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The classical detection techniques for multiple-input multiple-output (MIMO) systems are usually designed with the assumption
that the additive complex Gaussian noise is uncorrelated. However, for closely spaced antennas, the additive noise is correlated
due to the mutual antenna coupling. This letter analyzes an improved zero-forcing (ZF) technique for MIMO channels in colored
environments.The additive noise is assumed to be correlated and the RayleighMIMO channel is considered doubly correlated.The
improved ZF detector, based on the generalized least squares estimator (GLS), takes into account the noise covariance matrix and
provides an unbiased estimator of the transmitted symbol vectors. We introduce some novel bounds on the achievable sum rate,
on the normalized mean square error at the receiver output, and on the outage probability. The derived expressions are compared
to Monte Carlo simulations.

1. Introduction

Multiple-input multiple-output (MIMO) systems have great
potential for increasing spectral efficiency [1]. To achieve the
promised capacity, efficient and reliable reception techniques
are required. The linear zero-forcing (ZF) technique is one
of the most popular receivers [2–6]. In fact, despite its low-
complexity, the ZF detector yields suboptimal performances
[2]. The analysis of the MIMO-ZF detector has attracted
considerable attention in the literature [2–6]. The effect of
channel estimation error of the MIMO-ZF detector perfor-
mance has been investigated in [2–4]. The SNR loss due to
the spatial correlation and its effect on bit error rate (BER)
of the MIMO-ZF detector are discussed in [4–6]. Although
previous works present important contributions concerning
theMIMO-ZF analysis, they assume that the channel additive
complex Gaussian noise is uncorrelated. The noise vector
entries are then modeled as independent and identically
distributed (i. i. d.) randomvariables.This assumption is valid
when the antennas are sufficiently spaced and thus coupling
between them is negligible. However, for MIMO systems
with closely spaced antennas, there is a mutual coupling

between antenna elements [7]. This mutual coupling leads to
a correlated thermal noise at the receiver front-end.

Motivated by the discussion above, this letter proposes
and analyzes a ZF detection technique for MIMO systems in
correlated environments.We assume that the additive noise is
correlated and theRayleighMIMOchannel has both transmit
and receive correlations. We also assume that the fading
channel matrix is perfectly known at the receiver. When the
noise covariance matrix is known, the ZF detector corre-
sponds to the generalized least squares estimator (GLS) of the
transmitted symbols.When the noise covariance is unknown,
we propose to replace the true matrix by the estimated one.
The ZF detector is then called the feasible generalized least
squares estimator (FGLS). This letter presents some bounds
for the achievable sum rate (ASR), the normalized mean
square error (NMSE) at the GLS receiver output, and the
global outage probability (GOP). It is noteworthy that the
scenario with doubly correlated channel has been rarely
studied [2]. In fact, for this case, it is relatively difficult to
describe the statistical properties of the postprocessing SNR
[2]. The few relevant studies are given in [8] for 2 × 2MIMO
systems and several fading models in [2]. Some results on
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the eigenstatistics for doubly correlated MIMO channels are
reported in [9].

2. System Model and ZF Receiver

2.1. SystemModel. Consider an uncodedMIMO system with
𝑁
𝑡
transmit and 𝑁

𝑟
receive antennas with 𝑁

𝑟
> 𝑁
𝑡
. The

received signal vector y
𝑡
∈ C𝑁𝑟×1 at time 𝑡 is

y
𝑡
= Hx
𝑡
+ n
𝑡
, 𝑡 = 1, 2, . . . , 𝑇, (1)

where𝑇 is the number of received samples in the observation
window or the frame length, x

𝑡
∈ C𝑁𝑡×1 is the transmitted

vector, H ∈ C𝑁𝑟×𝑁𝑡 is the channel matrix, and n
𝑡
∈ C𝑁𝑟×1

is a circularly symmetric complex Gaussian noise vector with
zero mean and covariance matrix Σ = E[n

𝑡
n𝐻
𝑡
] = 𝜎

2

𝑛
Ω. We

assume that the noise covariancematrix is given by thewidely
used noise model (see [10] and the references therein):

Σ = E [n
𝑡
n𝐻
𝑡
] = 𝜎
2

𝑛
Ω, (2)

whereΩ is a positive definite matrix, with the (𝑝, 𝑞)th entry

[Ω]
𝑝,𝑞

= 0.9
|𝑝−𝑞| exp [𝑗 (𝜋

2
) (𝑝 − 𝑞)] . (3)

