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We use a generic and general variational method to obtain solutions to the flow of generalized Newtonian fluids through circular
pipes and plane slits. The new method is not based on the use of the Euler-Lagrange variational principle and hence it is totally
independent of our previous approach which is based on this principle. Instead, the method applies a very generic and general
optimization approachwhich can be justified by theDirichlet principle although this is not the only possible theoretical justification.
The results that were obtained from the newmethod using nine types of fluid are in total agreement, within certain restrictions, with
the results obtained from the traditional methods of fluid mechanics as well as the results obtained from the previous variational
approach. In addition to being a useful method in its own for resolving the flow field in circular pipes and plane slits, the new
variational method lends more support to the old variational method as well as for the use of variational principles in general to
resolve the flow of generalized Newtonian fluids and obtain all the quantities of the flow field which include shear stress, local
viscosity, rate of strain, speed profile, and volumetric flow rate.

1. Introduction

The flow through circular pipes and plane slits has many
applications in physical and biological sciences and engi-
neering and hence it has been investigated in the past by
many researchers (e.g., [1–13]) using various methods of fluid
dynamics. Recently we proposed the use of Euler-Lagrange
variational principle [14] to resolve the flow of generalized
Newtonian fluids through circular pipes. The method is
based on minimizing the total stress in the flow conduit in
the sense of minimizing the stress profile in the velocity-
varying dimension. This attempt was later expanded and
supported by other investigations [15–17] where the method
was successfully applied to more types of fluid and another
type of geometry, namely, the plane slit conduit.

Despite the success of this method in describing the flow
of several fluid models and conduit types, it has not been
proven in general by a formal mathematical argument that
justifies the universal applicability of the variational method
and the principle on which it relies. Certain mathematical
technicalitiesmay also be disputed and hence it is desirable to

fortify the method by a more generic and general variational
approach that is more safe from such disputes and pitfalls.
The present investigation tries to do so by using a very basic
and general variational approach where the flow field in
the conduit is resolved through the application of a generic
optimization technique to a stress functional. The theoretical
justification of this functional can be obtained from the
Dirichlet principle although it can also be justified by other
theoretical foundations based on purely physical arguments.

The plan for this paper is that in Section 2 we present a
general description of the proposed method and its theoret-
ical background. This is followed in Section 3 by discussing
practical issues about the implementation of this method and
the presentation of sample results that were obtained from
thismethodwith comparison to similar results obtained from
the previous methods which include the classical methods
of fluid mechanics and the former variational approach.
The paper is finalized in Section 4 with general discussions
and summarization of the main achievements of the present
study. As a matter of convenience, we label the former
variational method which is based on the Euler-Lagrange
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Figure 1: A schematic of the circular pipe geometry used in this
investigation.

principle with EL and the new variational method which is
based on the Dirichlet principle with DM.

2. Method

We first state our assumptions about the flow, fluid, and con-
duit which are adopted in the present study. We assume a
laminar, isothermal, incompressible, steady, pressure-driven,
fully developed flow of a time-independent, purely viscous
fluid that can be described by the generalizedNewtonian fluid
model; that is,

𝜏 = 𝜇𝛾, (1)

where the viscosity, 𝜇, and stress, 𝜏, depend only on the
contemporary rate of strain, 𝛾, and hence the fluid has no
memory of its deformation past. In this formulation we
ignore all non-deformation-related dependencies of the vis-
cosity and stress due to other physical factors like temperature
and pressure. In fact we consider only the shearing effects
since the effects of other forms of deformation, such as
extensional, are presumed insignificant which is well justified
for the presumed state of flow, fluid, and conduit. Edge effects
at the entry and exit of the conduit, as well as external body
forces, are also regarded negligible.

Concerning the conduit, we use circular pipe and plane
slit geometries, which are depicted in Figures 1 and 2, where
the pipe is assumed straight with a cross section that is uni-
form in shape and size while the slit is assumed straight long
and thin with a uniform cross section. In both cases we
assume rigid mechanical characteristics of the conduit wall
as opposite to being deformable such as having elastic or
viscoelastic mechanical properties. It is also assumed that the
slit is positioned symmetrically in its thickness dimension, 𝑧,
with respect to the plane 𝑧 = 0 as depicted in Figure 2.

