expensive (especially in comparison to open-
source software), to make the owner too dependent on the
developer (possibly less adaptable to the constantly changing
needs of users) and to make the mechanics of the algorithms
opaque to viewing (i.e., there is no testable information) [23].
The importance of utilizing evolutionary approaches, instead
of providing a single solution as in the case of the RF-based
algorithms, is to procure a set of optimal solutions to facilitate
broader decision-making for users. Moreover, the above tools
lack a modelling block to assist engineers in the study of
wireless traffic in Layer 2. Both capabilities combined are
critical when troubleshooting wireless communication issues
to deploy efficient and useful WLANS. This way, the design
process is improved by a cycle of three steps, much more
creative, based on the generation of alternative solutions and
analysis and selection of the one considered more fitting.

To introduce the developed modelling software, the
main features and properties of WiFiSim are compared with
the above-mentioned tools in Table 1. In sum, the pros of
WiFiSim are (i) to facilitate for engineers the WLAN deploy-
ment by providing a set of optimal solutions closer to the best
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network design and (ii) to study WLANS in both Layer 1 and
Layer 2 to avoid several communication issues concerning the
PHY and MAC layers (e.g., throughput, channel utilization,
frame collision, frame delay, queue length and delay, medium
access delay, and jitter and hidden node problem). As far as we
know, these are the main differentiating capabilities regarding
other tools, whose modelling process allows practitioners
to improve complex network designs. As a result, WiFiSim
has been utilized by professionals on ICT and students and
teachers at the University of Huelva to improve the learning
and teaching of computer networking degrees over the past
seven years (i.e., 10 professionals, 110 students, and 4 teachers
since the 2011/12 academic year).

2.2. Approaches for WLAN Optimization. Early approaches
based on computer models consisted in exhaustive searches
of AP positions under strong restrictions, thus preventing
being useful in more general situations [24]. Traditional
forms of infrastructure planning, as used for mobile cellular
networks, produce acceptable results but are generally con-
sidered too costly for wireless networks [25]. In this field,
optimization techniques range from Hill climbing, random
walk (RW), simulated annealing (SA), and Tabu search (TS)
to genetic algorithms (GA). Hill climbing, a mathematical
optimization technique within local search methods, was
also applied along to metaheuristic neighborhood search
algorithms (e.g., SA or TS) to prevent being trapped in local
optimums. However, mathematical programming techniques
are usually less preferred than metaheuristic approaches due
to the difficulty for adapting math expressions to generic
case studies. Moreover, TS and GA proved to be techniques
with better performance than other local search approaches
such as RW or SA. However, TS suffer from scalability
and evolutionary genetic strategies depend largely on tuning
parameters for the application [26]. Both issues—scalability
and parameter tuning—were effectively addressed through
an agent-based optimization approach [27] and a combina-
tion of pruning and neighborhood search algorithms [28],
respectively.

Initial investigations on GAs led to deploying a single
AP through a simple implementation [29]. Subsequent works
were focused on modeling WLAN scenarios by increasing
the number of APs [30]. GAs then evolved to include new
factors such as the effect of different obstacles on the cov-
erage performance [31]. In general, monoobjective strategies
centered on optimizing a target function are more popular
because of flexibility, robustness, and ease of implementation
but may not be realistic enough when several design goals
are sought to meet (e.g., number of APs, overall SNR,
or throughput). For this reason, most of the real-world
optimization problems are multiobjective in nature, which
often have two or more target functions that must be met
simultaneously and possibly conflict with each other. This
causes having a set of optimal solutions (i.e., Pareto solutions)
instead of having a single outcome. On the other hand,
monoobjective algorithms may require being run every time
to obtain multiple solutions. These drawbacks were addressed
in this field thanks to a multiobjective genetic algorithm
(MOGA) approach. Such is the case of an improved adaptive
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genetic algorithm (IAGA) for WLAN deployment based
on attaining the AP quantity and signal route wastage as
minimum as possible [32]. Analogously, a multiobjective
strategy was proposed to obtain various optimal placement
configurations for different numbers of APs based on the SNR
region [33]. Although closer to the work being proposed, as
main disadvantage, these algorithms were not provided as
a modelling software for the complete study of the WLAN
operation in Layer 1 and Layer 2 (i.e., not interactive and
exhaustive).

In this paper, we specifically used NSGA-II, one of the
most representative approaches of MOGAs due to its ability
to find multiple Pareto solutions in a simple execution [34].
As a main advantage, this approach allows easily dealing with
concave and discontinuous Pareto boundaries, combined
with a crowding operator, allowing obtaining a wider set
of optimal solutions than other GAs of first and second
generation as the niched Pareto genetic algorithm (NPGA)
[35], nondominated sorting genetic algorithm (NSGA) [36],
strength Pareto evolutionary algorithm (SPEA) [37], Pareto
archived evolution strategy (PAES) [38], Pareto envelope-
based selection algorithm (PESA) [39], microgenetic algo-
rithm (Micro-GA) [40], improved niched Pareto genetic
algorithm (NPGA2) [41], improved envelope-based selection
algorithm (PESA-II) [42], or improved strength Pareto evo-
lutionary algorithm (SPEA2) [43], among others.

3. Modelling System

The first implementation of WiFiSim—acronym for Wireless
Fidelity Simulator—consisted of an intelligent modelling
software developed in Java™ with the Eclipse framework.
WiFiSim allows modeling various parameters in the PHY
and MAC layers of the OSI model with support for the IEEE
802.11a/b/g/n standards, including stand-alone configuration
of APs and wireless clients (e.g., interbeacon frame, rate and
sensitivity, Cartesian coordinates, transmission power, packet
size, RTS threshold, and packetload distribution), support for
a customized library of materials, and control of the medium
access (i.e., CSMA/CA mechanism, RTS/CTS mechanism,
and back-oft algorithm). The validation of models in WiFiSim
is done in a similar way as in AirMagnet Survey, WiTuners,
and Ekahau Site Survey but using complementary tools,
for instance, WiFi Analyzer. This application allows us to
manually conduct real WLAN tests, such as measuring the
signal sensibility, antenna aiming, or APs detection [44].
Thus, once nodes and obstacles are added to a wireless
scenario, we can simulate network models with a high degree
of realism and study signal loss-related problems. Further
details are described in [4, 5].

