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For the Hopfield Neural Network problem we consider unbounded monotone nondecreasing activation functions. We prove
convergence to zero in an exponential manner provided that we start with sufficiently small initial data.

1. Introduction

Of concern is the following system:

x′i (t) =− ai(t)xi(t)

+
m∑

j=1

bi j(t) f j
(
xj(t)

)
+ ci(t), i = 1, . . . ,m,

(1)

where ai(t) ≥ 0, bi j(t),ci(t), i, j = 1, . . . ,m are continuous
functions, and f j are the activation functions which will be
assumed continuous and bounded by some nondecreasing
(and possibly unbounded functions).

This system appears in Neural Network theory [1, 2]. As
is well-known, Neural Networks are an important tool in
business intelligence. Their architecture differs from the one
of standard computers in that it consists of a large number of
processors (neurons) with high connections between them.
In contrast to computers with a single processor, (Artificial)
Neural Networks perform their computations in parallel.

Just as the human brain, the neurons receive weighted
signals from the neurons in the input layer, sum up these
inputs and test against a threshold value. Then they decide
to fire or not.

The applications are numerous, we may cite few: mod-
elling soil behavior, design of tunnels, image processing,
graph flow, data deconvolution, energy demand forecast-
ing, ecosystem evaluation, scheduling optimization, targeted

marketing, medical diagnosis, time series analysis, and stock
market.

Neural Networks are able to analyze and evaluate many
phenomena in real world business as well as in industry.
Some of their advantages over the conventional computers
are forecasting, strategy planning, and predicting many
phenomena.

Different methods have been used by many authors to
study the well-posedness and the asymptotic behavior of
solutions [3–20]. In particular, a lot of efforts are devoted in
improving the set of conditions on the different coefficients
involved in the system as well as the class of activation
functions. Regarding the latter issue, the early assumptions of
boundedness, monotonicity, and differentiability have been
all relaxed to merely a global Lipschitz condition. Since then,
it seems that, this assumption has not been weakened further
considerably although there is a great need for that [21]. A
slightly weaker condition: xigi(xi) > 0, xi /= 0 and there exist
λi > 0 such that λi = supxi /= 0 (gi(xi)/xi), where gi(xi) =
fi(xi) − fi(x∗i ) and x∗i is the equilibrium, has been used in
[22–24] (see also [25–27]).

Here we assume that the activation functions f j are
bounded by continuous monotone nondecreasing functions
gj , that is,

∣∣∣ f j(x)
∣∣∣ ≤ gj(|x|), j = 1, . . . ,m. (2)
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The functions gj are not necessarily Lipschitz continuous
and they may be unbounded (like power type functions with
powers bigger than one). We can also consider activation
functions with discrete delays as is explained below. We prove
that, for sufficiently small initial data, solutions decay to zero
exponentially.

The local existence and existence of equilibria is standard
(see, the Gronwall-type Lemma 1 below) and the global
existence follows from the estimation in our theorem below.
However, the uniqueness of the equilibrium is not trivial.
Here, as we are concerned with the convergence to zero rather
than stability of equilibrium, the uniqueness of equilibrium
is put aside.

The next section contains the statement and proof of our
result as well as a crucial lemma we will be using.

2. Exponential Convergence

In this section it is proved that solutions converge to zero
in an exponential manner when the activation functions are
(or bounded by) continuous nondecreasing and unbounded
functions. To this end we need a lemma due to Bainov and
Simeonov [3].

Let I ⊂ R and let g1, g2 : I → R \ {0}. We write g1 ∝ g2 if
g2/g1 is nondecreasing in I .

Lemma 1. Let a(t) be a positive continuous function in
J := [α,β), kj(t, s), j = 1, . . . ,n are nonnegative continuous
functions for α ≤ s ≤ t < β which are nondecreasing in t for
any fixed s, gj(u), j = 1, . . . ,n are nondecreasing continuous
functions in R+, with gj(u) > 0 for u > 0 and u(t) is a
nonnegative continuous functions in J . If g1 ∝ g2 ∝ ·· · ∝ gn
in (0,∞), then the inequality

u(t) ≤ a(t) +
n∑

j=1

∫ t

α
kj(t, s)gj(u(s))ds, t ∈ J (3)

implies that

u(t) ≤ ωn(t), α ≤ t < β0, (4)

where ω0(t) := sup0≤s≤ta(s),

ωj(t) := G−1
j

[
Gj

(
ωj−1(t)

)
+
∫ t

α
kj(t, s)ds

]
, j = 1, . . . ,n,

Gj(u) :=
∫ u

uj

dx

gj(x)
, u > 0

(
uj > 0, j = 1, . . . ,n

)
,

(5)

and β0 is chosen so that the functions ωj(t), j = 1, . . . ,n are
defined for α ≤ t < β0.