Regarding the boundary conditions, we assume no slip at
the conduit wall, where the fluid interfaces the solid [18], with
the flow speed profile having a stationary derivative point at
the symmetry center line of the pipe and symmetry center
plane of the slit which means zero stress and rate of strain at
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Figure 2: A schematic of the plane slit geometry used in this inves-
tigation.

these loci. As for the viscoplastic fluids, this stationary region
expands to include all the points at the forefront of the flow
profile whose stress falls below the yield stress, as will be
discussed further in the coming sections.

Now, for the generalized Newtonian fluids that satisfy the
above assumptions, the momentum equation in one dimen-
sion is reduced to

𝑑𝜏

𝑑𝑠

= 𝐺, (2)

where 𝑠 is a spatial coordinate that represents 𝑟 for pipes and 𝑧

for slits and𝐺 is a constant. If we differentiate the last equation
with respect to 𝑠 we get

𝑑
2
𝜏

𝑑𝑠
2 = 0 (3)

which is a one-variable Laplace equation in one dimension.
According to theDirichlet principle, the solution of this equa-
tion is a minimizer of the following functional and vice versa:

𝐷 = ∫
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, (4)

where 𝐷 is the Dirichlet functional and Ω is a spatial
domain in this formulation. On using (2), substituting, and
simplifying, the functional can be reduced to

𝐷 = |𝐺| ∫

𝑇

𝑑𝜏, (5)

where𝑇 is the new domain in this formulation.The last equa-
tion demonstrates that the solution of this problem is a min-
imizer (and vice versa) of the total stress in the sense that has
been given previously and hence it establishes the foundation
of our former variational approach, EL, which is based on
the use of the Euler-Lagrange principle. It can also provide
a theoretical foundation for new method or methods.

Apart from its theoretical aspects, the Dirichlet principle
can be used practically as a basis for another variational
method, DM, that can be employed to obtain flow solutions
and verify the solutions obtained by other methods including
the EL method. The DM method in practical terms is based
on finding the shear stress solution in conduits byminimizing
the above functional. This functional is discretized and min-
imized numerically using an optimization algorithm subject
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Table 1: The constitutive relations for the nine fluid models used in
this investigation. The meaning of the symbols is given in Nomen-
clature.

Model Constitutive relation
Newtonian 𝜏 = 𝜇

𝑜
𝛾

Power Law 𝜏 = 𝑘𝛾
𝑛

Ellis 𝜇 = 𝜇
𝑒
[1 + (

𝜏

𝜏
ℎ

)

𝛼−1

]

−1

Ree-Eyring 𝜏 = 𝜏
𝑐
arcsinh(

𝜇
𝑟
𝛾

𝜏
𝑐

)

Carreau 𝜇 = 𝜇
𝑖
+ (𝜇0 − 𝜇

𝑖
) (1 + 𝜆

2
𝛾
2
)

(𝑛−1)/2

Cross 𝜇 = 𝜇
𝑖
+

𝜇0 − 𝜇
𝑖

1 + 𝜆
𝑚
𝛾
𝑚

Bingham 𝜏 = 𝐶

𝛾 + 𝜏0

Herschel-Bulkley 𝜏 = 𝐶𝛾
𝑛
+ 𝜏0

Casson 𝜏
1/2

= (𝐾𝛾)
1/2

+ 𝜏
1/2
0

to the boundary conditions at the conduit wall and conduit
center. For pipes these boundary conditions are, respectively,

𝜏
𝑤
≡ 𝜏
𝑅
=

𝑅Δ𝑝

2𝐿
,

𝜏
𝑚

= 0
(6)

while for slits they are

𝜏
𝑤
≡ 𝜏
𝐵
=

𝐵Δ𝑝

𝐿

,

𝜏
𝑚

= 0,
(7)

where 𝜏
𝑤
is the shear stress at the conduit wall which is

equivalent to 𝜏
𝑅
for pipes and to 𝜏

𝐵
for slits, 𝜏

𝑚
is the stress

at the conduit center line or plane, 𝑅 is the pipe radius, 𝐵 is
the slit half thickness, and𝐿 is the conduit length acrosswhich
a pressure drop Δ𝑝 is exerted.