In order to facilitate the graphical deployment of WLAN:Ss,
WiFiSim was firstly extended with a steady-state genetic
algorithm (SSGA). This allowed users to dynamically work on
3D maps and specify whether the APs must be automatically
arranged anywhere inside the buildings or fixed on the
walls according to common ICT installation requirements.
The main advantage of using SSGA is that multiple optimal
placement solutions can be obtained for the same configu-
ration of APs (i.e., from 1 AP to 8 APs). This provides more
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FIGURE 1: WiFiSim’s control panel: (1) graphical deployment for Layer 1, (2) steady-state GA module, (3) multiobjective GA module, and (4)

study of Layer 2.

alternatives to the network designer than automatic RF-based
algorithms. Moreover, SSGA is able to automatically plan
APs in both empty spaces (i.e., when the nodes are not
known a priori) and populated environments (i.e., when the
nodes are fixed beforehand). Hence, SSGA seeks to optimize
the coverage when designing empty planes or maximize it
on customer locations according to the user requirements.
Briefly explained, SSGA consisted in the following steps: (1)
begin with a selection of candidate solutions (i.e., positions
for a specific number of APs), (2) evaluate the solutions
according to the maximum coverage as objective, (3) evolve
these solutions by using parent selection, crossover, mutation,
and replacement with subsequent generation improvements
as long as the best solution does not change, and (4) provide
those best solutions to the user. Additional details can be
found in [6].

3.1. Multiobjective Genetic Algorithm. As a complementary
strategy to SSGA, a MOGA module has been integrated into
WiFiSim. The major improvement of using MOGA compared
to SSGA is that multiple optimal placement configurations
consisting of different numbers of APs can be simultaneously
obtained from a single run. That way, the functionalities of
WiFiSim were extended by not only selecting up to 8 APs
with SSGA but also collecting 32 simultaneous solutions per
WLAN design with NSGA-II. It gives users a greater range of
optimization and experimentation as shown in Figure 1.

The modelling technique was developed using jMetal,
a Java framework for developing metaheuristic algorithms
[45]. NSGA-II basically consists of a parent population P, and
adescendant population Q,, both of size N, combined to form
anew population R, = P,UQ, of size 2N. While P, is randomly
created based on an initialization method, Q, is generated
from P, using a tournament, crossing, and mutation process.

Then R, is classified into Pareto fronts (F;) according to a
nondominated ordering process and a fitness function such
that R, = {F,F,,F;,..., F;}. Instead of randomly choosing
the Pareto fronts to form the next generation of size N,
NSGA-II takes the best solution fronts and discards the worst
fronts. This is efficiently done by computing the crowding
distance (d;) of their solutions, meaning the value of the
search space around a solution that is not occupied by another
solution in the population:

W) A

dIm _dljy'n-’-%) (1)

where m stands for each of the objective functions and
jmeans the solution taken from the Pareto front for which
j+ 1and j— 1 stand for the neighboring solutions. As a
result, NSGA-II ensures the best and more diversity results
since the solutions are distanced from each other when the
population converges towards the optimal Pareto front after
several generational cycles. The problem formulation and the
genetic operators used are discussed in the following sec-
tions.

3.2. Map Structure and Objectives. The floor maps were
codified in NSGA-II by means of a cell division method. In
the case of the SSGA, maps were divided—depending on
the floor shape and obstacles available—into square cells,
rectangular cells, and mini-cells with resolution up to 1x 1 m*
(i.e., 32 x 32 pixels by default). The NSGA-II approach was
improved, treating the cells closer to reality by using not only
standard cells but also triangular and polymorphic shapes.
This resulted in a more efficient cell division method since
it completely covers the whole useful space (Figure 2).
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There were two optimization objectives in this problem:
minimize the number of APs and maximize the number
of cells covering the whole planning area. These objectives
were in conflict since reducing the number of APs inevitably
implies decreasing the average signal as well, and vice versa.
The first decision criterion was to minimize the number of
APs to reduce the infrastructure cost as much as possible.
As second decision criterion, NSGA-II computes the signal
attenuation by distance and obstacle at each cell for every
AP configuration (i.e., from 1to 32 APs). The free space path

loss (FSPL) is calculated as a function of the distance and
frequency, whose amount of signal loss is given in decibels

by
FSPL = 201log,, (d) + 201og,, (f) + 32.44, (2)

where d is the distance from the transmitter (in Km) and f
is the frequency (in MHz). The loss signal by obstacle is then
subtracted to (2) and the total power received at each cell is
modeled as follows:

P,

X

=P,-(FSPL-L,), 3)
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where P, is the power received at each cell by every AP,
P, is the power emitted for each AP, and L, is the loss
signal due to the obstacle presence. Once the power signal
is calculated at each map cell, two specific user constraints
defined in the algorithm options are evaluated. These are
the maximum bandwidth and Wi-Fi protocol. Since the rate
and modulation scheme used in the WLAN set the media
sensibility (i.e., rate in Mbps versus power in dBm), this serves
to filter out the solution calculated by the algorithm in (3)
and satisfy the design constraints. Therefore, the planning of
the AP location plays a key role in maximizing the WLAN
transmission coverage and communication throughput.

3.3. Coding Scheme and Chromosome Selection. The number
of APs and their locations were concatenated to form a
chromosome (Figure 3). We modified jMetal to use a double
chromosome structure in NSGA-II consisting of a binary part
and an integer part that codifies the two decision variables.
The first one stands for 5 bits whose equivalent decimal value
stands for the number of APs to be evaluated in the integer
part of that chromosome. The second part contains 32 values
that identify the cell number where the APs will be located.
The number of cells will depend on the map size, number of
floors, and obstacle shapes.