The transmitted symbols are uncorrelated with covariance
Σx = E[x

𝑡
x𝐻
𝑡
] = 𝐸

𝑠
I
𝑁
𝑡

. We consider a doubly spatially cor-
related Rayleigh flat-fading channel. With this assumption,
spatial correlation occurs on both transmit and receive sides
and the channel matrixH is modeled as

H = Φ
1/2

𝑟
H
𝑤
Φ
1/2

𝑡
, (4)

whereH
𝑤
is an𝑁

𝑟
×𝑁
𝑡
matrix with i. i. d. zero-mean complex

Gaussian entries with unit variance. The spatial correlation
matricesΦ

𝑡
andΦ

𝑟
are defined as [Φ

𝑡
]
𝑖,𝑗
= 𝜌
|𝑖−𝑗|

𝑡
and [Φ

𝑟
]
𝑖,𝑗
=

𝜌
|𝑖−𝑗|

𝑟
.
When the channel matrix H is available at the receiver,

the classical ZF detector estimates the transmitted vector as

x̂𝑜
𝑡
= H†y

𝑡
= x
𝑡
+H†n

𝑡
, (5)

where H† is the pseudoinverse of the channel matrix. The
estimator x̂𝑜

𝑡
is an unbiased estimator with covariance matrix

[11]

var (x̂𝑜
𝑡
) = (H𝐻H)

−1

H𝐻ΣH(H𝐻H)
−1

. (6)

The estimator x̂𝑜
𝑡
is called the ordinary least squares (OLS)

estimator [12]. If the noise is uncorrelated, that is, Σ = 𝜎
2

𝑛
I
𝑁
𝑟

,
the OLS estimator corresponds to the best linear unbiased
estimator (BLUE) [12]. However, when the noise is correlated
there is no guarantee that the OLS estimator is the BLUE.

2.2. Generalized Least Squares Estimator with Known Ω.
Since the OLS estimator is no longer BLUE, the ZF receiver
degrades the system BER. Using the Gauss-Markov theorem

and assuming thatH is the full rankmatrix, we can prove that
the BLUE estimator of x

𝑡
is given by [12]

x̂𝑔
𝑡
= (H𝐻Σ−1H)

−1

H𝐻Σ−1y
𝑡
. (7)

TheGLS estimator x̂𝑔
𝑡
is unbiased with covariancematrix [12]

var (x̂𝑔
𝑡
) = E [(x

𝑡
− x̂𝑔
𝑡
) (x
𝑡
− x̂𝑔
𝑡
)
𝐻

] = (H𝐻Σ−1H)
−1

. (8)

We can easily show that (the matrix inequality A ≤ Bmeans
that B − A is positive semidefinite)

var (x̂𝑔
𝑡
) ≤ var (x̂𝑜

𝑡
) . (9)

As can be seen in (7), the GLS estimator needs the knowledge
of the noise covariance matrix Σ. By combining (7) and (2),
we can write the GLS estimator as

x̂𝑔
𝑡
= (H𝐻Ω−1H)

−1

H𝐻Ω−1y
𝑡
, (10)

which does not require the knowledge of 𝜎2
𝑛
.

3. Performance Analysis

3.1. Derivation of the Sum Rate. The analysis of the ergodic
sum rate of the ZF receiver has been widely discussed [13,
14]. However, previous works have considered systems with
uncorrelated noise. In this section, we introduce a novel
upper and lower bounds on the ASR of the improved ZF
detector. Assuming independent decoding at the receiver, the
ASR is

𝑅 =

𝑁
𝑡

∑

𝑘=1

E [log
2
(1 + 𝛾

𝑘
)] , (11)

where 𝛾
𝑘
is the SNR of the 𝑘th stream. Since the covariance

matrix of (8) is the MSE of the data estimation, we have

𝛾
𝑘
=

𝛾
0

[Z−1]
𝑘𝑘

, (12)

where 𝛾
0

= 𝐸
𝑠
/𝜎
2

𝑛
and Z = (H𝐻Ω−1H). When H

𝑤
is a

complexGaussianmatrix, it is well known thatH𝐻
𝑤
H
𝑤
follows

the central complex Wishart distribution. However, it is
generally hard to derive the distribution of H𝐻Ω−1H. In
this case, we will use the decomposition det(H𝐻Ω−1H) =

det(Φ
𝑡
) det(H𝐻

𝑤
Φ
𝐻/2

𝑟
Ω
−1
Φ
1/2

𝑟
H
𝑤
) and the firstmoment of the

generalized variance given in [13]