The numerically obtained solution, 𝜏(𝑠), is then used in
conjunction with the rheological constitutive relations, as
given in Table 1 for the models considered in this study,

applied to the generalized Newtonian fluid equation to find
𝛾(𝑠) either explicitly or implicitly through the use of a simple
numerical solver like a bisection solver. As for the viscoplastic
fluids, a zero stress is applied to all the points at the forefront
of the flow profile whose shear stress falls below the yield
stress value during the optimization process. As indicated
earlier, this is an extension to the second boundary condition
at the conduit center to include a plane region in the forefront
of the speed profile and hence it does not compromise
the optimization condition and the underlying variational
principle.

The obtained 𝛾(𝑠) is then integrated numerically with
respect to 𝑠 to find the flow speed, V(𝑠), where the no-slip
boundary condition at the conduit wall is used to provide an
initial value, V = 0, that is incremented on moving inward
from the conduit wall toward the conduit center during the
integration process. This is followed by integrating V(𝑠)
numerically with respect to the conduit cross-sectional area
normal to the flow direction to obtain the volumetric flow
rate. During these successive integration processes, the
boundary conditions at the conduit wall and center, which
are based on the zero speed and zero stress, respectively, are
used.

In Table 1 the rheological constitutive relations for the
nine fluid models which are employed in this study are
presented, while in Tables 2 and 3 the analytical relations
that correlate the flow rate, 𝑄, to the applied pressure
drop, Δ𝑝, for the flow in pipes and slits, respectively,
are given. Most of these expressions can be found in the
classic literature of rheology and fluid dynamics (e.g., [19,
20]) while the rest can be obtained with their derivation
from [15–17]. Regarding the Carreau and Cross fluids,
the “𝐼” factors, which are included in their 𝑄 expres-
sions and represent definite integral expressions, are given
by

𝐼p,Ca =

𝛿
3
[3𝜆4

(3𝑛2 + 5𝑛 + 2) 𝛾4
𝑅
− 3𝑛𝜆2

𝛾
2
𝑅
+ 2] (1 + 𝜆

2
𝛾
2
𝑅
)

3𝑛/2

3𝜆4
(9𝑛2 + 18𝑛 + 8)

+

𝜇
𝑖
𝛿
2
[𝜆

4
(2𝑛2 + 5𝑛 + 3) 𝛾4

𝑅
− 𝑛

𝜆
2
𝛾
2
𝑅
+ 1] (1 + 𝜆

2
𝛾
2
𝑅
)

𝑛


2𝜆4
(𝑛

+ 1) (𝑛 + 2)

+

𝜇
2
𝑖
𝛿 [𝜆

4
(𝑛
2

+ 5𝑛 + 6) 𝛾4
𝑅
− 𝑛

𝜆
2
𝛾
2
𝑅
+ 2] (1 + 𝜆

2
𝛾
2
𝑅
)

𝑛

/2

𝜆
4
(𝑛

+ 2) (𝑛 + 4)

+

𝜇
3
𝑖
𝛾
4
𝑅

4

−(

2𝛿3

3𝜆4
(9𝑛2 + 18𝑛 + 8)

+

𝜇
𝑖
𝛿
2

2𝜆4
(𝑛

+ 1) (𝑛 + 2)

+

2𝜇2
𝑖
𝛿

𝜆
4
(𝑛

+ 2) (𝑛 + 4)

)

𝐼p,Cr =
{2𝛿3 [−𝑚 (2𝑓2

+ 5𝑓 + 3) + 4𝑔2
+ 2𝑚2

] + 12𝑚𝛿
2
𝜇
𝑖
𝑔 (𝑚 − 𝑔) + 12𝑚2

𝛿𝜇
2
𝑖
𝑔
2
+ 3𝑚2

𝜇
3
𝑖
𝑔
3
} 𝛾

4
𝑅

12𝑚2
𝑔
3
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−

{𝛿
3
(𝑚

2
− 6𝑚 + 8) + 3𝑚𝛿

2
𝜇
𝑖 (
𝑚 − 4) + 3𝑚2

𝛿𝜇
2
𝑖
}
2
𝐹1 (1, 4/𝑚; (𝑚 + 4) /𝑚; −𝑓) 𝛾

4
𝑅

12𝑚2

𝐼s,Ca =

𝑛

𝛿
2
𝛾
𝐵
[
2
𝐹1 (1/2, 1 − 𝑛


; 3/2; −𝜆2

𝛾
2
𝐵
) −
2
𝐹1 (1/2, −𝑛


; 3/2; −𝜆2

𝛾
2
𝐵
)]