The chromosome selection is based on a fitness function
and the stochastic universal sampling selection, where each
individual of the population is valued in a nondominated
Pareto rank after a selection process, becoming part of the
next generation of those chromosomes with lower rank value
[46]. In case of individuals with the same rank value, a
crowding operator based on (1) is applied to discriminate
individuals. The lower the value of the crowding operator, the
greater the diversity of solutions that a chromosome has.

3.4. Mutation and Crossover Operators. The mutation process
is applied independently to the binary and integer part of
the chromosomes according to values of probability that
initially are chosen very low (e.g., 3%). Specifically, we have
used the integer flip mutation method for the integer part,
which takes random positions of a chromosome to change
their values. In case of generating a chromosome with more
than one AP in the same cell position, the algorithm will
consider them as the same AP and filter out this solution

in favor of others presenting the same number of APs but
in different map cells. As a result, the algorithm discards
those anomalous chromosomes before passing to the next
generation. Regarding the binary part, we used a bit flip
method with similar mutation to the integer flip technique
but considering the range [0, 1].

The crossover process is also applied to the integer and
binary parts severally. In particular, a uniform crossover
scheme (UX) was applied to the integer part in which the
values of two chromosomes are compared individually and
swapped with a fixed probability, typically 0.5. Regarding the
binary part, we used a one-point crossover operator in which
all the values from a point of a chromosome are inter-
changed with the corresponding values in the other chro-
mosome compared. Both crossover operators were entirely
programmed in jMetal for this project.

3.5. Modelling Improvements. Beyond being an evolutionary
genetic algorithm, NSGA-II was conceived to exploit its full
capability as an intelligent modelling software. To this end,
NSGA-II was integrated into WiFiSim to afford the parameter
configuration of the multiobjective algorithm. First, because
the generation, mutation, crossing, and selection of the pop-
ulation are processes cyclically done by NGSA-II, we end
the algorithm execution by setting a maximum number of
evaluations. This value, fixed to 5,000 by default as depicted
in Figure 1, can be customized by users to experiment with
different results. Once the algorithm finishes, it enters the
process of ranking solutions, filters out those that are anoma-
lous, and sorts them according to the number of APs that
compose it. Hence, users can move in an orderly way from
one solution to another—by means of a cursor—to study the
arrangement of up to 32 access points. Conversely, in SSGA,
when a replacement exists after an iteration, the algorithm
reevaluates the population to determine whether it improves
or not. In case of remaining stuck during 500 iterations, SSGA
ends.

Secondly, NSGA-II allows search for optimal solutions
based on requiring a minimum percentage of allowable cov-
erage in the WLAN infrastructure according to a Wi-Fi
bandwidth and technology (e.g., 1, 6, 11, 54, 108, 130, 150,
or 300 Mbps for IEEE 802.11n). In this way, NSGA-II mod-
els the relationship between transmission rate (Mbps) and
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power (—dBm) for each AP technology (i.e., sensitivity to
environment). This stands for an additional improvement
giving users a greater optimization and experimentation
grade compared to other WLAN planning tools or MOGA
approaches.

Moreover, we have modified NSGA-II to develop a mul-
tithread version to parallelize the effort in processing the
algorithm’s objectives. In this sense, we experienced that the
higher processing requirements were spent in the evaluation
of the strength signal at each map location for each AP
configuration. The complexity proportionally increases with
the number of resulting cells because of the number of
building floors, map scale, and obstacles included. To this
end, WiFiSim was programmed to use up to 8 simultaneous
threads (set to 4 by default).

4. Experimentation

This section shows a comparative study about the perfor-
mance and scalability of the SSGA and NSGA-II approaches.
To this end, three target applications were considered: small,
medium, and large scenarios. Experimenting with large
environments has serious concerns compared with small and
medium scenarios. Larger areas have tendency to contain
more living rooms and obstacles to form a more complex
morphology, thus resulting in a higher division of the map
cells. This implies higher search spaces to compute with
significant impact on uncertainty and execution time. In
order to evaluate the tests, the parameter settings for both
algorithms are summarized in Tables 2 and 3.

4.1. WLAN Design on Small Scenarios. This case study con-
sisted in fixing two wireless clients on a small symmetric
scenario where one and two APs were deployed anywhere

TABLE 2: Parameter settings for SSGA.

Seed Seed 1

Mutation type By destruction

Selection tournament size Minimum

Crowding By parents

AP power 200 mW, Cisco Aironet 1100
TABLE 3: Parameter settings for NSGA-II.

Threads 4

Population size 500

Max. evaluations 5000

Integer crossover probability 90%

Binary crossover probability 90%

Integer mutation probability 3%

Binary mutation probability 3%

AP power 200 mW, standard

Protocol IEEE 802.11g

Maximum bandwidth 54 Mbps

Minimum coverage 25%

on the map. The map was set with a scale of 1:65 meters
per pixel, which is equivalent to 29.28 m*. This case study
served to demonstrate how NSGA-II and SSGA managed
their solutions to optimally deploy the WLANs. We observed
that a solution with one AP did not cover the whole map (74%
in Figure 4(a) and 82% in Figure 4(c)) whereas a solution
considering two APs covered the complete scenario (Figures
4(b) and 4(d)). However, the algorithms successfully found
similar solutions to optimally reach the two wireless clients
in their locations.
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4.2. WLAN Design on Medium Scenarios. For this test we
used a real map house with two bedrooms, two bathrooms,
a dining room, a living room, and two terraces on a floor
of 23791 m? (Figure 5). The map was set with a scale of 1:32
meters per pixel. The scenario was modelled using a special
contour-type material to form the outlines of the building
(black thick lines with —95 dB), concrete walls for thin inner
walls (green lines with —18 dB), construction beams for
internal walls (black thin lines with —10 dB), a special “not
evaluable” material for areas like closets (black lines with
—-80dB), and a glass material for the doors accessing the
terraces (blue lines with —2 dB).