For the statement of our theorem we will need the
following notation:

a(t) := min
1≤i≤m

{ai(t)}, (6)

ω0(t) := x(0) +
m∑

i=1

∫ t

0
exp
[∫ s

0
a(σ)dσ

]
|ci(s)|ds, (7)

ωj(t) := G−1
j

⎡
⎣Gj

(
ωj−1(t)

)

+
∫ t

0
exp
[∫ s

0
a(σ)dσ

]⎛
⎝

m∑

i=1

∣∣∣bi j(s)
∣∣∣

⎞
⎠ds

⎤
⎦,

(8)

Gj(u) :=
∫ u

uj

dx

gj(x)
, u > 0

(
uj > 0, j = 1, . . . ,m

)
. (9)

Theorem 2. Assume that f j satisfy | f j(x)| ≤ gj(|x|), j =
1, . . . ,m for some continuous nondecreasing (and possibly
unbounded) functions gj , j = 1, . . . ,m in R+, with gj(u) > 0
for u > 0. Assume further that ai(t) ≥ 0, bi j(t), ci(t), i, j =
1, . . . ,m are continuous functions. If g1 ∝ g2 ∝ ·· · ∝ gm in
(0,∞) then, there exists β0 > 0 such that

x(t) ≤ ωm(t) exp

[
−
∫ t

0
a(s)ds

]
, 0 ≤ t < β0, (10)

where x(t) :=∑m
i=1 |xi(t)|.

Proof. From (1) and our assumption on f j we see that

D+|xi(t)| ≤ −ai(t)|xi(t)| +
m∑

j=1

∣∣∣bi j(t)
∣∣∣gj
(∣∣∣xj(t)

∣∣∣
)

+ ci(t), t > 0, i = 1, . . . ,m,

(11)

or

D+x(t) ≤ −min
1≤i≤m

{ai(t)}x(t) +
m∑

i, j=1

∣∣∣bi j(t)
∣∣∣gj
(∣∣∣xj(t)

∣∣∣
)

+
m∑

i=1

ci(t), t > 0,

(12)

where D+ denotes the right Dini derivative. Hence

D+x(t) ≤ −a(t)x(t) +
m∑

i, j=1

∣∣∣bi j(t)
∣∣∣gj
(∣∣∣xj(t)

∣∣∣
)

+
m∑

i=1

ci(t), t > 0.

(13)
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In virtue of (13) we derive

D+

{
x(t) exp

[∫ t

0
a(s)ds

]}

≤ exp

[∫ t

0
a(s)ds

] m∑

i, j=1

∣∣∣bi j(t)
∣∣∣gj(x(t))

+ exp

[∫ t

0
a(s)ds

] m∑

i=1

ci(t),

(14)

and thereafter (see [28])

x̃(t) ≤ x(0) +
m∑

j=1

∫ t

0

⎧
⎨
⎩ exp

[∫ s

0
a(σ)dσ

]

×
⎛
⎝

m∑

i=1

∣∣∣bi j(s)
∣∣∣

⎞
⎠gj(x̃(s))

⎫
⎬
⎭ds

+
m∑

i=1

∫ t

0
exp
[∫ s

0
a(σ)dσ

]
|ci(s)|ds, t > 0,

(15)

where

x̃(t) := x(t) exp

[∫ t

0
a(s)ds

]
. (16)

Applying Lemma 1 we obtain the existence of β0 such that

x̃(t) ≤ ωm(t), 0 ≤ t < β0, (17)

where ω0(t), ωj(t), and Gj(u), j = 1, . . . ,m are as defined in
(7)–(9).

Remark 3. To have global existence we need β0 = ∞ and this
is possible when

∫∞

0
exp
[∫ s

0
a(σ)dσ

]⎛
⎝

m∑

i=1

|bik(s)|
⎞
⎠ds

≤
∫∞

ωk−1

dz

gk(z)
, k = 1, . . . ,m.

(18)

Remark 4. Assuming that ωn(t) grows up at most polynomi-
ally, we see that the rate is exponential.

Remark 5. Note here that our assumptions in the previous
remarks involve a smallness condition on the initial data.