𝜆
2 +

(1 + 𝑛

) 𝛿

2
𝛾
3
𝐵 2

𝐹1 (3/2, −𝑛

; 5/2; −𝜆2

𝛾
2
𝐵
)

3

+

𝑛

𝛿𝜇
𝑖
𝛾
𝐵
[
2
𝐹1 (1/2, 1 − 𝑛


/2; 3/2; −𝜆2

𝛾
2
𝐵
) −
2
𝐹1 (1/2, −𝑛


/2; 3/2; −𝜆2

𝛾
2
𝐵
)]

𝜆
2

+

(2 + 𝑛

) 𝛿𝜇
𝑖
𝛾
3
𝐵 2

𝐹1 (3/2, −𝑛

/2; 5/2; −𝜆2

𝛾
2
𝐵
) + 𝜇

2
𝑖
𝛾
3
𝐵

3
,

𝐼s,Cr =
[3𝛿2 (𝑚 − 𝑔) − {𝛿

2
(𝑚 − 3) + 2𝑚𝛿𝜇

𝑖
} 𝑔

2
2
𝐹1 (1, 3/𝑚; 1 + 3/𝑚; −𝑓) + 6𝑚𝛿𝜇

𝑖
𝑔 + 2𝑚𝜇

2
𝑖
𝑔
2
] 𝛾

3
𝐵

6𝑚𝑔
2 ,

(8)

where, in these expressions,

𝛿 = (𝜇0 −𝜇
𝑖
) ,

𝑛

= (𝑛 − 1) ,

𝑓 = 𝜆
𝑚
𝛾
𝑚

𝑤
,

𝑔 = 1+𝑓,

(9)

and
2
𝐹1 is the hypergeometric function of the given argu-

ments with its real part being used in the evaluation of 𝐼

factors. Moreover,
𝜇
𝑅
𝛾
𝑅
= 𝜏
𝑅
,

𝜇
𝐵
𝛾
𝐵
= 𝜏
𝐵
,

(10)

where 𝜏
𝑅
and 𝜏
𝐵
are given by (6) and (7), respectively, with 𝛾

𝑅

and 𝛾
𝐵
being obtained numerically from the above implicit

relations, as explained in [17].

3. Implementation and Results

The optimization method, as described in the last section,
was implemented in a computer code using five numerical
optimization algorithms: three deterministic which are Con-
jugate Gradient, Quasi-Newton, and Nelder-Mead [21] and
two stochastic which are the stochastic global algorithm
ofBoender et al. [22] (see also http://jblevins.org/mirror/amil-
ler/global.txt web page) and a generic simulated annealing
algorithm [23]. These five algorithms produce similar solu-
tions with different levels of accuracy and convergence rate.
The sample results presented in this paper are obtained
mostly from the stochastic global algorithm which is over-
whelmingly the most accurate and reliable one. In addition,
standard numerical integration and bisection solution tech-
niques, as well as standard algorithms for evaluating com-
plicated functions like the hypergeometric function, were
employed.

The newly proposed variational method was then
employed to obtain solutions for the flow of nine types of

fluid through pipes and slits. The nine types of fluid are as
follows: Newtonian, Power Law, Ellis, Ree-Eyring, Carreau,
Cross, Bingham, Herschel-Bulkley, and Casson. The results
obtained from the newmethod using wide ranges of fluid and
conduit parameters were thoroughly compared to the results
obtained from the traditionalmethods of fluidmechanics and
the former variational method.

In all the investigated cases the three methods produced
very similar results within acceptable error margins. One
exception is the Ellis model for which EL has not been for-
mulated and implemented. Another exception is the vis-
coplastic fluids where the EL method differs significantly
when the yield stress value is high.This is justified by the fact
that the EL method was formulated and implemented for the
nonviscoplastic fluids specifically and hence, as we demon-
strated in our previous investigations [14–16], it is just an
approximation for the viscoplastic fluids which is a good
one only when the yield stress value is low. However, we
believe that even the EL method can be reformulated and
reimplemented to include viscoplastic fluids, and hence it can
produce similar results to the othermethods even for the high
yield stress fluids, although we did not make any effort in the
current study to do so.