The case study consisted in deploying one AP covering
one client, two APs covering two clients, and two APs
covering three clients. To this end, we placed the wireless

clients at the living room (node 0), a bedroom (node 1), and
a terrace (node 2). Although SSGA and NSGA-II achieved
similar coverage percentages on the map (between 64% and
91% for the three examples), we observed that SSGA provided
a distribution more centered on the nodes than NSGA-II
when the number of nodes was higher than the APs. On the
contrary, NSGA-II tried to provide a more global and diverse
coverage on the map (i.e., more balanced).

4.3. WLAN Design on Large Scenarios. The following exper-
iment was conducted in a typical office environment consist-
ing of a 73 x 40 m” building with rooms, corridors, and open
spaces with a scale of 1: 10 meters per pixel corresponding to
2920 m? (Figure 6). Because of this structure, we created an
exclusion zone around a landscaped courtyard at the center
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TABLE 4: Performance of SSGA in a small scenario.
Target Solutions Min. Max. AI? Time (s)
APs found coverage coverage location
1 1 64% 74% Walls 0.10 + 0.00
2 3 80% 84% Walls 0.30 £0.94
3 4 80% 88% Walls 0.36 £0.05
4 5 88% 92% Walls 0.42 + 0.04
5 6 96% 96% Walls 0.66 = 0.07
6 6 96% 100% Walls 0.99 = 0.10
7 4 100% 100% Walls 0.82+£0.10
8 5 100% 100% Walls 0.74 £ 0.05
Average 0.54 £ 0.06
1 1 64% 74% Anywhere 0.10 £ 0.00
2 5 80% 84% Anywhere 0.37 £ 0.08
3 3 84% 88% Anywhere 0.32 £ 0.04
4 4 88% 92% Anywhere 0.44 +0.05
5 6 92% 96% Anywhere 0.69 £0.11
6 6 92% 96% Anywhere 0.60 £ 0.08
7 6 96% 100% Anywhere 0.62 +0.08
8 9 100% 100% Anywhere 1.04 + 0.11
Average 0.52 £ 0.07

of the building using the “not evaluable” special obstacle. The
goal was to prevent the algorithms from including APs in
uninteresting areas and considering only working areas to
look for the optimal solutions. In addition, the environment
was modelled using a contour line for the building perimeter
(black lines with —95dB), brick walls to separate the office
rooms (blue lines with —3 dB), and a “roof” obstacle with 7 dB
of attenuation to separate the two building floors.

The case study consisted in observing how the algorithms
deployed one AP for two nodes, two APs for two nodes,
and two APs in two floors located at the building walls.
From the results, we obtained similar wireless coverage in
the three examples (67%, 89%, and 99%, resp.). Moreover,
we observed that SSGA and NSGA-II found similar AP
distribution with slight differences. This suggests a great
accuracy and repeatability on the algorithm solutions, thus
providing a high stability regardless of the strategy chosen.

4.4. Time Analysis. In order to evaluate the complexity of the
SSGA and NSGA-II strategies, we extended the above case
studies with additional configurations and conducted a com-
prehensive analysis on the time cost. The methodology con-
sisted in computing the average times and standard devia-
tions of the algorithm solutions for a series of 10 records per
setting. To this end, we captured the calls to the Java methods
of SSGA and NSGA-II with VisualVM 1.3.9. The maps were
modeled with 8, 36, and 120 building structures for the small,
medium, and large scenarios, respectively, in a floor area of
800 x 600 pixels of resolution. For it, the experiments were
performed with an Intel® Core™ i7 (2.6 GHz, 16-GB RAM).
From the results, we found in general that the SSGA
executions lasted more; the higher the map resolution, the

higher the number of floor obstacles and the higher the target
nodes or APs to search (Tables 4, 6, and 8). In addition,
we found no evidence that the position of the APs within
the map influenced the execution times (i.e., at the walls or
anywhere) other than the number of solutions computed.
These arguments are also valid for NSGA-II except for the
execution times in medium and large environments which
improved more with higher number of nodes deployed in the
map (Tables 5, 7, and 9). This suggests that the uncertainty
decreases as more clients are covered on the map. In other
words, covering a single node requires more possible solu-
tions of APs to be computed (i.e., more processing time) than
covering several clients at the same time (i.e., more fitted
solutions).

In relation to the size of the scenarios, we encountered
significant differences in the execution times. In this sense, we
found a better performance of NSGA-II compared with SSGA
being more remarkable for the medium scenario. Moreover, it
should be also mentioned that while SSGA requires one run
per optimal solution searching (for one AP, two APs, etc.),
NSGA-II computes a set of 32 optimal solutions in a single
execution. This makes the NSGA-II approach significantly
more efficient than the SSGA strategy in global terms.