E [det (H
𝑤

𝐻AH
𝑤
)] =

𝑁
𝑡
! det (W)

∏
𝑁
𝑟

𝑖<𝑗
(𝜆
𝑗
− 𝜆
𝑖
)

, (13)

whereA is an arbitrary Hermitian positive definite matrix, 𝜆
𝑖

are the eigenvalues of A, andW is defined by

[W]
𝑖,𝑗
= {

𝜆
𝑗−1

𝑖
, 𝑗 = 1, . . . , 𝑁

𝑟
− 𝑁
𝑡
,

𝜆
𝑗

𝑖
, 𝑗 = 𝑁

𝑟
− 𝑁
𝑡
+ 1, . . . , 𝑁

𝑟
.

(14)

Let us define A = Φ
𝐻/2

𝑟
Ω
−1
Φ
1/2

𝑟
.
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Proposition 1. The ASR of the GLS receiver in a correlated
environment is upper bounded by

𝑅
𝑢
=

𝑁
𝑡

∑

𝑚=1

𝑁
𝑡
log
2
(

(𝑁
𝑡
− 1)! (det (W̃) + (𝑁

𝑡
𝛾
0
/𝜎
𝑚
) det (W))

∏
𝑁
𝑟

𝑖<𝑗
(𝜆
𝑗
− 𝜆
𝑖
)

)

−
𝑁
𝑡

ln 2
(

𝑁
𝑡
−1

∑

𝑘=1

𝜓 (𝑘) +

∑
𝑁
𝑟

𝑘=𝑁
𝑟
−𝑁
𝑡
+2
det (V)

𝑘

∏
𝑁
𝑟

𝑖<𝑗
(𝜆
𝑗
− 𝜆
𝑖
)

) ,

(15)

where𝜓(⋅) is Euler’s digamma function, 𝜎
𝑚
is the𝑚th diagonal

entry ofΦ−1
𝑡
, W̃ is defined as

[W̃]
𝑖,𝑗
= {

𝜆
𝑗−1

𝑖
, 𝑗 = 1, . . . , 𝑁

𝑟
− 𝑁
𝑡
+ 1,

𝜆
𝑗

𝑖
, 𝑗 = 𝑁

𝑟
− 𝑁
𝑡
+ 2, . . . , 𝑁

𝑟
,

(16)

and V is an𝑁
𝑟
× 𝑁
𝑟
matrix with elements

[V
𝑘
]
𝑖,𝑗
= {

𝜆
𝑗−1

𝑖
, 𝑗 ̸= 𝑘,

𝜆
𝑗−1

𝑖
ln 𝜆
𝑖
, 𝑗 = 𝑘.

(17)

Furthermore, the ASR is lower bounded by

𝑅
𝑙
=

𝑁
𝑡

∑

𝑚=1

log
2
(1 + 𝛾

0
exp(𝜓 (𝑁

𝑡
) − ln (𝜎

𝑚
)

+

det (V
𝑁
𝑟
−𝑁
𝑡
+1
)

∏
𝑁
𝑟

𝑖<𝑗
(𝜆
𝑗
− 𝜆
𝑖
)

)) .

(18)

Proof. The proof is based on a similar approach as that
in [13, Appendix III], more specifically, by assuming A =

Φ
𝐻/2

𝑟
Ω
−1
Φ
1/2

𝑟
instead of A = Φ

𝑟
.

3.2. Normalized Mean Square Error. Let us define the condi-
tioned normalized MSE (NMSE) at the ZF receiver output,
given the channel matrix, as

NMSE (H) =

tr {E [(x
𝑡
− x̂𝑔
𝑡
) (x
𝑡
− x̂𝑔
𝑡
)
𝐻

]}

𝑁
𝑡

=

tr {Z−1}
𝑁
𝑡

.

(19)

The NMSE is obtained by averaging (19) with respect toH.

Proposition 2. The NMSE at the GLS receiver output in a
correlated environment is lower bounded by

𝑁𝑀𝑆𝐸 ≥
1

𝑁
𝑡

𝑁
𝑡

∑

𝑘=1

exp(𝜓 (𝑁
𝑡
) − ln (𝜎

𝑚
) +

det (Y
𝑁
𝑟
−𝑁
𝑡
+1
)

∏
𝑁
𝑟

𝑖<𝑗
(𝛾
𝑗
− 𝛾
𝑖
)

) .