A representative sample of these results obtained from the
three methods is presented in Figures 3, 4, 5, and 6 where
the fluid and conduit parameters of these examples are given
in Tables 4 and 5. In these figures, the analytical solution is
represented by the solid line while the solutions from the
two variational methods are represented by the circles. The
exception, as indicated earlier, is the Ellis and viscoplastic
fluids where the circles represent only the DM method. The
reason for combining the solutions of the two variational
methods in a single representation is that they produce very
similar results and hence there is no point in plotting them
separately.

As seen in these examples, the two variational solutions
agree very well with the analytical solutions. The minor
departure in some cases between the two variationalmethods
on one hand and the analytical on the other is mainly due to
the nature of the variational methods as they heavily rely on
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Table 2: The volumetric flow rate, 𝑄, for the pipe flow of the nine fluid models used in this investigation. The symbols are given in
Nomenclature.

Model 𝑄

Newtonian
𝜋𝑅

4
Δ𝑝

8𝐿𝜇
𝑜

Power Law
𝜋𝑅

4

8𝐿
𝑛
√

Δ𝑝

𝑘

(

4𝑛
3𝑛 + 1

)(

2𝐿
𝑅

)

1−1/𝑛

Ellis
𝜋𝑅

3
𝜏
𝑅

4𝜇
𝑒

[1 +

4
𝛼 + 3

(

𝜏
𝑅

𝜏
ℎ

)

𝛼−1

]

Ree-Eyring
𝜋𝑅

3
𝜏
𝑐

𝜏
3
𝑅
𝜇
𝑟

[(𝜏
𝑐
𝜏
2
𝑅
+ 2𝜏3
𝑐
) cosh(

𝜏
𝑅

𝜏
𝑐

) − 2𝜏2
𝑐
𝜏
𝑅
sinh(

𝜏
𝑅

𝜏
𝑐

) − 2𝜏3
𝑐
]

Carreau
𝜋𝑅

3
𝐼p,Ca

𝜏
3
𝑅

Cross
𝜋𝑅

3
𝐼p,Cr

𝜏
3
𝑅

Bingham
𝜋𝑅

4
Δ𝑝

8𝐿𝐶
[

1
3
(

𝜏0
𝜏
𝑅

)

4

−

4
3
(

𝜏0
𝜏
𝑅

) + 1]

Herschel-Bulkley
8𝜋
𝑛
√𝐶

(

𝐿

Δ𝑝

)

3

(𝜏
𝑅
− 𝜏0)

1+1/𝑛
[

(𝜏
𝑅
− 𝜏0)

2

3 + 1/𝑛
+

2𝜏0 (𝜏𝑅 − 𝜏0)

2 + 1/𝑛
+

𝜏
2
0

1 + 1/𝑛
]

Casson 𝜋𝑅
3

𝜏
3
𝑅
𝐾

(

𝜏
4
𝑅

4
−

4√𝜏0𝜏
7/2
𝑅

7
+

𝜏0𝜏
3
𝑅

3
)

Table 3: The volumetric flow rate, 𝑄, for the slit flow of the nine
fluid models used in this investigation. The symbols are given in
Nomenclature.

Model 𝑄

Newtonian
2𝑊𝐵

3
Δ𝑝

3𝜇
𝑜
𝐿

Power Law
2𝑊𝐵

2
𝑛

2𝑛 + 1
𝑛
√

𝐵Δ𝑝

𝑘𝐿

Ellis
2𝑊𝐵

2

𝜇
𝑒

[

𝜏
𝐵

3
+

𝜏
𝛼

𝐵

(𝛼 + 2) 𝜏𝛼−1
ℎ

]

Ree-Eyring
2𝑊𝜏

2
𝑐

𝜇
𝑟

(

𝐵

𝜏
𝐵

)