With respect to the map resolutions, we attained times
ranging from 0.54 + 0.06s to 2.25 + 0.14s for the small
scenarios, from 2776 + 2.87s to 40.06 + 5.95s for the
medium scenarios, and from 11.98 + 1.59 minutes to 17.15
+ 1.78 minutes for the large scenarios. This means that the
algorithms are very sensitive to the map resolution, with the
processing times being more suitable for small and medium
scenarios but not so scalable for large environments due
to the higher search spaces to compute. Nonetheless, these
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TABLE 5: Performance of NSGA-II in a small scenario.
Nodes deployed I\:g; coI:I/felrna.ge COI://[ear):l.ge loclztfi)on Time (s)
1 1 65% 87% Walls 1.47 + 0.07
2 2 100% 100% Walls 1.54 £ 0.10
3 2 100% 100% Walls 1.77 £ 0.05
4 2 100% 100% Walls 2.10 £ 0.01
5 2 100% 100% Walls 231+0.11
6 2 100% 100% Walls 2.54+0.10
7 2 100% 100% Walls 2.90 £ 0.10
8 2 100% 100% Walls 315+ 0.09
Average 2.22+0.07
1 1 65% 87% Anywhere 140 +0.11
2 2 100% 100% Anywhere 1.57 £ 0.08
3 2 100% 100% Anywhere 1.88 £ 0.09
4 2 100% 100% Anywhere 213+0.14
5 2 100% 100% Anywhere 2.23+0.20
6 2 100% 100% Anywhere 2.49 +0.16
7 2 100% 100% Anywhere 3.05+0.13
8 2 100% 100% Anywhere 3.31+0.24
Average 225+0.14
TABLE 6: Performance of SSGA in a medium scenario.
Target Solutions Min. Max. AI? Time (s)
APs found coverage coverage location
1 1 76% 76% Walls 0.54+0.21
2 6 91% 93% Walls 15.45 + 1.88
3 5 91% 95% Walls 20.07 + 4.31
4 11 93% 98% Walls 39.79 £ 8.93
5 8 96% 100% Walls 36.66 £ 6.39
6 13 97% 100% Walls 72.59 £ 8.74
7 12 98% 100% Walls 72.39 +£9.43
8 19 98% 100% Walls 63.03 £7.72
Average 40.06 + 5.95
1 1 76% 76% Anywhere 0.83+0.10
2 5 88% 92% Anywhere 10.17 £ 1.20
3 5 92% 94% Anywhere 19.88 £3.25
4 9 94% 97% Anywhere 31.96 + 4.30
5 10 95% 99% Anywhere 36.87 + 3.51
6 6 96% 100% Anywhere 23.29 £2.06
7 12 97% 100% Anywhere 67.79 £ 10.50
8 14 98% 100% Anywhere 124.41 + 22.47
Average 39.40 £ 5.93

times are in accordance with the times typically achieved by
implementations based on genetic algorithms as described
through [47-49]. As a solution, we enlarged the workspace
of WiFiSim to reduce the resolution when simulating large
scenarios. With this goal, the map resolution was changed
from 1:10 meters by pixel in a workspace of 800 x 600 pixels
to 1:20 meters by pixel in a workspace of 1600 x 1200 pixels.

Considering the large scenario and the worst execution times
from Tables 8 and 9, we obtained a reduction from 39.08 min
to 15.65min for SSGA and from 16.37 min to 6.93 min for
NSGA-II. This allows reducing the processing cost to more
manageable times, thus resulting in an improvement of
40.05% and 42.34%, respectively. As a result, this test suggests
that larger workspaces must be utilized to simulate larger
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TABLE 7: Performance of NSGA-II in a medium scenario.
Nodes Min. Min. Max. AP Time (s)
deployed APs coverage coverage location
1 1 43% 100% Walls 32.79 £2.94
2 2 56% 100% Walls 29.87 + 2.46
3 2 59% 100% Walls 30.11+£2.31
4 3 54% 100% Walls 2529 £2.26
5 3 57% 100% Walls 24.69 £ 3.01
6 3 53% 100% Walls 26.39 £3.18
7 3 57% 100% Walls 27.64 £ 3.07
8 3 65% 100% Walls 27.68 £1.70
Average 28.05 + 2.62
1 1 42% 100% Anywhere 30.31+3.17
2 2 63% 100% Anywhere 33.44 +1.47
3 2 61% 100% Anywhere 30.16 + 2.40
4 3 63% 100% Anywhere 24.74 £ 291
5 4 72% 100% Anywhere 24.61 +£2.72
6 4 70% 100% Anywhere 24.11+2.48
7 4 72% 100% Anywhere 26.95 + 2.86
8 4 75% 100% Anywhere 27.83 +4.89
Average 2776 + 2.87
TABLE 8: Performance of SSGA in a large scenario.
Target Solutions Min. Max. AP . .
APs found coverage coverage location Time (min)
1 1 67% 67% Walls 0.45 + 0.06
2 7 87% 95% Walls 5.05+0.79
3 6 94% 98% Walls 5.32+0.55
4 6 97% 99% Walls 7.34 £ 0.64
5 9 99% 100% Walls 15.59 + 0.90
6 6 100% 100% Walls 17.80 + 3.03
7 12 100% 100% Walls 29.06 + 3.49
8 9 100% 100% Walls 18.96 £ 2.00
Average 12,45+ 1.43
1 1 64% 64% Anywhere 0.74 £ 0.13
2 1 94% 94% Anywhere 314 +0.50
3 3 98% 98% Anywhere 4.21+0.80
4 7 99% 100% Anywhere 11.79 £ 1.20
5 8 99% 100% Anywhere 18.59 + 2.38
6 11 100% 100% Anywhere 2223 £0.29
7 17 100% 100% Anywhere 3740 £5.82
8 18 100% 100% Anywhere 39.08 +3.13
Average 1715+ 1.78

environments, being besides more appropriate when drawing

small details in large scenarios due to the larger view.

5. Conclusions and Future Works

WLAN design and planning is a complex task that demands
of engineers high analytical and troubleshooting skills to

offer the best network performance and usage. While hand-
operated traditional methodologies are not effective for prac-
titioners due to cost and time, computer-aided systems must
provide a high degree of realism and modelling capabilities
to be useful. To contribute to this field, this paper presented
an engineering tool—called WiFiSim—developed to facilitate
the automatic WLAN planning of complex environments
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TABLE 9: Performance of NSGA-II in a large scenario.