(20)

Proof. Since trace and expectation commute, we can write

NMSE =
1

𝑁
𝑡

𝑁
𝑡

∑

𝑘=1

E {exp (ln [Z−1]
𝑘𝑘
)} (21)

=
1

𝑁
𝑡

𝑁
𝑡

∑

𝑘=1

E{exp(ln
det (H𝐻

𝑚
H
𝑚
)

det (H𝐻H)
)} (22)

≥
1

𝑁
𝑡

𝑁
𝑡

∑

𝑘=1

exp(E{ln
det (H𝐻

𝑚
H
𝑚
)

det (H𝐻H)
}) , (23)

where H
𝑚
is the (𝑚,𝑚)th minor of H and (22) is obtained

from matrix properties, while (23) is obtained thanks to
Jensen’s inequality since exp(⋅) is a convex function.The proof
follows by invoking a lemma form [15, Lemma 4] and a result
from [13, equations (15), (46)] which give

E {ln det (H𝐻H) − lndet (H𝐻
𝑚
H
𝑚
)}

= 𝜓 (𝑁
𝑡
) − ln (𝜎

𝑚
) +

det (Y
𝑁
𝑟
−𝑁
𝑡
+1
)

∏
𝑁
𝑟

𝑖<𝑗
(𝛾
𝑗
− 𝛾
𝑖
)

.

(24)

Substituting (24) into (23), we obtain (20).

3.3. Global Outage Probability. There are several definitions
of the GOP which depend on the application of interest [16].
In this letter, we assume that the GOP is defined as the
probability that all instantaneous SNRs 𝛾

𝑘
fall below a fixed

threshold 𝛾. This means that the system is considered avail-
able if at least one of the substreams achieves the desired
performance. This definition, called all-outage probability in
[16], can be expressed as

𝑃
𝑜
(𝛾) = Pr {D ≤ 𝛾I

𝑁
𝑡

} , (25)

whereD = Diag [𝛾
1
, . . . , 𝛾

𝑁
𝑡

].

Proposition 3. The GOP of the GLS receiver in a correlated
environment is upper bounded by

𝑃
𝑜
(𝛾) ≤

1

ln 𝛾

𝑁
𝑡

∑

𝑘=1

𝜓 (𝑁
𝑡
) − ln(

𝜎
𝑚

𝛾
0

) +

det (Y
𝑁
𝑟
−𝑁
𝑡
+1
)

∏
𝑁
𝑟

𝑖<𝑗
(𝛾
𝑗
− 𝛾
𝑖
)

. (26)

Proof. We start by writing 𝑃
𝑜
(𝛾) = Pr {lnD ≤ ln 𝛾I

𝑁
𝑡

} since
ln(⋅) is a strictly monotonic increasing function and using the
Markov’s inequality [17]

Pr {𝑔 (D) ≤ 𝛼I} ≤ 1

𝛼
tr (E {𝑔 (D)}) . (27)
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Then, we can write the following:

𝑃
𝑜
(𝛾) ≤

1

ln 𝛾
tr (E {lnD}) =

1

ln 𝛾
E {tr (lnD)} (28)

≤
1

ln 𝛾

𝑁
𝑡

∑

𝑘=1

E{ln(
𝛾
0

[Z−1]
𝑘𝑘

)} (29)

≤
𝑁
𝑡
ln 𝛾
0

ln 𝛾
−

1

ln 𝛾

𝑁
𝑡

∑

𝑘=1

lnE{

det (H𝐻
𝑚
H
𝑚
)

det (H𝐻H)
} , (30)

where (29) results from Jensen’s inequality since ln(⋅) is con-
cave function. The bound in (26) is obtained using (24).

4. Improved ZF Receiver with Unknown Ω

When Ω is unknown at the receiver, we estimate the covari-
ancematrixΣ and use the estimator Σ̂

𝑇
(the subscript𝑇 refers

to the frame length) to evaluate the feasible generalized least
squares estimator (FGLS) [12]

x̂𝑓
𝑡
= (H𝐻Σ̂−1

𝑇
H)

−1

H𝐻Σ̂−1
𝑇
y
𝑡
. (31)

To obtain the FGLS estimator, we propose to use the following
iterative process (with 𝑛

𝑖
iterations).

(1) Perform the OLS estimation x̂(1)
𝑡

= H†y
𝑡
.