2

[𝜏
𝐵
cosh(

𝜏
𝐵

𝜏
𝑐

) − 𝜏
𝑐
sinh(

𝜏
𝐵

𝜏
𝑐

)]

Carreau
2𝑊𝐵

2
𝐼s,Ca

𝜏
2
𝐵

Cross
2𝑊𝐵

2
𝐼s,Cr

𝜏
2
𝐵

Bingham
2𝑊
𝐶

(

𝐵

𝜏
𝐵

)

2

[

𝜏
3
𝐵

3
−

𝜏0𝜏
2
𝐵

2
+

𝜏
3
0
6
]

Herschel-Bulkley
2𝑊
𝑛
√𝐶

(

𝐵

𝜏
𝐵

)

2

[

𝑛 (𝑛𝜏0 + 𝑛𝜏
𝐵
+ 𝜏
𝐵
) (𝜏
𝐵
− 𝜏0)

1+1/𝑛

(2𝑛2 + 3𝑛 + 1)
]

Casson 2𝑊
𝐾

(

𝐵

𝜏
𝐵

)

2

[

𝜏
3
𝐵

3
−

4√𝜏0𝜏
5/2
𝐵

5
+

𝜏0𝜏
2
𝐵

2
−

𝜏
3
0
30

]

numerical techniques, mainly bisection solvers and numer-
ical integration, which is not the case with the analytical
solutions since they are evaluated directly. As indicated above,

unlike the EL approach which is a good approximation for
the viscoplastic fluids only if their yield stress is low, the
DM approach produces “exact” solutions, considering the
numerical errors introduced by the heavy use of numerical
techniques, even for the fluids with high yield stress.

4. Conclusions

In this paper we presented a variational approach for finding
the flow solutions in one-dimensional flow that applies easily
to circular pipes and plane slits. The method, which is
demonstrated using nine types of fluid, can be employed to
obtain all the required flow parameters which include shear
stress, local viscosity, shear rate, speed profile, and volumetric
flow rate. We also presented, through the application of
the Dirichlet principle, a theoretical justification for the
application of minimizing the total stress profile as a basis for
our variational approaches including the EL method.

Thorough comparisons were made both to the analytical
solutions obtained from the traditional methods of fluid
dynamics and to the analytical or semianalytical solutions
obtained from the ELmethod. In all cases, the three methods
produced very close results where the differences can be
explained by the numerical errors introduced by heavy use
of numerical methods like numerical integration, bisection
solvers, and numeric evaluation of complicated functions.
The exception is the viscoplastic fluids for which the EL
method cannot provide reliable solutions when the yield
stress is high due to the particular formulation and imple-
mentation of thismethodwhich is restricted to nonviscoplas-
tic fluids. The EL method also has not been formulated and
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Figure 3: Comparing the analytical solution (solid line) to the variational solutions (circles) of 𝛾 in s−1 (vertical axis) versus 𝑟 inm (horizontal
axis) for the flow of the nine fluid models in pipes.The EL solutions are not represented for the Ellis and viscoplastic fluids.The pipe and fluid
parameters are given in Table 4, where in all cases Δ𝑝 = 500 Pa.

implemented in the past for the Ellis fluid and we did not
make any effort to do so in the current study.

Apart from being useful on its own for resolving the flow
field in the given conduits and obtaining all the required
parameters, the proposed DM method adds more support
to the previous EL approach, which is based on applying the
Euler-Lagrange variational principle, as it confirms the results
obtained from the EL method and provides a theoretical
foundation for it. Although the new method may not be
conceptually identical to the previous one, it should still lend
support to the previous one not only because the two differ-
ently formulated variational methods produce similar results
but also because they are both based on similar variational
principles. From a procedural point of view, the twomethods
are equivalent because what is done in DM numerically is
done in EL, as presented in our previous studies, either

analytically or partly analytically and partly numerically. It
has also been shown that the theoretical foundation of the
DMmethod, represented by the Dirichlet principle, endorses
the particular formulation of stress minimization which EL
rests upon.