Nodes Min. Min. Max. Al? Time (min)
deployed APs coverage coverage location

1 3 33% 99% Walls 15.79 £ 1.12
2 3 32% 99% Walls 14.55 + 0.09
3 3 29% 99% Walls 14.48 + 1.52
4 4 39% 98% Walls 12.63 + 0.57
5 6 50% 99% Walls 13.62 £1.85
6 6 60% 99% Walls 10.80 + 0.74
7 8 62% 100% Walls 10.14 + 0.62
8 8 65% 100% Walls 10.40 + 0.96
Average 12.80 + 0.94
1 3 35% 99% Anywhere 16.37 +1.36
2 3 32% 99% Anywhere 11.93 + 2.31
3 3 27% 99% Anywhere 13.07 £ 1.89
4 5 47% 99% Anywhere 10.83 £1.22
5 5 44% 99% Anywhere 10.39 £ 1.46
6 6 46% 99% Anywhere 9.85+1.86
7 7 60% 99% Anywhere 12.65 + 0.52
8 6 55% 100% Anywhere 10.66 + 2.07
Average 11.98 £ 1.59

and to assist in decision-making prior to real deployment.
This tool that affords the complete behavior modeling of
Wi-Fi networks in Layer 1 and 2 of the OSI model has
been improved with an optimization algorithm based on
evolutionary genetic. The goal was to procure a set of
suboptimal solutions very close to the best for the AP location
problem considering the largest covered area and maximum
strength signal as decision criteria.

With this purpose, a previous approach based on a mo-
noobjective genetic algorithm (i.e., SSGA) was extended with
a multiobjective genetic algorithm (i.e., NSGA-II). Thus, in
addition to obtaining several AP locations for up to 8 dif-
ferent selectable configurations, the main advantage of using
NSGA-II was the capability to attain 32 solutions at once with
several simultaneous configurations of APs. This approach
was also designed to satisfy the user design constraints
concerning the transmission rate and Wi-Fi technology used
in the WLAN.

To assess both approaches and highlight the advantages of
the second algorithm, several scenarios with small, medium,
and large areas were used to simulate typical Wi-Fi envi-
ronments embodying an office, a house, and a campus. The
aim of the various tests was to evaluate the consistency
of the algorithms—and how they computed their optimal
solutions—along different scenarios and map resolutions in
relation to the structure complexity and the search spaces.
From the results, we encountered that the algorithm execu-
tions lasted more; the higher the map resolution, the higher
the number of map obstacles and the higher the number of
targets (i.e., nodes or APs). Moreover, we found no significant
difference in the execution times due to the position of the
APs within the map (i.e., at the walls or anywhere). Con-
cerning the map size, the algorithms achieved very affordable

processing times for small and medium scenarios, not so
scalable for large environments due to the higher search
spaces. Although the times were in accordance with the
typical requirements for GA-based implementations, the
execution cost can be reduced to more manageable times (up
to 40.05% and 42.34%) using larger workspaces to model
larger environments (e.g., from a map resolution of 1:10
meters by pixel in a workspace of 800 x 600 pixels to 1:20
meters by pixel in a workspace of 1600 x 1200 pixels). As
a result, we conclude that the NSGA-II approach achieved
higher performance in general terms compared with the
SSGA strategy.

Regarding the present, we are currently working on
connecting WiFiSim with an eLearning tool for the program-
ming, study, and distribution of wireless protocols based on
an institutional web repository. In addition, future devel-
opments are focused on improving several functional and
technical capabilities of WiFiSim. In this sense, we are
working to extend the features on the PHY and MAC layers
to enhance the software realism. Regarding the PHY layer,
this comprises new signal measurements given by the BER,
EIRP, and RSSI, an antennae modeling, support for IEEE
802.11ac/ad, larger Wi-Fi vendor library, and the cost of
the resulting infrastructures. As for the MAC layer, this
consists in providing the complete IEEE 802.11 frame format,
including new frames as the RIFS, EIFS, and PS-Poll frames,
new connection procedures as the association, reassociation,
authentication, and deauthentication, and the protection
mode for mixed scenarios with DSSS and OFDM, as well as
power management by the TIM and DTIM mechanisms.

Finally, a set of selected videos and the modelling simu-
lation software are offered for the free use and evaluation at
http://www.uhu.es/tomas.mateo/wifisim.
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Abbreviations

AP: Access point

BER: Bit error rate

CA: Collision avoidance

CSMA: Carrier sense multiple access
CTS: Clear to send

DSSS: Direct sequence spread spectrum
DTIM: Delivery traffic indication map
EIFES: Extended interframe space

EIRP: Effective isotropic radiated power
FSPL: Free space path loss

GA: Genetic algorithm

GUL Graphical user interface

IEEE: Institute of Electrical & Electronics

Engineers
IAGA: Improved adaptive genetic algorithm
ICT: Information and communication
technologies
LAN: Local area network
MAC: Media access control

MICRO-GA: Microgenetic algorithm

MOGA: Multiobjective genetic algorithm

NPGA: Niched Pareto genetic algorithm

NPGA2: Improved niched Pareto genetic algorithm

NSGA-II:  Nondominated sorting genetic algorithm
II

OFDM: Orthogonal frequency division
multiplexing

OSI: Open system interconnection

PAES: Pareto archived evolution strategy

PESA: Pareto envelope-based selection algorithm

PHY: Physical

PS-POLL:  Power save poll

RF: Radio frequency

RIFS: Reduced interframe space

RSSI: Received signal strength indicator

RTS: Request to send

RW: Random walk

SA: Simulated annealing

SNR: Signal to noise ratio

SPEA: Strength Pareto evolutionary algorithm

SSGA: Steady-state genetic algorithm

TIM: Traffic indication map

TS: Tabu search

WI-FIL: Wireless Fidelity

WIFISIM:  Wireless Fidelity Simulator

WLAN: Wireless area network.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to express their very great apprecia-
tionto E A. Marquez Hernandez, D. Ortiz Fuentes, B. Morifa
Arias, and M. E. Pedraza Escudero for their valuable and
constructive work that helped to improve this research.