3. Applications

Using Kirchhoff ’s law, Hopfield demonstrated that electrical
circuits could behave as a small Neural Network. His original
system has the form:

Ci
dui
dt

=
m∑

i=1

Tijv j − ui
Ri

+ Ii, i = 1, . . . ,m,

vj = gj
(
uj

)
, j = 1, . . . ,m,

(19)

where Ci > 0: Capacity, Ri > 0: Resistance, Ii: Bias (external
action on the ith neuron), ui: Input (voltage) of the ith
neuron, vi: Output of the ith neuron, Tij : The coupling
constants of the jth neuron with the ith neuron, and gj(uj):
Activation functions.

Tij are called elements of the weight matrix or connection
matrix. This matrix describes the strength of connection
between neurons. The expression 1/Ri is sometimes called
the feedback factor.

The functions gj(uj) are nonlinear functions charac-
terizing the response of the ith neuron to changes in its
state. Typical activation functions are the “Step function”, the
“Sign function”, the “Gaussian” function, the “Hyperbolic
function”, and the “Exponential type function”. However, it
has been established that many other activation functions
arise in practice which are not of these forms. Therefore there
is a need to enlarge these classes of functions to more general
ones.

In Neural Network Theory researchers are rather inter-
ested in designing models which are globally asymptotically
stable. That is, the models must have a unique equilibrium
which attracts all the solutions. Of course the rate of con-
vergence is extremely important and it is preferable to have
an exponential convergence rate. In the present work (for
the case of variable coefficients) we prove that if solutions
start close enough to zero then they will be attracted by zero.
Our theorem shows that solutions remain bounded by

ωm(t) exp

[
−
∫ t

0
a(s)ds

]
, (20)

as long as t < β0 defined as a bound for the interval of exis-
tence of the ωj ’s (see (8)). In Remark 3 we gave a sufficient
condition ensuring the existence of the ωj ’s for all time. That
is conditions for which β0 = +∞. It follows then that, under
these conditions, the states actually converge to zero as t goes
to infinity with an exponential rate in case ωm(t) does not
grow too fast and

∫ t
0 a(s)ds → ∞ as t → ∞.

The example below represents a possible practical situ-
ation for which our argument applies. Again we establish a
sufficient explicit condition leading to exponential conver-
gence to zero provided that the initial data are small enough.

Example 6. Consider the special (but common) functions
gj(x) = xni , ni > 1, i = 1, . . . ,m. The order g1 ∝ g2 ∝
·· · ∝ gm means n1 ≤ n2 ≤ · · · ≤ nm. Clearly, in this

case Gj(x) = (x1−nj /(1 − nj)) − (x
1−nj

0 /(1 − nj)), G−1
j (z) =

[x
1−nj

0 − (nj − 1)z]
−(1/(nj−1))

, and for t > 0

ωj(t) =
⎧
⎨
⎩ω

1−nj

j−1 (t)−
(
nj − 1

)∫ t

0
exp
[∫ s

0
a(σ)dσ

]

×
⎛
⎝

m∑

i=1

∣∣∣bi j(s)
∣∣∣

⎞
⎠ds

⎫
⎬
⎭

−(1/(nj−1))

.

(21)
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The value β0 will be the largest value of t for which

ω
nj−1
j−1 (t)

∫ t

0
exp
[∫ s

0
a(σ)dσ

]⎛
⎝

m∑

i=1

∣∣∣bi j(s)
∣∣∣

⎞
⎠ds <

1
nj − 1

,

(22)

for all j = 1, . . . ,m. As we are interested in the long time
behavior of solutions it is necessary that these conditions
hold for all t. Our theorem then implies that solutions are
bounded by the expression

ωm(t) exp

[
−
∫ t

0
a(s)ds

]
, (23)

which provides us with an exponential decay under some
fairly reasonable assumptions.

3.1. Discrete Delays. The case where we have discrete delays
in the activation functions, that is,

x′i (t) = − ai(t)xi(t) +
m∑

j=1

bi j(t) f j
(
xj
(
t − τi j

))

+ ci(t), i = 1, . . . ,m,

(24)

where τi j are different finite delays, can be treated similarly.
We use the following functional

Ξ(t) :=
m∑

i, j=1

e−
∫ t

0 a(s)ds
∫ t

t−τi j
e
∫ s+τi j

0 a(σ)dσ

×
∣∣∣bi j

(
s + τi j

)∣∣∣gj
(∣∣∣xj(s)

∣∣∣
)
ds

(25)

to get rid of the delayed terms and replace them by terms
without delays.
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