There is an obvious theoretical value of the new DM
variationalmethodwhich ismore important than its practical
value which may be insignificant for the investigated fluid
types and conduit geometries due to the availability of the
presented analytical and numerical flow solutions from other
methods. If the proposed variational principle enjoys general
applicability, which is yet to be established beyond the one-
dimensional flow through pipes and slits, the method may
also have a significant practical value for the flow systems
which are more complicated than the flow systems in pipes
and slits where the DM variational method may provide
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Table 4: Fluid and pipe parameters for the examples of Figures 3 and 5. SI units apply to all dimensional quantities as given in Nomenclature.

Model Fluid properties 𝑅 𝐿

Newtonian 𝜇
𝑜
= 0.025 0.08 0.65

Power Law 𝑘 = 0.033, 𝑛 = 1.15 0.01 0.095
Ellis 𝜇

𝑒
= 1.42, 𝜏

ℎ
= 15, 𝛼 = 3.3 0.04 0.15

Ree-Eyring 𝜇
𝑟
= 0.02, 𝜏

𝑐
= 300 0.03 0.8

Carreau 𝜇0 = 0.1, 𝜇
𝑖
= 0.008, 𝜆 = 1.2, 𝑛 = 0.65 0.03 0.45

Cross 𝜇0 = 0.15, 𝜇
𝑖
= 0.005, 𝜆 = 7.9,𝑚 = 0.8 0.012 0.15

Bingham 𝐶

= 0.037, 𝜏0 = 2.5 0.01 0.1

Herschel-Bulkley 𝐶 = 0.47, 𝜏0 = 5.0, 𝑛 = 0.75 0.04 0.7
Casson 𝐾 = 0.75, 𝜏0 = 3.0 0.09 1.33

0 0.005 0.01 0.015 0.02
0

20

40

60

80

(a) Newtonian

0 0.002 0.004 0.006 0.008 0.01
0

200

400

600

800

(b) Power Law

0 0.002 0.004 0.006 0.008 0.01
0

20

40

60

80

100

120

(c) Ellis

0 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

5

(d) Ree-Eyring

0 0.005 0.01 0.015 0.02
0

20

40

60

80

100

(e) Carreau

0 0.01 0.02 0.03
0

500

1000

1500

(f) Cross

0 0.005 0.01
0

2

4

6

8

10

(g) Bingham

0 0.01 0.02 0.03
0

5

10

15

20

(h) Herschel-Bulkley

0 0.005 0.01 0.015
0

1

2

3

4

5

(i) Casson

Figure 4: Comparing the analytical solution (solid line) to the variational solutions (circles) of 𝛾 in s−1 (vertical axis) versus 𝑧 inm (horizontal
axis) for the flow of the nine fluid models in slits. The EL solutions are not represented for the Ellis and viscoplastic fluids. The slit and fluid
parameters are given in Table 5, where in all cases Δ𝑝 = 700 Pa.
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Table 5: Fluid and slit parameters for the examples of Figures 4 and 6, where in all cases𝑊 = 1.0m. SI units apply to all dimensional quantities
as given in Nomenclature.

Model Fluid properties 𝐵 𝐿

Newtonian 𝜇
𝑜
= 0.13 0.02 1.2

Power Law 𝑘 = 0.073, 𝑛 = 0.67 0.01 0.95
Ellis 𝜇

𝑒
= 0.049, 𝜏

ℎ
= 5.0, 𝛼 = 2.9 0.011 1.95

Ree-Eyring 𝜇
𝑟
= 0.57, 𝜏

𝑐
= 75 0.05 11.5

Carreau 𝜇0 = 0.32, 𝜇
𝑖
= 0.096, 𝜆 = 0.75, 𝑛 = 0.85 0.023 0.75

Cross 𝜇0 = 0.015, 𝜇
𝑖
= 0.007, 𝜆 = 2.56,𝑚 = 0.73 0.035 2.13

Bingham 𝐶

= 0.48, 𝜏0 = 4.3 0.014 1.03

Herschel-Bulkley 𝐶 = 0.03, 𝜏0 = 5.2, 𝑛 = 1.45 0.035 3.09
Casson 𝐾 = 0.12, 𝜏0 = 2.15 0.017 2.33
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Figure 5: Comparing the analytical solution (solid line) to the variational solutions (circles) of 𝑄 in m3⋅s−1 (vertical axis) versus Δ𝑝 in Pa
(horizontal axis) for the flow of the nine fluid models in pipes. The EL solutions are not represented for the Ellis and viscoplastic fluids. The
pipe and fluid parameters are given in Table 4.
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Figure 6: Comparing the analytical solution (solid line) to the variational solutions (circles) of 𝑄 in m3⋅s−1 (vertical axis) versus Δ𝑝 in Pa
(horizontal axis) for the flow of the nine fluid models in slits. The EL solutions are not represented for the Ellis and viscoplastic fluids.The slit
and fluid parameters are given in Table 5.

solutions that other methods might fail to provide or the DM
method may require less effort to obtain the solutions than
the effort required by the other methods.