Complexity

References

[1] J. Kennington, E. Olinick, and D. Rajan, “Introduction to opti-
mization in wireless networks,” International Series in Opera-
tions Research and Management Science, vol. 158, pp. 1-6, 2011.

[2] D. Hucaby, CCNA Wireless 640-722 Official Cert Guide, Cisco
Press, 2014.

[3] D. Vassis and G. Kormentzas, “Performance analysis of IEEE
802.11 ad hoc networks in the presence of hidden terminals;”
Computer Networks, vol. 51, no. 9, pp. 2345-2352, 2007.

[4] T. D. J. Mateo Sanguino and E A. Médrquez, “Optimal design
and deployment of wireless LANs based on evolutionary genetic
strategy,” Advances in Intelligent Systems and Computing, vol.
474, pp. 283-291, 2016.

[5] T.J. Mateo Sanguino, F. A. Marquez Herndndez, and C. Serrano
Lopez, “Evaluating a computer-based simulation program to
support wireless network fundamentals,” Computers & Educa-
tion, vol. 70, pp. 233-244, 2014.

[6] T. De J. Mateo Sanguino, C. S. Lopez, and E. A. M. Hernandez,
“WiFiSiM: An educational tool for the study and design of
wireless networks,” IEEE Transactions on Education, vol. 56, no.
2, pp. 149-155, 2013,

[7] S. Vasudevan, A Simulator for analyzing the throughput of
IEEE 802.11b Wireless LAN Systems [Master, thesis], Virginia
Polytechnic Institute and State University, 2005.

[8] C. Karthik and J. Paul, “Optimal design of wireless local area
networks (WLANSs) using simulation,” in Proceedings of the
2009 IEEE Military Communications Conference, MILCOM
2009, USA, October 2009.

[9] S.U.Nnebe, G.N. Onoh, and C. O. Ohaneme, “Empirical Anal-
ysis of Signal-to-Interference Ratio Variations in IEEE 802.11b
WLAN,” International Journal of Innovative Research in Science,
Engineering and Technology, vol. 1, no. 2, pp. 263-270, 2012.

[10] W. Zhu, E Gao, Z. Song, and K. He, “Theoretical Analysis
and Test of EMF in TDFI Bus,” in Progress in Electromagnetics
Research Symposium Abstracts, Guangzhou, China, 2014.

[11] J. Gu, J. Zheng, and S. Zhang, “A graphical user interface in
WLAN monitoring and management system,” Journal of Net-
works, vol. 7, no. 4, pp. 644-651, 2012.

[12] E. Neha Sharma and G. C. Lall, “Enhancement and Character-
ization of Indoor Propagation Models,” International Journal of
Scientific amp; Engineering Research, vol. 2, no. 11, pp. 1-7, 2011.

[13] I. Aldasouqi and W. A. Salameh, “Using GIS in Designing
and Deploying Wireless Network in City Plans,” International
Journal of Computer Networks, vol. 6, no. 4, pp. 66-75, 2014.

[14] J. Scheuner, G. Mazlami, and D. Schoni, “Probr - a generic and
passive WiFi tracking system,” in Proceedings of the 2016 IEEE
41st Conference on Local Computer Networks (LCN), pp. 495-
502, IEEE, Dubai, United Arab Emirates, November 2016.

[15] “Wolf WiFi VIRl Help Documentation,” Tech. Rep., 2011,
https://twitter.com/wolfwifi.

[16] J. Hunt, “Working successful motion control via standard
Ethernet,” The Journal of Industrial Network Connectivity, vol.
71, pp. 33-38, 2012.

[17] S.Vigneshwaran and C. Selvaraj, “Implementation of WLAN N
and Estimation of Co Channel and Adjacent Channel Interfer-
ence;” Journal of Computer Engineering Information Technology,
vol. 5, no. 2, 2016.

[18] S.Blomgvist, Improvement Proposal for Wireless Office Networks
[BSc Degree], Milardalen University, 2017.


https://twitter.com/wolfwifi

Complexity

(19]

(20]

[21]

(22]

~
=

(24]

(25]

(26]

(27]

(30]

(31]

(34]

(35]

R. J. Bartz, Mobile Computing Deployment and Management:
Real World Skills for CompTIA Mobility+ Certification and
Beyond, Wiley & Sons, 2015.

L. Phifer, “Managing WLAN Risks with Vulnerability Assess-
ment,” in White Paper, Core Competence, Inc., 2008.

J. Kruys and L. Qian, “RF Spectrum, Usage and Sharing,” in
Sharing RF Spectrum with Commodity Wireless Technologies,
Signals and Communication Technology, pp. 3-14, Springer
Netherlands, Dordrecht, 2011.

T. Vanhatupa, “Wi-Fi Capacity Analysis for 802.11ac and 802.11n
- Theory & Practice,” in White Paper, Ekahau, Inc., 2013.

“Optimus Information, Inc. Open-Source vs. Proprietary Soft-
ware Pros and Cons,” in White paper, 2015.

K. M. Reineck, Evaluation and Comparison of Network Simula-
tion Tools [Master, thesis], University of Applied Sciences, Bonn-
Rhein-Sieg and Fraunhofer-Gesellschaft, 2008.

R. M. Whitaker and S. Hurley, “Evolution of planning for
wireless communication systems,” in Proceedings of the 36th
Annual Hawaii International Conference on System Sciences,
HICSS 2003, USA, January 2003.

A. Mc Gibney, M. Klepal, and D. Pesch, “Agent-based opti-

mization for large scale WLAN design,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 4, pp. 470-486, 2011.

A. Mc Gibney, M. Klepal, and D. Pesch, “A Wireless Local
Area Network Modeling Tool for Scalable Indoor Access Point
Placement Optimization,” in Proceedings of the 2010 Spring

Simulation Multiconference, vol. 163, pp. 1-8, 2010.