(2) Compute the residual vector e(1)
𝑡

for (𝑡 = 1, . . . , 𝑇)

e(1)
𝑡

= y
𝑡
−Hx(1)
𝑡
, (32)

where x(1)
𝑡

is the hard estimate of x
𝑡
obtained by map-

ping x̂(1)
𝑡

to the closest constellation point using the
classical decision rule for the considered modulation.

(3) Estimate Σ by Σ̂(1)
𝑇

= (1/𝑇)∑
𝑇

𝑡=1
e(1)
𝑡
(e(1)
𝑡
)
𝐻.

(4) For any iteration 𝑘 = 2, . . . , 𝑛
𝑖
, compute the FGLS

x̂(𝑘)
𝑡

= (H𝐻[Σ̂(𝑘)
𝑇
]

−1

H)

−1

H𝐻[Σ̂(𝑘)
𝑇
]

−1

y
𝑡
. (33)

(5) Update the residual error vector as e(𝑘)
𝑡

= y
𝑡
−Hx(𝑘)
𝑡
.

(6) Update the covariance matrix estimation

Σ̂
(𝑘)

𝑇
=

1

𝑇

𝑇

∑

𝑡=1

e(𝑘)
𝑡
(e(𝑘)
𝑡
)
𝐻

. (34)

(7) Iterate Steps (3), (4), (5), and (6).

When Σ is replaced by Σ̂
𝑇
, the Gauss-Markov theorem

no longer holds [12]. This means that the estimator x̂𝑇
𝑡
is not

necessarily BLUE. In general, it is difficult to evaluate the
statistical properties of x̂𝑇

𝑡
. Monte Carlo simulations can be

used to check the accuracy of the FGLS estimator.
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Figure 1: Sum rate of OLS, GLS (simulated and bounds), and FGLS
receivers.

5. Numerical Results

In this section, Monte Carlo simulations are employed to
compare the OLS, GLS, and FGLS estimators and support
our derivation of the bounds. We consider a 2 × 4 MIMO
system with frame size 𝑇 = 10

4. All simulation curves are
obtained over 104 independent MIMO channel realizations.
The transmitted symbols are 16-QAMmodulated. The corre-
lation coefficients are fixed to 𝜌

𝑡
= 𝜌
𝑟
= 0.6.

In Figure 1, the simulated ASR for the three detection
techniques are plotted. For the FGLS case, the plotted curve
is obtained after the fifth iteration. For the GLS method, the
ASR obtained by the simulation is also compared against the
bounds of (15) and (18). It is shown that the GLS and the
FGLS outperform theOLS receiver. For higher SNRs, theASR
obtained when Σ is unknown is nearly the same with that
when Σ is known. Furthermore, we can see that the analytical
bounds exhibit a negligible difference with the simulation
curves. However, the lower bound is tighter across all SNRs.

Figure 2 compares the NMSE performance of the OLS,
GLS, and FGLS approaches. It shows that the lower bound
of (20) works well for 𝛾

0
= 6 dB. For the FGLS method, we

have plotted the NMSE after each iteration. It can be seen
that, from the first iteration to the fourth one, there is an
important improvement in the NMSE. However, after the
fourth iteration, the NMSE improvement is not noticeable.
It is thus possible to shut down the iteration process after the
fourth iteration.

TheGOPs of the different receivers are plotted in Figure 3.
The upper bound of (26) is also provided. The threshold 𝛾 is
fixed in order to assure a target BER of 10−4. We can see that
the upper bound of (26) is fairly tight and can well predict the
GOP.At aGOPof 10−4, theGLS technique allows a significant
gain of about 3 dB with respect to OLS estimator.The GOP of
the FGLS receiver after the fifth iteration is close to that of the
GLS.
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6. Conclusion

A ZF detector is analyzed in the presence of correlated noise
and doubly correlated channel. When the noise covariance
matrix is known, the GLS algorithm allows a BLUE estima-
tion of the transmitted sequence. In this case, we provide
upper and lower bounds of the ASR, a lower bound of the
NMSE, and an upper bound of the GOP. When the noise
covariancematrix is unknown, we propose to use the iterative
FGLS algorithm. Computer simulations have demonstrated
the efficiency of the proposed FGLS detector which leads to
a substantial improvement in the system performance. After
four iterations, the FGLS performances approach those of
the GLS. We have validated the derived analytic bounds by
computer simulations.
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