Nomenclature

𝛼: Indicial parameter in Ellis model
𝛾: Rate of shear strain (s−1)
𝛾
𝐵
: Rate of shear strain at slit wall (s−1)

𝛾
𝑅
: Rate of shear strain at pipe wall (s−1)

𝛾
𝑤
: Rate of shear strain at conduit wall (s−1)

𝛿: 𝜇0 − 𝜇
𝑖
(Pa⋅s)

𝜆: Characteristic time constant in Carreau
and Cross models (s)

𝜇: Fluid shear viscosity (Pa⋅s)
𝜇0: Zero-shear viscosity in Carreau and Cross

models (Pa⋅s)

𝜇
𝑒
: Low-shear viscosity in Ellis model (Pa⋅s)

𝜇
𝑖
: Infinite-shear viscosity in Carreau and
Cross models (Pa⋅s)

𝜇
𝑜
: Newtonian viscosity (Pa⋅s)

𝜇
𝑟
: Characteristic viscosity in Ree-Eyring
model (Pa⋅s)

𝜏: Shear stress (Pa)
𝜏0: Yield stress in Bingham, Herschel-Bulkley,

and Casson models (Pa)
𝜏
𝐵
: Shear stress at slit wall (Pa)

𝜏
𝑐
: Characteristic shear stress in Ree-Eyring
model (Pa)

𝜏
ℎ
: Shear stress when viscosity equals 𝜇

𝑒
/2 in

Ellis model (Pa)
𝜏
𝑚
: Shear stress at conduit center (Pa)

𝜏
𝑅
: Shear stress at pipe wall (Pa)

𝜏
𝑤
: Shear stress at conduit wall (Pa)
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Ω: Spatial domain in Dirichlet functional (m)
𝐵: Slit half thickness (m)
𝐶: Viscosity coefficient in Herschel-Bulkley

model (Pa⋅s𝑛)
𝐶
: Viscosity coefficient in Bingham model

(Pa⋅s)
𝐷: Dirichlet functional (Pa2⋅m−1)
𝑓: 𝜆

𝑚
𝛾
𝑚

𝑤

2
𝐹1: Hypergeometric function

𝑔: 1 + 𝑓

𝐺: Constant in the reduced momentum equa-
tion (Pa⋅m−1)

𝐼p,Ca: Definite integral for Carreau model pipe
flow (Pa3⋅s−1)

𝐼p,Cr: Definite integral for Cross model pipe flow
(Pa3⋅s−1)

𝐼s,Ca: Definite integral forCarreaumodel slit flow
(Pa2⋅s−1)

𝐼s,Cr: Definite integral for Cross model slit flow
(Pa2⋅s−1)

𝑘: Viscosity coefficient in Power Law model
(Pa⋅s𝑛)

𝐾: Viscosity coefficient inCassonmodel (Pa⋅s)
𝐿: Conduit length (m)
𝑚: Indicial parameter in Cross model
𝑛: Flow behavior index in Power Law, Car-

reau, and Herschel-Bulkley models
Δ𝑝: Pressure drop across conduit length (Pa)
𝑄: Volumetric flow rate (m3⋅s−1)
𝑟: Radius (m)
𝑅: Pipe radius (m)
𝑠: Spatial coordinate representing 𝑟 for pipe

and 𝑧 for slit (m)
𝑇: Stress domain in Dirichlet functional (Pa)
V: Fluid speed in the flow direction (m⋅s−1)
𝑊: Slit width (m)
𝑧: Spatial coordinate of slit thickness (m)
DM: Variational method based on applying

Dirichlet principle
EL: Variational method based on applying

Euler-Lagrange principle.
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