M. Unbehaun and M. Kamenetsky, “On the Deployment of
Picocellular Wireless Infrastructure,” IEEE Wireless Communi-
cations Magazine, vol. 10, no. 6, pp. 70-80, 2003.

S. A. Chen, Y. H. Lee, R. Y. Yen et al.,, “Optimal prediction
tool for wireless LAN using genetic algorithm and neural
network concept,” in Proceedings of APCC/OECC’99 - 5th Asia
Pacific Conference on Communications/4th Optoelectronics and
Communications Conference, pp. 786-789 vol.1, Beijing, China,
October 1999.

R.-H. Wu, Y.-H. Lee, and S.-A. Chen, “Planning system for
indoor wireless network,” IEEE Transactions on Consumer
Electronics, vol. 47, no. 1, pp. 73-79, 2001.

X. Huang, U. Behr, and W. Wiesbeck, “Automatic cell planning
for a low-cost and spectrum efficient wireless network;” in
Proceedings of the IEEE Global Telecommunication Conference
(GLOBECOM’00), pp. 276-282.

S.Liu, C. Zhong, L. Zhang, and L. Zhang, “Optimization design
of wireless local area network based on improved adaptive
genetic algorithm,” in Proceedings of the 6th World Congress
on Intelligent Control and Automation, WCICA 2006, pp. 3357
3360, China, June 2006.

K. Maksuriwong, V. Varavithya, and N. Chaiyaratana, “Wireless
LAN access point placement using a multi-objective genetic
algorithm,” in Proceedings of the System Security and Assurance,
pp- 1944-1949, usa, October 2003.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: NSGA-II,” IEEE Trans-
actions on Evolutionury Computation, vol. 6, no. 2, pp. 182-197,
2002.

J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto
genetic algorithm for multiobjective optimization,” in Proceed-
ings of the Ist IEEE Conference on Evolutionary Computation, pp.
82-87, June 1994.

(36]

(37]

[42]

(43]

(47]

(48]

[49]

15

N. Srinivas and K. Deb, “Multiobjective function optimization
using nondominated sorting genetic algorithms,” Evolutionary
Computation, vol. 2, pp. 221-248,1994.

E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: A comparative case study and the strength Pareto
approach,” IEEE Transactions on Evolutionary Computation, vol.
3, no. 4, pp. 257-271, 1999.

J. D. Knowles and D. W. Corne, “Approximating the nondom-
inated front using the pareto archived evolution strategy,” Evo-
lutionary Computation, vol. 8, no. 2, pp. 149-172, 2000.

D. W. Corne, J. D. Knowles, and M. J. Oates, “The Pareto-
envelope based selection algorithm for multiobjective optimiza-
tion,” in Parallel Problem Solving from Nature PPSN VI, vol. 1917
of Lecture Notes in Computer Science, pp. 869-878, Springer,
New York, NY, USA, 2000.

C. A. C. C. Coello and G. T. Pulido, “A micro-genetic algo-
rithm for multiobjective optimization,” in Evolutionary Multi-
Criterion Optimization: First International Conference, EMO
2001 Zurich, Switzerland, March 7-9, 2001 Proceedings, vol. 1993
of Lecture Notes in Computer Science, pp. 126-140, Springer,
Berlin, Germany, 2001.

M. Erickson, A. Mayer, and J. Horn, “The Niched Pareto Genetic
Algorithm 2 Applied to the Design of Groundwater Remedi-
ation Systems,” in Evolutionary Multi-Criterion Optimization,
vol. 1993 of Lecture Notes in Computer Science, pp. 681-695,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

D. Corne, N. Jerram, J. Knowles, and M. Oates, “PESA-II:
Region Based Selection in Evolutionary Multiobjective Opti-
mization,” in Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 283-290, 2001.

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for Multiobjective
Optimization,” in Proceedings of the Evolutionary Methods for
Design, Optimization and Control with Applications to Industrial
Problems, 2001.

C. Pei, Z. Wang, Y. Zhao et al., “Why it takes so long to connect
to a WiFi access point,” in Proceedings of the IEEE INFOCOM
2017 - IEEE Conference on Computer Communications, pp. 1-9,
Atlanta, GA, USA, May 2017.

J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal framework
for multi-objective optimization:design and architecture,” in
Proceedings of the IEEE Congress on Evolutionary Computation
(CEC’10), pp. 4138-4325, July 2010.

A. A. Marquez Hernandez, Cooperacion entre el Mecanismo
de Inferencia y la Base de Reglas usando Algoritmos Genéticos
Multiobjetivo [Ph.D. thesis], University of Huelva, 2008.

D. Noever and S. Baskaran, Steady-State vs. Generational
Genetic Algorithms: A Comparison of Time Complexity and
Convergence Properties, Santa Fe Institute Working Papers, 1992.
B. M. Kim, Y. B. Kim, and C. H. Oh, “A Study on the Conver-
gence of Genetic Algorithms,” Computers & Industrial Engineer-
ing, vol. 33, no. 3-4, pp. 581-588, 1997.

J. Seo, E. Ko, and Y. Kim, “Performance Comparison of GPUs
with a Genetic Algorithm based on CUDA,” in Proceedings of
the Database 2014, pp. 36-40.



Advances in Advances in . Journal of The Scientific Journal of
Operations Research Decision Sciences  Applied Mathematics World Journal Probability and Statistics

|nternational
Journal of
Mathematics and
Mathematical
Sciences

Journal of

Optimization

Hindawi

Submit your manuscripts at
www.hindawi.com

International Journal of
Engineering
Mathematics

International Journal of

Analysis

Journal of : Advances in ] Mathematical Problems International Journal of Discrete Dynamics in
Complex Analysis Numerical Analysis in Engineering Differential Equations Nature and Society

International Journa!

of
Stochastic Analysis Mathematics Function Spaces Applied Analysis Mathematical Physics

Journal of Journal of Abstract and ; Advances in



https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

